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Speech Feature Analysis Using Variational
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Abstract—

In most hidden Markov based automatic speech recognition sys-
tems one of the fundamental question is to determine the intrinsic
speech feature dimensionality and the number of clusters used in
the Gaussian mixture model. We analyzed mel-frequency band en-
ergies using a variational Bayesian principal component analysis
method to estimate the feature dimensionality as well as the num-
ber of Gaussian mixtures by learning a maximum lower bound
of the evidence instead of maximizing the likelihood function as
used in conventional speech recognition systems. In analyzing the
TIMIT speech data set, our method revealed the intrinsic struc-
tures of vowels and consonants. The usefulness of this method
is demonstrated in the superior classification performance for the
most difficult phonemes /b/, /d/ and /g/.

Index Terms— Speech analysis, phoneme classification, speech
recognition.

|. INTRODUCTION

STANDARD modern speech recognizers are mostly based
n mel-scaled cepstral feature vectors and hidden Markov
models (HMMs) with continuous observation probability dis-
tributions. The feature vectors are obtained by an orthogonal
transformation which aims to reduce the dimension and pro-
duce coefficients as uncorrelated as possible. The probability
distributions are often modeled by mixtures of Gaussian proba-
bility distributions with diagonal covariance matrices and are
usually trained by the expectation-maximization (EM) algo-
rithm. The number of cepstral features as well as the number
of clusters is usually empirically determined and there has been
no rigorous way to determine the appropriate feature dimension
and the number of mixtures. This is due to the over-fitting prob-
lem in maximum likelihood estimation where increasing the
cluster number or the dimensionality of the feature vector will
always increase the likelihood, in other words, the parameters
are often over-fitted to training data when too many Gaussian
mixtures are used for acoustic modeling. In this paper, we ad-
dress this problem by maximizing the evidence of the data and
analyzing the intrinsic structure of speech signals that is used to
estimate the appropriate feature dimension and the proper num-
ber of mixtures with full covariance matrices for each subunit.
In contrast with the likelihood that is defined as the probabil-
ity of the data given the parameters, the evidence is defined as
the probability of the data integrated over the distribution of the
parameters.
In the conventional setting, a discrete cosine transform
(DCT) has been widely used to extract mel-frequency cepstral
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Fig. 1. Feature extraction and acoustic modeling (a) in a standard HMM-based
system and (b) in the assumed system in the paper.

coefficients (MFCCs). Recently the principal component anal-
ysis (PCA) and linear discriminant analysis (LDA) were stud-
ied to optimize the transformation and reduce the feature di-
mension in case multiple frames are used for acoustic modeling
[11[2][3]. The transformation replaces finite-impulse response
(FIR) filters in the temporal axis. Here, we use mixtures of vari-
ational Bayesian principal component analyzers (VBPCA) to
analyze mel-frequency band energies and obtain proper trans-
formations. In the VBPCA, parameters are represented by
probability distributions and the parameters of the parameter
distributions (hyper-parameters) are estimated by maximizing
the evidence of observed signals instead of the likelihood in the
conventional maximum likelihood estimation paradigm. Hid-
den variables are introduced so that the evidence is approx-
imated by the lower bound and posterior distributions of the
parameters are assumed separable. Prior distribution on the pa-
rameters acts as a penalty term and gives an appropriate num-
ber of mixtures and the feature dimension and prevents the pa-
rameters from over-learning. We analyze the TIMIT speech
database and reveal some characteristics for vowels and con-
sonants. We also demonstrate the usefulness of the VBPCA
for speech recognition by performing phoneme classification.
Fig.1 compares the standard MFCC-based speech recognizer
and the assumed system in this paper.

