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ABSTRACT from the residual signal reconstructed from the RPE-LTP param-
eters, by comparing them to corresponding cepstra derived from

Speech coding affects speech recognition performance, with ragacoded and unquantized versions of these signals.
ognition accuracy deteriorating as the coded bit rate decreas
Virtually all systems that recognize coded speech reconstruct t
speech waveform from the coded parameters, and then perfo
recognition (after possible noise and/or channel compensatio
using conventional techniques. In this paper we compare the r

e will demonstrate that the effects of quantization and coding
ect the individual coefficients cepstral representations of the
C filter and residual excitation signal in differing amounts. We

il use these observations to guide us in combining the cepstral

ognition accuracy of coded speech obtained by reconstructir} presentations of th‘? LPC filter and the residual signal to mini-
the speech waveform with the speech recognition accurady'z® speech recognition error rate.

obtained when using cepstral features derived from the coding Section 2 we discuss briefly the characteristics of the GSM
parameters. We focus our efforts on speech that has been codedec. We discuss the effect of GSM coding and quantization on
using the 13-kbps full-rate GSM codec, a Regular Pulse Exciteghbeech on cepstral features in Section 3, and we present recogni-
Long Term Prediction (RPE-LTP) codec. The GSM codec devetion results employing those features. In Section 4 we discuss
ops separate representations for the linear prediction (LPC) filteiethods for recombining the coefficients extracted from these
and the residual signal components of the coded speech. \8fepstral features in order to minimize the recognition error rate
measure the effects of quantization and coding on the accuragyGSM-coded speech signals.

with which these parameters are represented, and present two

different methods for recombining them for speech recognition 2. THE FULL-RATE

purposes. We observe that by selectively combining the cepstral GSM SPEECH CODEC

streams representing the LPC parameters and the residual signal

it is possible to obtain recognition accuracy directly from theThe full-rate GSM speech codec [2] is a lossy speech coding-
coded parameters that equals or exceeds the recognition accurdegoding algorithm based on a regular pulse excited long term

obtained from the reconstructed waveforms. prediction scheme [5]. GSM converts 13-bit digital signals sam-
pled at 8 kHz into blocks of 260 bits for every 160 original sam-
1. INTRODUCTION ples. Hence, the GSM coding algorithm produces a gross bit rate

of 13.0 kbps, although the actual GSM transmitted bit rate is

gher due to added error recovery and packet information. The
E-LTP coding algorithm is a member of the linear predictive

alysis-by-synthesis (LPAS) family of coding algorithms [4].

Speech coding affects speech recognition accuracy, with wo
accuracy deteriorating as the coded bit rate decreases [4, 6]. Q4
to the increase of speech communication applications employir%g1
coding algorithms and the interaction of these speech communi-
cations systems with automatic speech recognition application8$ is the case with all LPAS algorithms, the GSM codec repre-
coding of speech can become a significant problem that limigents the speech signal using two sets of parameters: information
the performance of such applications [3, 6, 7]. Severabout the LPC filter (in the form of quantized log area ratios, or
approaches that deal with this problem have been propesged ( Q-LARS) and information about the coded residual signal (in the
[3, 7]). These approaches involve the regeneration of the speeiéfim of quantized RPE-LTP parameters). The compression of the
signal prior to applying compensation and adaptation technique€sidual signal is a lossy process which introduces distortion into
The degradation in recognition accuracy is greater when tHBe residual signal. During decoding, the residual signal is first
speech used to train the recognizer had not undergone the idefgiconstructed from the RPE-LTP information, and then filtered
cal coding process.¢., “mismatched conditions”). Nevertheless, by the short-term synthesis filter, whose parameters are derived
using similarly-coded speech for both training and testingrom the received LARs.

reduces but does not eliminate the degradation in recognitigfigre 1 shows a schematic representation of a general analysis-
accuracy compared fo the accuracy obtained with uncodgg oynthesis coder. In the specific case of the full-rate GSM
speech [7]. coder the block that minimizes the difference between the actual
Using the 13-kbps full-rate GSM codec, we consider in thigesidual signal and the reconstructed residual signal computes
paper the effects of speech coding on parameter representatibg quantized RPE-LTP representation of this difference. Besides
accuracy and on speech recognition accuracy. GSM is a Reguli¢ lossy representation of the residual signal that this algorithm
Pulse Excited Long Term Prediction (RPE-LTP) coding proces#itroduces in the RPE-LTP section, quantization of the LAR
[2]. We assume that the speech recognition system has acces§asfficients plays a role in the degradation observed in speech
the transmitted GSM parameters of the coded speech signal. W&t has undergone the GSM coding process.

analyze the effects of lossy compression and quantization on the

cepstra derived from quantized Log Area Ratios (LAR), and
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Figure 2: Normalized mean square error (NMSE) of the
cepstra of GSM-reconstructed speech waveforms using the
Figure 1: A simplified block diagram of a typical analysis by cepstra of the original waveforms as the standard.
synthesis coder. Normalization is with respect to the average energy of each
cepstral coefficient.

