
ar
X

iv
:c

m
p-

lg
/9

60
30

01
 v

1
 7

 M
ar

 9
6

Speech Recognition by Composition of Weighted

Finite Automata

Fernando C. N. Pereira
Michael D. Riley
AT&T Research

600 Mountain Ave., Murray Hill, NJ 07974

December 21, 2001

Abstract

We present a general framework based on weighted finite automata
and weighted finite-state transducers for describing and implementing
speech recognizers. The framework allows us to represent uniformly the
information sources and data structures used in recognition, including
context-dependent units, pronunciation dictionaries, language models
and lattices. Furthermore, general but efficient algorithms can used
for combining information sources in actual recognizers and for opti-
mizing their application. In particular, a single composition algorithm
is used both to combine in advance information sources such as lan-
guage models and dictionaries, and to combine acoustic observations
and information sources dynamically during recognition.

1 Introduction

Many problems in speech processing can be usefully analyzed in terms of
the “noisy channel” metaphor: given an observation sequence o, find which
intended message w is most likely to generate that observation sequence by

maximizing
P (w, o) = P (o|w)P (w),

where P (o|w) characterizes the transduction between intended messages and
observations, and P (w) characterizes the message generator. More generally,

the transduction between messages and observations may involve several

1

stages relating successive levels of representation:

P (s0, sk)=P (sk |s0)P (s0)
P (sk |s0)=

∑
s1 ,...,sk−1

P (sk |sk−1) · · ·P (s1|s0)
(1)

Each sj is a sequence of units of an appropriate representation, for instance

phones or syllables in speech recognition. A straightforward but useful ob-
servation is that any such a cascade can be factored at any intermediate

level
P (sj |si) =

∑

sl

P (sj |sl)P (sl|si) (2)

For computational reasons, sums and products in (1) are often replaced

by minimizations and sums of negative log probabilities, yielding the ap-
proximation

P̃ (s0, sk) = P̃ (sk|s0) + P̃ (s0)

P̃ (sk|s0) ≈ mins1,...,sk−1

∑
1≤j≤k P̃ (sj |sj−1)

(3)

where X̃ = − logX . In this formulation, assuming the approximation is

reasonable, the most likely message s0 is the one minimizing P̃ (s0, sk).
In current speech recognition systems, a transduction stage is typically

modeled by a finite-state device, for example a hidden Markov model (HMM).

However, the commonalities among stages are typically not exploited, and
each stage is represented and implemented by “ad hoc” means. The goal

of this paper is to show that the theory of weighted rational languages and
transductions can be used as a general framework for transduction cascades.

Levels of representation will be modeled as weighted languages, and trans-
duction stages will be modeled as weighted transductions.

This foundation provides a rich set of operators for combining cascade
levels and stages that generalizes the standard operations on regular lan-

guages, suggests novel ways of combining models of different parts of the de-
coding process, and supports uniform algorithms for transduction and search
throughout the cascade. Computationally, stages and levels of representa-

tion are represented as weighted finite automata, and a general automata
composition algorithm implements the relational composition of successive

stages. Automata compositions can be searched with standard best-path
algorithms to find the most likely transcriptions of spoken utterances. A

“lazy” implementation of composition allows search and pruning to be car-
ried out concurrently with composition so that only the useful portions of

the composition of the observations with the decoding cascade is explicitly

2

created. Finally, finite-state minimization techniques can be used to reduce

the size of cascade levels and thus improve recognition efficiency [12].
Weighted languages and transductions are generalizations of the stan-

dard notions of language and transduction in formal language theory [2, 6].
A weighted language is a mapping from strings over an alphabet to weights,

while a weighted transduction is a mapping from pairs of strings over two
alphabets to weights. For example, when weights represent probabilities and

assuming appropriate normalization, a weighted language is just a proba-
bility distribution over strings, and a weighted transduction a conditional
probability distribution between strings. The weighted rational languages

and transducers are those that can be represented by weighted finite-state
acceptors (WFSAs) and weighted finite-state transducers (WFSTs), as de-

scribed in more detail in the next section. In this paper we will be concerned
with the weighted rational case, although some of the theory can be prof-

itably extended more general language classes closed under intersection with
regular languages and composition with rational transductions [9, 22].

The notion of weighted rational transduction arises from the combi-
nation of two ideas in automata theory: rational transductions, used in

many aspects of formal language theory [2], and weighted languages and
automata, developed in pattern recognition [4, 15] and algebraic automata
theory [3, 5, 8]. Ordinary (unweighted) rational transductions have been

successfully applied by researchers at Xerox PARC [7] and at the University
of Paris 7 [13, 14, 19, 20], among others, to several problems in language pro-

cessing, including morphological analysis, dictionary compression and syn-
tactic analysis. HMMs and probabilistic finite-state language models can be

shown to be equivalent to WFSAs. In algebraic automata theory, rational
series and rational transductions [8] are the algebraic counterparts of WF-

SAs and WFSTs and give the correct generalizations to the weighted case
of the standard algebraic operations on formal languages and transductions,

such as union, concatenation, intersection, restriction and composition. We
believe our work is the first application of these generalizations to speech
processing.

While we concentrate here on speech recognition applications, the same
framework and tools have also been applied to other language processing

tasks such as the segmentation of Chinese text into words [21]. We explain
how a standard HMM-based recognizer can be naturally viewed as equivalent

to a cascade of weighted transductions, and how the approach requires no
modification to accommodate context dependencies that cross higher-level

unit boundaries, for instance cross-word context-dependent models. This is

3

an important advantage of the transduction approach over the usual, but

more limited “substitution” approach used in existing to speech recognizers.
Substitution replaces a symbol at a higher level by its defining language at

a lower level, but, as we will argue, cannot model directly the interactions
between context-dependent units at the lower level.