Il. VARIATIONAL BAYESIAN PCA

In the probabilistic PCA (PPCA) [4][5], an IV dimensional
observed data vector x is assumed to be generated from in-



dependent latent variables s; x = As + v + € where s is
a zero-mean unit-variance Gaussian random variable, v is the
mean vector and e is a zero-mean Gaussian noise vector with
an isotropic covariance [¥¢]=!. The PPCA finds A, ®¢ and
v which maximize the likelihood of the observed data vectors.
The solution can be obtained by eigenvector decomposition of
a sample covariance matrix. In factor analysis similar to PCA,
a diagonal covariance is assumed for the noise model. Compar-
ison between factor analysis and PCA can be found in [5][6].
However, PPCA does not give the optimal number of indepen-
dent components because it uses a maximum likelihood crite-
rion, thus leading to the over-fitting problem.

Bayesian PCA [7][8] was proposed to find the intrinsic di-
mension and the optimal number of clusters in the latent vari-
able model by utilizing prior information on parameters 6. Fol-
lowing the Bayesian framework, Bayesian PCA computes the
evidence of the data P(X) instead of the likelihood P(X]|8).
Direct computation of the log evidence is difficult. We therefore
follow the variational method, where the lower bound of the log
evidence is obtained by using the Jensen’s inequality and then
the lower bound is maximized through functional maximiza-
tion.

Observation data vectors X = {x; € RV},t =1,...,T, are
assumed to be generated from one of C clusters with proba-
bility p¢. Each cluster is centered at ¢, has covariance matrix
AcA<T and diagonal Gaussian noise with inverse covariance
we = Pl

C
P(xi|p®, A°, v, 8) =" pF /./\/'(xt|Acs,f+Vc, W) P(s§)ds§
c=1

1)
We follow the notation used in [10] whose learning algo-
rithm with the condition K = 1 exactly matches [9]. In
each cluster the observation is a linear combination of M in-
dependent Gaussian sources s§; P(s$,,) = N(s¢,]0,1). In
Bayesian PCA, the maximum number of sources is restricted to
N — 1. We also assume zero mean Gaussian density for AS;
P(AS, ) = N(45,.10,a5,). Instead of the likelihood of the
data P(X|6), we maximize an approximated lower bound of
the log evidence on the data P(X). Assuming the x; are inde-
pendent and identically distributed, introducing posterior prob-
ability distribution @) (6) and using the Jensen’s inequality, log
of the evidence is lower bounded by [10]

log P(X) = log / [1 P(x:16)P(6)a6 )

P(6)
log P(X) > / Q(a)ztjlogp(xtw)dm / Q(6) log Wdﬂ.
©)

The learning algorithm to maximize the lower bound can be
found in [9][10]. To compare between models with a differ-
ent number of clusters, we compute the lower bound of the log
evidence given as (the right side in (3))

F(X) =) log Z + / Q(6) log %da (4)
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where Z; is the normalization constant for )(c;) in [10] and
corresponds to ¢ in [9].

For classification, the log evidence of a new test vector x4
given a model M; was approximated as

log P(x74+1|X, M;) = log/P(xT+1|0)Q(0)d0 (5)

~ log Zry. (6)

To obtain Zp,1, we estimated Q(sry1) and computed
Q(cr41) over the posterior distribution Q(6) fixed after learn-
ing. Note that when we evaluate the log evidence of x71,
the learned Q(6) was used to compute Z7, while the compu-
tation of F'(X,xr41) needs a different Q' () estimated from
(X, x741). The above approximation is valid when the num-
ber of samples is moderately enough. For a model learned from
a very small number of samples (less than about 10), the log
evidence should be computed by integrating likelihood over the
learned posterior distribution Q) () as above.