3. THE IMPACT OF PARAMETER QUAN- The NMSE of cepstral coefficients developed from the LPC anal-

ysis of GSM-encoded speech signals are plotted in Figure 3, in

TIZATION AND CODING ON CEPSTRA the same fashion as in Figure 2. The general effect of GSM cod-

In this section, we describe the procedure used to develop cepdd for these coefficients appears to be similar to tha: of the
tral features for speech recognition from signals and parameteha//SE of the coefficients representing the original waveform in

developed by GSM coding of speech. We consider three sets et the NMSE generally increases as the coefficient order

cepstral vectors: vectors derived directly from the reconstructefCreases.
GSM speech signal, vectors derived from the log area ratios rep- )
resenting the LPC filter, and vectors derived from the residual (L}', 0.18
signal. We compare these cepstra with the uncoded and unquan= ¢,16}
tized versions of the signals and parameters listed above to deterg I
mine the extent to which coding and quantization affects -%0'14

representation accuracy. Finally, we compare the accuracy .12
obtained using these various features in speech recognition sys S

tems. Z0.101
.. . 0.081
3.1. Recognition using Reconstructed 0.06-
GSM Speech '
0.04 ! ) ! ! ' '
Most recognition systems operate directly on speech waveforms 0 2 4 6 8 0 12
that are decoded from GSM parameters in conventional fashion. Cepstral Coefficient

The differences between the GSM-decoded signal and the origi-Figure 3: Normalized mean square error of cepstra derived
nal speech waveform can cause a degradation in speech recognfrom the quantized LARs of GSM-encoded speech

tion. GSM coding affects the various cepstral coefficients used towaveforms with respect to the corresponding cepstra of the
represent decoded speech in different proportions. In Figure 2 weoriginal waveforms (without quantization).

plot the normalized mean square error (NMSE) between corre-

sponding coefficients of the original and GSM-decoded spee?} - .

cepstral vectors (normalized by dividing the mean square err 3. D_envmg CepStra from the Residual
by the average squared value of a given coefficient). If we con- Signal

sider the effects of distortion to be an additive noise signal, th&epstral coefficients can also be generated from the RPE-LTP
N'\ftSE W.OU|d ?.e r%u’\?glyxroportg)nal to the|:|nvers¢32 Otfhth?\”f‘/:g' arameters that represent the residual excitation signal. The RPE-
.“at" g'no'gebraéosfvl d) S can TI seen n |gureth, e ffici TP coefficients are obtained from conventional cepstral analysis
!ndro uced by coding generally Increases as the coe 'C'eB? time functions. While the residual signal is generally assumed
Index increases. to contain primarily information that is less relevant to the
- speaker independent speech recognition task such as pitch, peri-
3.2. Derlvmg CepStra from the LPC Log odicity, and glottal waveform information [8]. However, because

Area Ratio Parameters only an eighth-order LPC analysis is used in LPC coding, the

Cepstral coefficients can also be obtained from the quantized igfsidual signal still carries information that is useful for speech
area ratio (LAR) parameters that are developed in the course I§cognition.

GSM coding. The LAR parameters are transformed into the coie generated cepstral coefficients from the residual obtained
responding LPC coefficients, from which cepstral coefficient$rom the RPE-LTP parameters of the GSM codec, (he recon-

are generated directly using the approach described in [1]. Thgructed GSM residual) and compared their values to the corre-
GSM standard specifies that 8 coefficients are generated usingsponding coefficients for the original uncoded speech signal.
eighth-order LPC analysis. Figure 4 shows the NMSE of the cepstral coefficients represent-



ing GSM-encoded speech, with respect to the corresponding
coefficients of the original uncoded speech. In contrast to the
NMSE of the reconstructed waveform and the Q-LARs shown in
Figs. 2 and 3, the NMSE of the cepstral coefficients representing .
the residual signal tends tecreaseas the coefficient order MFCC coefficents from | 89.7% 45.0%
increases. We also note that the magnitude of the NMSE of the | ©riginal waveform
residual is much greater than that of the cepstra of both the Q .
LARs and the reconstructed speech waveform. MFCC coefficients from | 87.7% 41.5%
GSM-decoded speech
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Figure 4: Normalized mean square error of cepstra derived
from the residual signal of GSM-encoded speech
waveforms with respect to the corresponding cepstra of the  Table 1: Recognition accuracy obtained for speech without
original waveforms (without quantization). and without GSM encoding, and with and without additive
noise, using cepstral features derived from the waveform
and from the GSM parameters directly. See text. for details.