2 Theory

2.1 The Weight Semiring

As discussed informally in the previous section, our approach relies on asso-
ciating weights to the strings in a language, the string pairs in a transduc-

tion and the transitions in an automaton. The operations used for weight
combination should reflect the intended interpretation of the weights. For

instance, if the weights of automata transitions represent transition proba-
bilities, the weight assigned to a path should be the product of the weights of
its transitions, while the weight (total probability) assigned to a set of paths

with common source and destination should be the sum of the weights of the
paths in the set. However, if the weights represent negative log-probabilities

and we are operating under the Viterbi approximation that replaces the sum
of the probabilities of alternative paths by the probability of the most prob-

able path, path weights should be the sum of the weights of the transitions
in the path and the weight assigned to a set of paths should be the minimum

of the weights of the paths in the set. Both of these weight structures are
special cases of commutative semirings, which are the basis of the general

theory of weighted languages, transductions and automata [3, 5, 8].
In general, a semiring is a set K with two binary operations, collection

+K and extension ×K , such that:

• collection is associative and commutative with identity 0K ;

• extension is associative with identity 1K ;

• extension distributes over collection;

• a×K 0K = 0K ×K a = 0 for any a ∈ K.

The semiring is commutative if extension is commutative.

Setting K = R+ with + for collection, × for extension, 0 for 0K and
1 for 1K we obtain the sum-times semiring, which we can use to model

probability calculations. Setting K = R+ ∪ {∞} with min for collection,

4

+ for extension, ∞ for 0K and 0 for 1K we obtain the min-sum semiring,

which models negative log-probabilities under the Viterbi approximation.
In general, weights represent some measure of “goodness” that we want

to optimize. For instance, with probabilities we are interested in the highest
weight, while the lowest weight is sought for negative log-probabilities. We

thus assume a total order on weights and write maxx f(x) for the optimal
value of the weight-valued function f and argmaxx f(x) for some x that

optimizes f(x). We also assume that extension and collection are monotonic
with respect to the total order.

In what follows, we will assume a fixed semiring K and thus drop the

subscript K in the symbols for its operations and identity elements. Unless
stated otherwise, all the discussion will apply to any commutative semir-

ing, if necessary with a total order for optimization. Some definitions and
calculations involve collecting over potentially infinite sets, for instance the

set of strings of a language. Clearly, collecting over an infinite set is al-
ways well-defined for idempotent semirings such as the min-sum semiring,

in which a + a = a ∀a ∈ K. More generally, a closed semiring is one in
which collecting over infinite sets is well defined. Finally, some particular

cases arising in the discussion below can be shown to be well defined for the
plus-times semiring under certain mild conditions on the weights assigned
to strings or automata transitions [4, 8].

2.2 Weighted Transductions and Languages

In the transduction cascade (1), each stage corresponds to a mapping from
input-output pairs (r, s) to probabilities P (s|r). More formally, stages in the

cascade will be weighted transductions T : Σ∗×Γ∗ → K where Σ∗ and Γ∗ are
the sets of strings over the alphabets Σ and Γ, and K is the weight semiring.

We will denote by T−1 the inverse of T defined by T (t, s) = T (s, t).
The right-most step of (1) is not a transduction, but rather an informa-

tion source, the language model. We will represent such sources as weighted
languages L : Σ∗ → K.

Each transduction S : Σ∗ × Γ∗ → K has two associated weighted lan-
guages, its its first and second projections π1(S) : Σ∗ → K and π2(S) : Γ∗ →
K, defined by

π1(S)(s) =
∑
t∈Γ∗ S(s, t)

π2(S)(t) =
∑
s∈Σ∗ S(s, t)

Given two transductions S : Σ∗ × Γ∗ → K and T : Γ∗ × ∆∗ → K, we

5

define their composition S ◦ T by

(S ◦ T)(r, t) =
∑

s∈Γ∗
S(r, s)× T (s, t) (4)

For example, if S represents P (sl|si) and T P (sj |sl) in (2), S ◦T represents
P (sj |si).

A weighted transduction S : Σ∗ × Γ∗ → K can be also applied to a
weighted language L : Σ∗ → K to yield a weighted language S[L] over Γ:

S[L](s) =
∑

r∈Σ∗
L(r)× S(r, s) (5)

We can also identify any weighted language L with the identity trans-
duction restricted to L:

L(r, r′) =

{
L(r) if r = r′

0 otherwise

Using this identification, application is transduction composition followed

by projection:

π2(L ◦ S)(s) =
∑
r∈Σ∗

∑
r′∈Σ∗ L(r, r′)× S(r′, s)

=
∑
r∈Σ∗ L(r, r)× S(r, s)

=
∑
r∈Σ∗ L(r)× S(r, s)

= S[L](s)

From now on, we will take advantage of the identification of languages

with transductions and use ◦ to express both composition and application,
often leaving implicit the projections required to extract languages from

transductions. In particular, the intersection of two weighted languages
M,N : Σ∗ → K is given by

π1(M ◦N)(s) = π2(M ◦N)(s) = M(s)×N(s) (6)

It is easy to see that composition is associative, that is, the result of any
transduction cascade R1 ◦ · · · ◦Rm is independent of order of application of

the composition operators.
For a more concrete example, consider the transduction cascade for

speech recognition depicted in Figure 1, where A is the transduction from
acoustic observation sequences to phone sequences, D the transduction from

phone sequences to word sequences (essentially a pronunciation dictionary)