The following priors in the parameters and hyper-parameters
are assumed in deriving the lower bound [10]:

()

where G(.), N'(.) and D(.) are the gamma, normal and Dirichlet
distribution, respectively, and po, Ao, ag, bo and dqy are hyper-
parameters of the corresponding priors. We used p(v5) = 0,
Ao(ve) = 0.001, do(p°) = 1, ap(as,) = 1.001, by(al,) =
0.001, ao(¥°) = 1.001 and varied by () depending on appli-
cations. The hyper-parameters were decided so that the result-
ing priors have a distribution as dispersive (non-informative)
as possible. The by (¥€¢) was determined to satisfy both the
non-informative property and the assumed noise level. We
used the same value of the by (¥¢) for every phoneme. The
hyper-parameter a, for a gamma distribution must be larger
than unity in order to compute the expectation of 1/X. We
note that E[X] = bg/ao, var[X] = bo/a2, and E[1/X] =
bo/(ao — 1),a9 > 1 for a gamma-distributed random variable
X.

The input signals were normalized to have zero mean and
unit variance in the preprocessing stage. If the number of sam-
ples in a cluster was less than a threshold times the number of
samples divided by the number of the current clusters, or the
maximum vector norm of the columns in A¢ was less than a
second threshold, the cluster was removed. In this work, we
used 0.01 and 1 x 10710 for the thresholds, respectively. The
lower the thresholds, the longer iteration it takes for the cluster
with a small weight to be removed. Once the cluster is removed,
the lower bound increases.

To create a new cluster, we selected a cluster randomly with
the probability proportional to the contribution to the likeli-
hood. The selected cluster was split into two clusters whose
mean vectors are displaced in the positive and negative direc-
tion of the column vector with the maximum vector norm of
Ac¢ and then A€’s were randomly perturbed around 0.9 times
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the original matrix by adding 0.1 times square root of the maxi-
mum vector norm times a random matrix whose elements were
generated by a unit-variance Gaussian random number gener-
ator. If the new cluster increased the lower bound of the log
evidence, it was included in the cluster set. Initially, the cluster
set included a predefined number of clusters same as the maxi-
mum number of clusters used for maximum likelihood cluster-
ing. If the cluster set was not changed in the predefined number
of clustering epochs, the learning procedure was terminated.

The final dimension of the clusters depends on the hyper-
parameter bo(¥¢) of the noise inverse covariance. A larger
value yields a smaller dimension. We control these hyper-
parameters to obtain reduced dimensions. With a small value in
a noninformative prior case, the dimension is usually the same
as the original dimension minus one because there are many
samples for each cluster.

I1l. EXPERIMENTAL RESULTS

We used the TIMIT speech database in the experiment and
extracted 22 frequency band energies from the label informa-
tion of the training set by using the HTK [11]. The frame shift
was 10 ms and the window was 20 ms. We used the 48 phoneme
set and 10,000 frames of speech data for each phoneme were
used to reduce the computation in the learning algorithm.

We analyzed real speech signals using the TIMIT database.
Fig. 2 shows the clustering results when the EM algorithm and
the variational Bayesian PCA were used for the phoneme /aa/.
The number of samples in a cluster was limited to 250 and 500
in each case to give a clear look, which makes the two sam-
ple sets seem not the same. The sample data and the obtained
components were projected into a space spanned by the prin-
cipal components in the single cluster case. In the figures, the
ellipses denote the contour of unit variance, two lines in a clus-
ter denote the two major components and the cross point of the
lines is the mean of the cluster. Note that the principal com-
ponents in the single cluster case are orthogonal. In the EM
algorithm, we used 8 Gaussian mixtures with diagonal covari-
ance matrices. The resulting Gaussians partitioned the signal
space into small regions. Comparatively, the Bayesian PCA
with 8 initial clusters resulted in 4 Gaussians with full covari-
ance matrices. The intrinsic dimension was 20, 18, 7, and 4 and
the cluster probability was with p¢ = 0.56, 0.37, 0.05, 0.02 for
each cluster respectively.