4. EFFECT OF GSM CODING ON . .
SPEECH RECOGNITION ACCURACY as in testing.

In this section we describe the results of a series of speech recdg2. Recognition Accuracy using Features

nition experiments using cepstral features derived from the Derived from GSM parameters

reconstructed waveforms and from the GSM parameters them- . )
selves. Recognition experiments were performed using BOWSs 4 through 6 of Table 1 compare recognition accuracies
reduced-bandwidth and downsampled version of the speak@btained using cepstra generated from unquantized and gquan-
independent component of the Resource Management RM1 céized LARs, and from the original residual signal and the GSM-
pus [9] under clean and noisy conditions. In all cases the speet@stored residual signal. The accuracy of this pair of features
signal was low-pass filtered to 3.5 kHz and downsampled to @v_eals th_e existence of |nform§1t|0_n relevant to recognition in the
kHz. For noisy conditions, stationary additive lowpass coloredesidual signal. These results indicate that recognition accuracy
noise was added to yield a resulting SNR of approximately 18Ptained from features derived from the LAR and Q-LAR
dB. The colored noise was generated by filtering white gaussidtframeters is almost as good as recognition accuracy obtained
noise through a simple 2-pole filter with a resonance of approxfrom the recpnstrupted waveforms themselves. Eeatures derived
mately 650 Hz and a half-power bandwidth of approximatelyrom the residual signal are somewhat less effective.

400 Hz. The acoustic models employed consisted of a set of

senonically-tied continuous density HMMs, modeled by approx- 5. COMBINING Q'LAR CEPSTRAWITH
imately 2500 senones and 2 gaussians per mixture. GSM-RESIDUAL CEPSTRA

it i ini Since in traditional LPC theory, reconstructed speech waveforms
4.1. Recogmtlon Accuracy using Ongmal are obtained by the convolution of the impulse response of the

and Reconstructed SpeeCh Waveforms LPC filter with the residual signal, the cepstrum of the speech

Table 1 compares speech recognition accuracy obtained usigveform can be estimated by adding the cepstra of the LPC fil-
various cepstral feature sets, with and without the additive noisir and of the residual. As discussed in Section 3, however, the
For each feature set, acoustic models were trained with featurB/SE of these two sets of cepstral coefficients behave differ-
used to test the system, and without the additive colored nois@?tly. In this section we show that we can improve recognition
Results in the first three rows of Table 1 compare the recognitigiecuracy byselectivelycombining Q-LAR cepstral coefficients
accuracy using Mel-frequency cepstral coefficients (MFCCSyvlth pepstral coefficients derived from the GSM-restored resid-
generated from the original speech without GSM coding (Row@l signal.

1), and GSM-processed speech (Rows 2 and 3). Training is “Migye consider two ways of combining the cepstra representing the
matched” in Row 2 in that the system was trained using uncodgec filter and the residual filter: (1) direct addition of the two
speech; GSM coding is used for both training and testing for thgsts of cepstra (which indeed corresponds to convolving the
results in Row 3. The effect of GSM coding on recognition errofmpy|se response of the LPC filter with the residual signal), and
rate was relatively modest for this dataset: the error rat®) assembling d3-dimensional composite cepstral vector by
increased by about 20% for clean speech and 6% for noigncatenating a subset of the cepstral coefficients representing
speech with mismatched training, and most of the degradatiqfe | PC filter with a subset of the cepstral coefficients represent-
was eliminated when GSM coding was used in training as Wejhg the residual waveform. We implemented the latter procedure



by combining the first coefficients of the quantized-LAR Cep- reconstructed waveforms, and the accuracy obtained with the
stra and the last 1@inus i coefficients of the GSM-restored original uncoded speech waveform.

residual cepstra. These subsets of coefficients were chosen

because the NMSE of the residual cepstra is smaller for the 6. DISCUSSION AND SUMMARY

higher order coefficientss shown in Figure 4. In further experi- . . .
ments we confirmed that good recognition accuracy for the cone degrading effect of GSM coding on speech recognition accu-

catenated vector could be obtained provided using oth&RCY has been associated with the distortion introduced to ceps-
combinations of specific coefficient, provided that the first twéral representations of the log area ratios and the restored residual

cepstral coefficients from the residual signal were exclude@dnal after quantization and lossy coding. Of the representa-
(These coefficients exhibit the greatest NMSE.) tions of GSM parameters considered, we observed greatest nor-

malized mean-square error for thieighestorder cepstral
Table 2 compares recognition results for a set of values of th@efficients representing the LARs (and hence the LPC filter),
parametei, which we refer to as “cutoff values”, ranging fromand for thelowestorder cepstral coefficients representing the
i=5 toi=10. We note that in this table a cutoff of zero is equivaresidual excitation signal. In order to obtain best speech recogni-
lent to using a 13-element GSM-residual cepstral vector; a cutafbn accuracy, it is necessary to concatenate lower-order coeffi-
of 13 is equivalent to using Q-LAR cepstra. From Table 2 itients that represent the LPC filter with higher-order coefficients
appears that best results are obtained when approximately 8 cegpresenting the residual signal. Speech recognition accuracy for
stral coefficients representing the LPC filter are combined with the NIST RM1 database was greater when the concatenated fea-
coefficients representing the residual signal. ture vector derived directly from the GSM parameters was used
than when features were extracted from speech waveforms
reconstructed by the GSM decoder.

Cutoff Clean Noisy
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