6

phones words
A D M

observations
O

Figure 1: Recognition Cascade

Transduction

singleton {(u, v)}(w, z) = 1 iff u = w and v = z
scaling (kT)(u, v) = k × T (u, v)

sum (S + T)(u, v) = S(u, v) + T (u, v)
concatenation (ST)(t, w) =

∑
rs=t,uv=w S(r, u)× T (s, v)

power T 0(ε, ε) = 1
T 0(u 6= ε, v 6= ε) = 0
Tn+1 = TTn

closure T ∗ =
∑
k≥0 T

k

Table 1: Rational Operations

and M a weighted language representing the language model. Given a par-
ticular sequence of observations o, we can represent it as the trivial weighted
language O that assigns 1 to o and 0 to any other sequence. Then O◦A rep-

resents the acoustic likelihoods of possible phone sequences that generate o,
O ◦A◦D the acoustic-lexical likelihoods of possible word sequences yielding

o, and O ◦ A ◦D ◦M the combined acoustic-lexical-linguistic probabilities
of word sequences generating o. The word string w with the highest weight

in π2(O ◦A ◦D ◦M) is the most likely sentence hypothesis generating o.
Composition is thus the main operation involved in the construction and

use of transduction cascades. As we will see in the next section, composi-
tion can be implemented as a suitable generalization of the usual intersection

algorithm for finite automata. In addition to composition, weighted trans-
ductions (and languages, given the identification of languages with trans-
ductions presented earlier) can be constructed from simpler ones using the

operations shown in Table 1, which generalize in a straightforward way the
regular operations well-known from traditional automata theory [6]. In fact,

the rational languages and transductions are exactly those that can be built
from singletons by applications of scaling, sum, concatenation and closure.

For example, assume that for each word w in a lexicon we are given
a rational transduction Dw such that Dw(p, w) is the probability that w

7

is realized as the phone sequence p. Note that this allows for multiple

pronunciations for w. Then the rational transduction (
∑
wDw)∗ gives the

probabilities for realizations of word sequences as phone sequences if we leave

aside cross-word context dependencies, which will be discussed in Section 3.

2.3 Weighted Automata

Kleene’s theorem states that regular languages are exactly those repre-

sentable by finite-state acceptors [6]. Generalized to the weighted case and to
transductions, it states that weighted rational languages and transductions

are exactly those that can be represented by weighted finite automata [5, 8].
Furthermore, all the operations on languages and transductions we have dis-

cussed have finite-automata counterparts, which we have implemented. Any
cascade representable in terms of those operations can thus be implemented
directly as an appropriate combination of the programs implementing each

of the operations.
A K-weighted finite automaton A is given by a finite set of states QA,

a set of transition labels ΛA, an initial state iA, a final weight function
FA : QA → K, 1 and a finite set δA ⊂ QA × ΛA × K × QA of transitions

t = (t.src, t.lab, t.w, t.dst). The label set ΛA must have with an associative
concatenation operation u · v with identity element εA. A weighted finite-

state acceptor (WFSA) is a K-weighted finite automaton with ΛA = Σ∗

for some finite alphabet Σ. A weighted finite-state transducer (WFST) is

a K-weighted finite automaton such that ΛA = Σ∗ × Γ∗ for given finite
alphabets Σ and Γ, its label concatenation is defined by (r, s) · (u, v) =
(ru, sv), and its identity (null) label is (ε, ε). For l = (r, s) ∈ Σ∗ × Γ∗ we

define l.in = r and l.out = s. As we have done for languages, we will often
identify a weighted acceptor with the transducer with the same state set and

a transition (q, (x, x), k, q′) for each transition (q, x, k, q′) in the acceptor.
A path in an automaton A is a sequence of transitions p = t1, . . . , tm

in δA with ti.src = ti−1.dst for 1 < i ≤ k. We define the source and the
destination of p by p.src = t1.src and p.dst = tm.dst, respectively. 2 The label

of p is the concatenation p.lab = t1.lab · · · · · tm.lab, its weight is the product

1The usual notion of final state can be represented by FA(q) = 1 if q is final, FA(q) = 0
otherwise. More generally, we call a state final if its weight is not 0. Also, we will interpret
any non-weighted automaton as a weighted automaton in which all transitions and final
states have weight 1.

2For convenience, for each state q ∈ QA we also have an empty path with no transitions
and source and destination q.

8

p.w = t1.w×· · ·× tm.w and its acceptance weight is F (p) = p.w×FA(p.dst).

We denote by PA(q, q′) the set of all paths in A with source q and destination
q′, by PA(q) the set of all paths in A with source q, by P uA(q, q′) the subset

of PA(q, q′) with label u and by P uA(q) the subset of PA(q) with label u.
Each state q ∈ QA defines a weighted transduction (or a weighted lan-

guage):
LA(q)(u) =

∑

p∈PuA(q)

F (p) . (7)

Finally, we can define the weighted transduction (language) of a weighted
transducer (acceptor) A by

[[A]] = LA(iA) . (8)

The appropriate generalization of Kleene’s theorem to weighted acceptors

and transducers states that under suitable conditions guaranteeing that the
inner sum in (7) is defined, weighted rational languages and transductions

are exactly those defined by weighted automata as outlined here [8].
Weighted acceptors and transducers are thus faithful implementations

of rational languages and transductions, and all the operations on these
described above have corresponding implementations in terms of algorithms

on automata. In particular, composition is implemented by the automata
operation we now describe.

2.4 Automata Composition

Informally, the composition of two automata A and B is a generalization of

NFA intersection. Each state in the composition is a pair of a state of A
and a state of B, and each path in the composition corresponds to a pair

of a path in A and a path in B with compatible labels. The total weight of
the composition path is the extension of the weights of the corresponding

paths in A and B. The composition operation thus formalizes the notion of
coordinated search in two graphs, where the coordination corresponds to a
suitable agreement between path labels.

The more formal discussion that follows will be presented in terms of
transducers, taking advantage the identifications of languages with trans-

ductions and of acceptors with transducers given earlier.
Consider two transducers A and B with ΛA = Σ∗×Γ∗ and ΛB = Γ∗×∆∗.