Fig. 3 shows the number of clusters and the mini-
mum/maximum/average dimension of the intrinsic components
for the 48 phonemes in the TIMIT database. The bar denotes
the number of clusters, the lower/upper end point of the thick
line denotes the minimum/maximum dimension, and the square
on the thick line denotes the average dimension. We set the
hyper-parameter of the inverse noise covariance to bo(¥¢) =
0.5 in the experiment. The average dimension was computed
by arithmetic mean of the dimension of every cluster. The re-
sults showed that vowels were clustered into 2 to 4 Gaussians
whereas most consonants had 1 or 2 clusters. The average di-
mension of the latent signals was 18.1. When all speech signals
were used, the Bayesian PCA vyielded 7 clusters and the aver-
age dimension of 19.7 (the ALL case in the figure). The results
can be exploited in determining the number of Gaussians in the

(b)

Fig. 2. Clustering results for the phoneme /aa/ with (a) the EM algorithm with
diagonal covariance matrices and (b) the VBPCA. Due to the additional flexi-
bility in adapting to the data density the VBPCA captures the density structure
more accurately.

conventional continuous HMM-based systems. The average di-
mension of the latent signals for each phoneme showed a small
variance.

Using one of the most confusing phoneme pairs /b/, /d/ and
/g/, we performed phoneme classification experiments to test
the usefulness of the method. We extracted the speech data for
the three phonemes from the independent core test set of the
TIMIT database. Table | compares the frame accuracy of the
conventional EM algorithm and the VBPCA.. The ‘D/F’ denotes
‘diagonal/full’ covariance matrix and ‘M’ denotes the number
of clusters for each phoneme. In the EM cases, the frequency
band energies were transformed to 12 MFCCs. In the VBPCA,
the /b/, /d/ and /g/ phonemes had all 1 cluster and the intrin-
sic dimension was 18, 18, 16, respectively. Columns of the A€
with the norm 0.01 times less than the maximum norm were
set to zero to reduce the dimension. The VBPCA outperformed
the EM algorithm with 16 Gaussian distributions and with a
single full covariance Gaussian (F12). With diagonal covari-
ance Gaussians increased to 32, we obtained worse accuracy.
The VBPCA produced the higher accuracy than using a sin-
gle Gaussian with the full covariance matrix without dimension
reduction (F22), which implies that it effectively learns covari-
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Fig. 3. The number of identified clusters and the minimum/maximum/average dimension for each phoneme. The AVG denotes the average statistics over all

phonemes and the ALL denotes the case in which whole speech signals were input to the algorithm.

TABLE |
AVERAGE FRAME ACCURACY (%) FOR /B/, /ID/ AND /G/ PHONEME CLASSIFICATION USING THE EM ALGORITHM AND THE VBPCA WITH VARYING
COVARIANCE KIND AND NUMBER OF MIXTURES

Algorithm EM VBPCA
Cov(dim,M) | D(12,1) | D(12,2) | D(12,4) | D(12,8) | D(12,16) | F(12,1) | F(22,1) | F(*,*)
Frame Acc. 34.0 48.7 49.8 51.9 51.9 49.5 58.7 59.6

ance parameters by avoiding over-fitting.

1V. CONCLUSIONS

We applied VBPCA to determine an appropriate feature di-
mension and the number of mixtures for each subunit in a stan-
dard HMM-based system with continuous observation proba-
bility distributions. By using VBPCA, we were able to use
different transformations with different feature dimension for
each phoneme. Hyper-parameters and the number of mixtures
were obtained by maximizing a lower bound of the evidence.
The feature analysis results showed that the appropriate num-
ber of clusters with full covariance matrices is 2 to 4 for vowels
and 1 to 2 for consonants. With a minimally informative prior,
the feature dimension of each phoneme was shown to be about
18, which is a little larger than the standard dimension of the
MFCC feature. Phoneme classification experiments with con-
fusing phonemes showed that the VBPCA vyielded frame ac-
curacy higher than the standard MFCC feature and the single
Gaussian with a full covariance matrix.

Future research will extend this paradigm for multi-frame in-
put signals in order to optimize the temporal filters in feature
extraction and perform speaker independent phoneme recogni-
tion over the complete phoneme set by embedding the models
into a standard HMM-based system.
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