Their composition A ./ B will be a transducer with ΛA./B = Σ∗ ×∆∗ such
that:

[[A ./ B]] = [[A]] ◦ [[B]] . (9)

9

By definition of L·(·) and ◦ we have for any q ∈ QA and q′ ∈ QB:

(LA(q) ◦ LB(q′))(u, w)
=

∑
v∈Γ∗(

∑
p∈P (u,v)

A (q)
F (p))× (

∑
p′∈P (v,w)

B (q′)
F (p′))

=
∑
v∈Γ∗

∑
p∈P (u,v)

A (q)

∑
p′∈P (v,w)

B (q′)
F (p)× F (p′)

=
∑

(p,p′)∈J(q,q′,u,w) F (p)× F (p′)

(10)

where J(q, q′, u, w) is the set of pairs (p, p′) of paths p ∈ PA(q) and p′ ∈
PB(q′) such that p.lab.in = u, p.lab.out = p′.lab.in and p′.lab.out = w. In

particular, we have:

([[A]] ◦ [[B]])(u, w) =
∑

(p,p′)∈J(iA,iB ,u,w)

F (p)× F (p′) . (11)

Therefore, assuming that (9) is satisfied, this equation collects the weights
of all paths p in A and p′ in B such that p maps u to some string v and p′

maps v to w. In particular, on the min-sum weight semiring, the shortest
path labeled (u, w) in [[A ./ B]] minimizes the sum of the costs of paths

labeled (u, v) in A and (v, w) in B, for some s.
We will give first the construction of A ./ B for ε-free transducers

A and B, that is, those with transition labels in Σ × Γ and Γ × ∆, re-
spectively. Then A ./ B has state set QA./B = QA × QB, initial state
iA./B = (iA, iB) and final weights FA./B(q, q′) = FA(q)FB(q′). Furthermore,

there is a transition ((q, q′), (x, z), k× k′, (r, r′)) ∈ δA./B iff there are tran-
sitions (q, (x, y), k, r) ∈ δA and (q′, (y, z), k′, r′) ∈ δB . This construction is

similar to the standard intersection construction for DFAs; a proof that it
indeed implements transduction composition (9) is given in Appendix A.

In the general case, we consider transducers A and B with labels over
Σ?×Γ? and Γ?×∆?, respectively, where Λ? = Λ∪ {ε}. 3 As shown in (10),

the composition of A and B should have exactly one path for each pair of
paths p in A and p′ in B with

v = p.lab.out = p′.lab.in . (12)

for some string v ∈ Γ∗ that we will call the composition string. In the ε-

free case, it is clear that p = t1, . . . , tm, p′ = t′1, . . . , t
′
m for some m and

ti.lab.out = t′i.lab.in. The pairing of ti with t′i is precisely what the ε-free

composition construction provides. In the general case, however, two paths
3It is easy to see that any transducer with transition labels in Σ∗× Γ∗ is equivalent to

a transducer with labels in Γ? ×∆?.

10

a:a b:ε c:ε d:d

a:d ε:e d:a

a:d τ1:e d:a

τ2:ε τ2:ε τ2:ε τ2:ε

ε:τ1

a:a b:τ2 c:τ2 d:d

ε:τ1 ε:τ1 ε:τ1 ε:τ1

0 1 2 3 4

0 1 2 3

0 1 2 3

0 1 2 3 4

(a)

(b)

(c)

(d)

A

B

A'

B'

Figure 2: Transducers with ε Labels

a:d ε:e
0,0 1,1 1,2

2,1 2,2

3,1 3,2

ε:e

ε:e

b:εb:ε

c:ε c:ε

3,3
d:a

τ1

τ1

τ1

τ2

τ2τ2

τ2

Figure 3: Composition with Marked εs

τ1:τ1 τ2:τ2

τ2:τ2

x:x
x:x

Figure 4: Filter Transducer

11

p and p′ satisfying (12) need not have the same number of transitions. Fur-

thermore, there may be several ways to align ε outputs in A and ε inputs in
B with staying in the same state in the opposite transducer. This is exempli-

fied by transducers A and B in Figure 2(a-b), and the corresponding näıve
composition in Figure 3. The multiple paths from state (1, 1) to state (3, 2)

correspond to different interleavings between taking the transition from 1
to 2 in B and the transitions from 1 to 2 and from 2 to 3 in A. In the

weighted case, including all those paths in the composition would in general
lead to an incorrect total weight for the transduction of string abcd to string
da. Therefore, we need a method for selecting a single composition path for

each pair of compatible paths in the composed transducer.
The following construction, justified in Appendix B, achieves the desired

result. For label l, define π1(l) = l.in and π2(l) = l.out. Given a transducer
T , compute Marki(T) from T by replacing the label of every transition t such

that πi(t.lab) = ε with the new label l defined by π2−i(l) = π2−i(t.lab) and
πi(l) = τi, where τi is a new symbol. In words, each ε on the ith component

of a transition label is replaced by τi. Corresponding to ε transitions on one
side of the composition we need to stay in the same state on the other side.

Therefore, we define the operation Skipi(T) that for each state q of T adds a
new transition (q, l, 1, q) where π2−i(l) = τi and πi(l) = ε. We also need the
auxiliary transducer Filter shown in Figure 4, where the transition labeled

x : x is shorthand for a set of transitions mapping x to itself (at no cost) for
each x ∈ Γ. Then for arbitrary transducers A and B, we have

[[A]] ◦ [[B]] = [[Skip1(Mark2(A)) ./ Filter ./ Skip2(Mark1(B))]] .

For example, with respect to Figure 2 we have A′ = Skip1(Mark2(A)) and
B′ = Skip2(Mark1(B)). The thick path in Figure 3 is the only one allowed
by the filter transduction, as desired. In practice, the substitutions and

insertions of τi symbols performed by Marki and Skipi do not need to be
performed explicitly, because the effects of those operations can be computed

on the fly by a suitable implementation of composition with filtering.
The filter we described is the simplest to explain. In practice, somewhat

more complex filters, which we will describe elsewhere, help reduce the size
of the resulting transducer. For example, the filter presented includes in the

composition in states (2,1) and (3,1) on Figure 3, from which no final state
can be reached. Such “dead end” paths can be a source of inefficiency when

using the results of composition.

12

on. . .(a) t1 t2t0
o1 o2 tn

(b)

d:ε/1(c)
ey:ε/.4

ae:ε/.6

dx:ε/.8

t:ε/.2

ax:"data"/1

oi:ε/p01(i) ε:π/p2f

...

... ...

... ...

oi:ε/p12(i)

oi:ε/p00(i) oi:ε/p11(i) oi:ε/p22(i)

s0 s1 s2

Figure 5: Models as Automata

3 Speech Recognition

We now describe how to represent a speech recognizer as a composition of
transducers. Recall that we model the recognition task as the composition

of a language O of acoustic observation sequences, a transduction A from
acoustic observation sequences to phone sequences, a transduction D from
phone sequences to word sequences and a weighted language M specifying

the language model (see Figure 1). Each of these can be represented as a
finite-state automaton (to some approximation), denoted by the same name

as the corresponding transduction in what follows.
The acoustic observation automaton O for a given utterance has the

form shown on Figure 5a. Each state represents a fixed point in time ti, and
each transition has a label, oi, drawn from a finite alphabet that quantizes

the acoustic signal between adjacent time points and is assigned probability
1. 4

The transducer A from acoustic observation sequences to phone se-
quences is built from phone models. A phone model is a transducer from
sequences of acoustic observation labels to a specific phone that assigns to

each acoustic observation sequence the likelihood that the specified phone
produced it. Thus, different paths through a phone model correspond to

different acoustic realizations of the phone. Figure 5b shows a common
topology for phone models. A is then defined as the closure of the sum of

4For more complex acoustic distributions (for instance, continuous densities) we can
instead use multiple transitions (ti−1, d, p(oi|d), ti) where d is an observation distribution
and p(oi|d) the corresponding observation probability.

13

the phone models.

The transducer D from phone sequences to word sequences is is built
similarly to A. A word model is a transducer from phone sequences to the

specified word that assigns to each phone sequence the likelihood that the
specified word produced it. Thus, different paths through a word model

correspond to different phonetic realizations of the word. Figure 5c shows a
typical topology for a word model. D is then defined as the closure of the

sum of the word models.
Finally, the acceptor M encodes the language model, for instance an n-

gram model. Combining those automata, we obtain π2(O ./ A ./ D ./ M),

which assigns a probability to each word sequence. The highest-probability
path through that automaton estimates the most likely word sequence for

the given utterance.
The finite-state model of speech recognition that we have just described

is hardly novel. In fact, it is equivalent to that presented in [1], in the sense
that it generates the same weighted language. However, the transduction

cascade approach presented here allows one to view the computations in
new ways.

For instance, because composition is associative, the computation of
argmaxw π2(O ./ A ./ D ./ M)(w) can be organized in a variety of ways.
In a traditional integrated-search recognizer, a single large transducer is

built in advance by R = A ./ D ./ M , and used in recognition to compute
argmaxwπ2(O ./ R)(w) for each observation sequence O [1]. This approach

is not practical if the size of R exceeds available memory, as is typically the
case for large-vocabulary speech recognition with n-gram language models

for n > 2. In those cases, pruning may be interleaved with composition to
to compute (an approximation of) ((O ./ A) ./ D) ./ M . Acoustic observa-

tions are first transduced into a phone lattice represented as an automaton
labeled by phones (phone recognition). The whole lattice typically too big,

so the computation includes a pruning mechanism that generates only those
states and transitions that appear in high-probability paths. This lattice
is in turn transduced into a word lattice (word recognition), again possibly

with pruning, which is then composed with the language model [11, 17].
The best approach depends on the specific task, which determines the size

of intermediate results. By having a general package to manipulate weighted
automata, we have been able to experiment with various alternatives.

So far, our presentation has used context-independent phone models. In
other words, the likelihood assigned by a phone model in A is assumed con-

ditionally independent of neighboring phones. Similarly, the pronunciation

14

of each word in D is assumed independent of neighboring words. Therefore,

each of the transducers has a particularly simple form, that of the closure
of the sum of (inverse) substitutions. That is, each symbol in a string on

the output side replaces a language on the input side. This replacement of
a symbol from one alphabet (for example, a word) by the automaton that

represents its substituted language from a over a finer-grained alphabet (for
example, phones) is the usual stage-combination operation for speech rec-

ognizers [1].
However, it has been shown that context-dependent phone models, which

model a phone in the context of its adjacent phones, provide substantial im-

provements in recognition accuracy [10]. Further, the pronunciation of a
word will be affected by its neighboring words, inducing context dependen-

cies across word boundaries.
We could include context-dependent models, such as triphone models,

in our presentation by expanding our ‘atomic models’ in A to one for every
phone in a distinct triphonic context. Each model will have the same form

as in Figure 5b, but it will be over an enlarged output alphabet and have
different likelihoods for the different contexts. We could also try to directly

specify D in terms of the new units, but this is problematic. First, even
if each word in D had only one phonetic realization, we could not directly
substitute its the phones in the realization by their context-dependent mod-

els, because the given word may appear in the context of many different
words, with different phones abutting the given word. This problem is com-

monly alleviated by either using left (right) context-independent units at
the word starts (ends), which decreases the model accuracy, or by building

a fully context-dependent lexicon and using special machinery in the recog-
nizer to insure the correct models are used at word junctures. In either case,

we can no longer use compact lexical entries with multiple pronunciations
such as that of Figure 5c. Those approaches attempt to solve the context-

dependency problem by introducing new substitutions, but substitutions are
not really appropriate for the task.

In contrast, context dependency can be readily represented by a simple

transducer. We leave D as defined before, but interpose a new transducer
C between A and D that convert between context-dependent and context-

independent units, that is, we now compute argmaxw π2(O ./ A ./ C ./
D ./ M)(w). A possible form for C is shown in Figure 6. For simplicity,

we show only the portion of the transducer concerning two hypothetical
phones x and y. The transducer maps each context-dependent model p/l r,

associated to phone p when preceded by l and followed by r, to an occur-

15

x.x	 x/x_x:x

x.y	

x/x_y:x

y.x	

y/x_x:yy.y	

y/x_y:y x/y_x:x

x/y_y:x

y/y_x:y

y/y_y:y

Figure 6: Context-Dependency Transducer

rence of p which is guaranteed to be preceded by l and followed by r. To

ensure this, each state labeled p.q represents the context information that
all incoming transitions correspond to phone p, and all outgoing transitions

correspond to phone q. Thus we can represent context-dependency directly
as a transducer, without needing specialized context-dependency code in the
recognizer. More complex forms of context dependency such as those based

on classification trees over a bounded neighborhood of the target phone can
too be compiled into appropriate transducers and interposed in the recog-

nition cascade without changing any aspect of the recognition algorithm.
Transducer determinization and minimization techniques [12] can be used

to make context-dependency transducers as compact as possible.

4 Implementation

The transducer operations described in this paper, together with a variety of

support functions, have been implemented in C. Two interfaces are provided:
a library of functions operating on an abstract finite-state machine datatype,

and a set of composable shell commands for fast prototyping. The modular
organization of the library and shell commands follows directly from their

foundation in the algebra of rational operations, and allows us to build new
application-specific recognizers automatically.

The size of composed automata and the efficiency of composition have
been the main issues in developing the implementation. As explained earlier,
our main applications involve finding the highest-probability path in com-

16

posed automata. It is in general not practical to compute the whole compo-

sition and then find the highest-probability path, because in the worst case
the number of transitions in a composition grows with the product of the

numbers of transitions in the composed automata. Instead, we have devel-
oped a lazy implementation of composition, in which the states and arcs of

the composed automaton are created by pairing states and arcs in the com-
position arguments only as they are required by some other operation, such

as search, on the composed automaton [18]. The use of an abstract datatype
for automata facilitates this, since functions operating on automata do not
need to distinguish between concrete and lazy automata.

The efficiency of composition depends crucially on the efficiency with
which transitions leaving the two components of a state pair are matched to

yield transitions in the composed automaton. This task is analogous to doing
a relational join, and some of the sorting and indexing techniques used for

joins are relevant here, especially for very large alphabets such as the words
in large-vocabulary recognition. The interface of the automaton datatype

has been carefully designed to allow for efficient transition matching while
hiding the details of transition indexing and sorting.

5 Applications

We have used our implementation in a variety of speech recognition and
language processing tasks, including continuous speech recognition in the

60,000-word ARPA North American Business News (NAB) task [17] and
the 2,000-word ARPA ATIS task, isolated word recognition for directory

lookup tasks, and segmentation of Chinese text into words [21].
The NAB task is by far the largest one we have attempted so far. In our

1994 experiments [17], we used a 60,000-word vocabulary, and several very

large automata, including a phone-to-syllable transducer with 5× 105 tran-
sitions, a syllable-to-word (dictionary) transducer with 105 transitions and a

language model (5-gram) with 3.4×107 transitions. We are at present exper-
imenting with various improvements in modeling and in the implementation

of composition, especially in the filter, that would allow us to use directly
the lazy composition of the whole decoding cascade for this application in a

standard time-synchronous Viterbi decoder. In our 1994 experiments, how-
ever, we had to break the cascade into a succession of stages, each generating

a pruned lattice (an acyclic acceptor) through a combination of lazy compo-
sition and graph search. In addition, relatively simple models are used first

17

(context-independent phone models, bigram language model) to produce a

relatively small pruned word lattice, which is then intersected with the com-
position of the full models to create a rescored lattice which is then searched

for the best path. That is, we use an approximate word lattice to limit the
size of the composition with the full language and phonemic models. This

multi-pass decoder achieved around 10% word-error rate in the main 1994
NAB test, while requiring around 500 times real-time for recognition.

In our more recent experiments with lazy composition in synchronous
Viterbi decoders, we have been able to show that lazy composition is as fast
or faster than traditional methods requiring full expansion of the composed

automaton in advance, while requiring a small fraction of the space. The
ARPA ATIS task, for example, uses a context transducer with 40,386 tran-

sitions, a the dictionary with 4,816 transitions a class-based variable-length
n-gram language model [16] with 359,532 transitions. The composition of

these three automata would have around 6 × 106 transitions. However, for
a typical sentence only around 5% of those transitions are actually visited

[18].

6 Further Work

We have been investigating a variety of improvements, extensions and ap-

plications of the present work. With Emerald Chung, we have been refining
the connection between a time-synchronous Viterbi decoder and lazy com-

position to improve time and space efficiency. With Mehryar Mohri, we
have been developing improved composition filters, as well as exploring on-

the-fly and local determinization techniques for transducers and weighted
automata [12] to decrease the impact of nondeterminism on the size (and
thus the time required to create) composed automata. Our work on the im-

plementation has also been influenced by applications to the compilation of
weighted phonological and morphological rules and by ongoing research on

integrating speech recognition with natural-language analysis and transla-
tion. Finally, we are investigating applications to local grammatical analysis,

in which transducers have been often used but not with weights.

Acknowledgments

Hiyan Alshawi, Adam Buchsbaum, Emerald Chung, Don Hindle, Andrej

Ljolje, Mehryar Mohri, Steven Phillips and Richard Sproat have commented

18

extensively on these ideas, tested many versions of our tools, and contributed

a variety of improvements. Our joint work and their own separate contribu-
tions in this area will be presented elsewhere. The language model for the

ATIS task was kindly supplied by Enrico Bocchieri, Roberto Pieraccini and
Giuseppe Riccardi. We would also like to thank Raffaele Giancarlo, Isabelle

Guyon, Carsten Lund and Yoram Singer as well as the editors of this volume
for many helpful comments.

References

[1] Lalit R. Bahl, Fred Jelinek, and Robert Mercer. A maximum likeli-
hood approach to continuous speech recognition. IEEE Trans. PAMI,

5(2):179–190, March 1983.

[2] Jean Berstel. Transductions and Context-Free Languages. Number 38 in

Leitfäden der angewandten Mathematik and Mechanik LAMM. Teub-
ner Studienbücher, Stuttgart, Germany, 1979.

[3] Jean Berstel and Christophe Reutenauer. Rational Series and Their
Languages. Number 12 in EATCS Monographs on Theoretical Com-

puter Science. Springer-Verlag, Berlin, Germany, 1988.

[4] Taylor R. Booth and Richard A. Thompson. Applying probability

measures to abstract languages. IEEE Transactions on Computers,
C-22(5):442–450, May 1973.

[5] Samuel Eilenberg. Automata, Languages, and Machines, volume A.
Academic Press, San Diego, California, 1974.

[6] Michael A. Harrison. Introduction to Formal Language Theory.
Addison-Wesley, Reading, Massachussets, 1978.

[7] Ronald M. Kaplan and Martin Kay. Regular models of phonological

rule systems. Computational Linguistics, 3(20):331–378, 1994.

[8] Werner Kuich and Arto Salomaa. Semirings, Automata, Languages.

Number 5 in EATCS Monographs on Theoretical Computer Science.
Springer-Verlag, Berlin, Germany, 1986.

[9] Bernard Lang. A generative view of ill-formed input processing. In
ATR Symposium on Basic Research for Telephone Interpretation, Ky-

oto, Japan, December 1989.

19

[10] Kai-Fu Lee. Context dependent phonetic hidden Markov models for

continuous speech recognition. IEEE Trans. ASSP, 38(4):599–609,
April 1990.

[11] Andrej Ljolje and Michael D. Riley. Optimal speech recognition using

phone recognition and lexical access. In Proceedings of ICSLP, pages
313–316, Banff, Canada, October 1992.

[12] Mehryar Mohri. On the use of sequential transducers in natural lan-
guage processing. This volume.

[13] Mehryar Mohri. Compact representations by finite-state transducers.

In 32nd Annual Meeting of the Association for Computational Linguis-
tics, San Francisco, California, 1994. New Mexico State University, Las
Cruces, New Mexico, Morgan Kaufmann.

[14] Mehryar Mohri. Syntactic analysis by local grammars and automata:

an efficient algorithm. In Proceedings of the International Conference
on Computational Lexicography (COMPLEX 94), Budapest, Hungary,

1994. Linguistic Institute, Hungarian Academy of Sciences.

[15] A. Paz. Introduction to Probabilistic Automata. Academic, 1971.

[16] Giuseppe Riccardi, Enrico Bocchieri, and Roberto Pieraccini. Non-

deterministic stochastic language models for speech recognition. In Pro-
ceedings IEE International Conference on Acoustics, Speech and Signal

Processing, volume 1, pages 237–240. IEEE, 1995.

[17] Michael Riley, Andrej Ljolje, Donald Hindle, and Fernando C. N.

Pereira. The AT&T 60,000 word speech-to-text system. In J. M.
Pardo, E. Enŕıquez, J. Ortega, J. Ferreiros, J. Maćıas, and F.J.Valverde,

editors, Eurospeech’95: ESCA 4th European Conference on Speech
Communication and Technology, volume 1, pages 207–210, Madrid,

Spain, September 1995. European Speech Communication Association
(ESCA).

[18] Michael Riley, Fernando Pereira, and Emerald Chung. Lazy transducer
composition: a flexible method for on-the-fly expansion of context-

dependent grammar network. IEEE Automatic Speech Recognition
Workshop, Snowbird, Utah, December 1995.

20

[19] Emmanuel Roche. Analyse Syntaxique Transformationelle du Français

par Transducteurs et Lexique-Grammaire. PhD thesis, Université Paris
7, 1993.

[20] Max Silberztein. Dictionnaires électroniques et analise automatique de

textes: le système INTEX. Masson, Paris, France, 1993.

[21] Richard Sproat, Chilin Shih, Wiliam Gale, and Nancy Chang. A

stochastic finite-state word-segmentation algorithm for Chinese. In
32nd Annual Meeting of the Association for Computational Linguis-

tics, pages 66–73, San Francisco, California, 1994. New Mexico State
University, Las Cruces, New Mexico, Morgan Kaufmann.

[22] Ray Teitelbaum. Context-free error analysis by evaluation of algebraic
power series. In Proc. Fifth Annual ACM Symposium on Theory of

Computing, pages 196–199, Austin, Texas, 1973.

A Correctness of ε-Free Composition

As shown in Section 2.4 (10), we have

(LA(q) ◦ LB(q′))(r, t) =
∑

s∈Γ∗

∑

p∈P (r,s)
A (q)

∑

p′∈P (s,t)
B (q′)

F (p)× F (p′) .(13)

Clearly, for ε-free transducers the variables r, s, t, p and p′ in this equation
satisfy the constraint |r| = |s| = |t| = |p| = |p′| = n for some n. This

allows us to show the correctness of the composition construction for ε-free
automata by induction on n. Specifically, we shall show that for any q ∈ QA
and q′ ∈ QB

LA./B(q, q′) = LA(q) ◦ LB(q′) . (14)

For n = 0, from (13) and the composition construction we obtain

(LA(q) ◦ LB(q′))(ε, ε) = FA(q)× FB(q′)
= FA./B(q, q′)
= FA./B(ε, ε)

as needed.
Assume now that LA./B(m,m′)(u, w) = (LA(m) ◦LB(m′))(u, w) for any

m ∈ QA, m′ ∈ QB, u ∈ Σ∗ and w ∈ ∆∗ with |u| = |w| < n. Let r = xu

21

and t = zw, with x ∈ Σ and z ∈ ∆. Then by (13) and the composition

construction we have

(LA(p) ◦LB(q))(xu, zw)

=
∑
y∈Γ

∑
v∈Γ∗

∑
p∈P (xu,yv)

A
(q)

∑
p′∈P (yv,zw)

B
(q′)

F (p)× F (p′)

=
∑

(q,(x,y),k,m)∈δA

∑

(q′,(y,z),k′ ,m′)∈δB
k × k′ × (

∑
v∈Γ∗

∑
l∈P (u,v)

A (m)

∑
l′∈P (v,w)

B (m′)
F (l)× F (l′))

=
∑

((q,q′),(x,z),j,(m,m′))∈δA./B
j × (

∑
v∈Γ∗

∑
l∈P (u,v)

A (m)

∑
l′∈P (v,w)

B (m′)
F (l)× F (l′))

=
∑

((q,q′),(x,z),j,(m,m′))∈δA./B j × (LA(m) ◦LB(m′))(u, w)

=
∑

((q,q′),(x,z),j,(m,m′))∈δA./B j × LA./B(m,m′)(u, w)

=
∑

((q,q′),(x,z),j,(m,m′))∈δA./B j × (
∑
g∈P (u,w)

A./B (m,m′)
WA./B(g))

=
∑
h∈P (xu,zw)

A./B (q,q′)
WA./B(h)

= LA./B(q, q′)(xu, zw) .

This shows (14) for ε-free transducers, and as a particular case

[[A ./ B]] = [[A]] ◦ [[B]] ,

which states that transducer composition correctly implements transduction
composition.

B General Composition Construction

For any transition t in A or B, we define

Marki(t) =

{
τi if πi(t.lab) = ε

πi(t.lab) otherwise
,

where each τi is a new symbol not in Γ. This can be extended to a path

p = t1, . . . , tm in the obvious way by Marki(p) = Marki(t1) · · ·Marki(tm). If
p and p′ satisfy (12), there will be m,n ≥ k such that p = t1, . . . , tm, p′ =
t′1, . . . , t

′
n, v = y1 · · ·yk and v = p.lab.out = p′.lab.in. Therefore, we will have

Mark2(p) = u0y1u1 · · ·uk−1ykuk where ui ∈ {τ2}∗ and |u0 · · ·uk| = m − k,
and Mark1(p′) = v0y1v1 · · ·vk−1ykvk where vi ∈ {τ1}∗ and |v0 · · ·vk| = n−k.

We will need the following standard definition of the shuffle s ? s′ of two
languages L, L′ ⊆ Γ∗:

L ? L′ = {u1v1 · · ·ulvl|u1 · · ·ul ∈ L, v1 · · ·vl ∈ L′} .

22

Then it is easy to see that (12) holds iff

J = ({Mark2(p)} ? {τ1}∗) ∩ ({Mark1(p′)} ? {τ2}∗) 6= ∅ . (15)

Each composition string v ∈ J has the form

v = v0y1v1 · · ·vk−1ykvk (16)

for yi ∈ Γ and vi ∈ {τ1, τ2}∗. Furthermore, by construction, any string

v′0y1v
′
1 · · ·v′k−1ykv

′
k, where each v′i is derived from vi by commuting τ1 in-

stances with τ2 instances, is also in J .

Consider for example the transducers A shown in Figure 2a and B shown
in Figure 2b. For path p from state 0 to state 4 in A and path p′ from state

0 to state 3 in B we have the following equalities:

Mark2(p) = aτ2τ2d
Mark1(p′) = aτ1d

({Mark2(p)} ? {τ1}∗) ∩ ({Mark1(p′)} ? {τ2}∗) =

aτ1τ2τ2d,

aτ2τ1τ2d,
aτ2τ2τ1d

Therefore, p and p′ satisfy (12), allowing [[A]] ◦ [[B]] to map abcd to dea. It is
also straightforward to see that, given the transducers A′ in Figure 2c and

B′ in Figure 2d, we have

{Mark2(p)} ? {τ1}∗ = {p.lab.out|p ∈ PA′(0)}
{Mark1(p′)} ? {τ2}∗ = {p′.lab.in|p′ ∈ PB′(0)}

Since there are no ε labels on the output side of A′ or the input side of B′,
we can apply to them the ε-free composition construction, with the result
shown in Figure 3. Each of the paths from the initial state to the final

state corresponds to a different composition string in {Mark2(p)} ? {τ1}∗ ∩
{Mark1(p′)} ? {τ2}∗.

The transducer A′ ./ B′ pairs up exactly the strings it should, but it

does not correctly implement [[A]] ◦ [[B]] in the general weighted case. The
construction described so far allows several paths in A′ ./ B′ corresponding

to each pair of paths from A and B. Intuitively, this is possible because τ1

and τ2 are allowed to commute freely in the composition string. But if one

pair of paths p from A and p′ from B leads to several paths in A′ ./ B′,
the weights from the ε-transitions in A and B will appear multiple times in

the overall weight for going from (p.src, p′.src) to (p.dst, p′.dst) in A′ ./ B′.

23

If the semiring sum operation is not idempotent, that leads to the wrong

weights in (10).
To achieve the correct path multiplicity, we interpose a transducer Filter

between A′ and B′ in a 3-way composition ./ (A′,Filter, B′). The Filter
transducer is shown in Figure 4, where the transition labeled x : x represents

a set of transitions mapping x to itself for each x ∈ Γ. The effect of Filter
is to block any paths in A′ ./ B′ corresponding to a composition string

containing the substring τ2τ1. This eliminates all the composition strings
(16) in (15) except for the one with vi ∈ {τ1}∗{τ2}∗, which is guaranteed
to exist since J in (15) allows all interleavings of τ1 and τ2, including the

required one in which all τ2 instances must follow all τ1 instances. For
example, Filter would remove all but the thick-lines path in Figure 3, as

needed to avoid incorrect path multiplicities.

24

