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Abstract. Information is carried in changes of a signal. The paper starts with revis-
iting Dudley’s concept of the carrier nature of speech. It points to its close connection
to modulation spectra of speech and argues against short-term spectral envelopes as
dominant carriers of the linguistic information in speech. The history of spectral rep-
resentations of speech is briefly discussed. Some of the history of gradual infusion
of the modulation spectrum concept into Automatic recognition of speech (ASR)
comes next, pointing to the relationship of modulation spectrum processing to well-
accepted ASR techniques such as dynamic speech features or RelAtive SpecTrAl
(RASTA) filtering. Next, the frequency domain perceptual linear prediction tech-
nique for deriving autoregressive models of temporal trajectories of spectral power
in individual frequency bands is reviewed. Finally, posterior-based features, which
allow for straightforward application of modulation frequency domain information,
are described. The paper is tutorial in nature, aims at a historical global overview
of attempts for using spectral dynamics in machine recognition of speech, and does
not always provide enough detail of the described techniques. However, extensive
references to earlier work are provided to compensate for the lack of detail in the
paper.
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1. Introduction

No natural system can change its state instantaneously and it is dynamics of changes that can
carry an information. In the past 20 years, we have witnessed increased interest in the dynam-
ics of temporal evolutions of the power spectrum as a carrier of information in speech. This
dynamic is carried in modulation spectra of the signal. This concept has been in existence
since the early days of speech signal processing and, is supported by a number of physi-
ological and psychophysical experimental results, but was largely ignored by researchers in
automatic recognition of speech (ASR). Instead, likely for historical reasons, envelopes of
power spectrum were adopted as main carrier of linguistic information in ASR. However,
the relationships between phonetic values of sounds and their short-term spectral envelopes
are not straightforward. Consequently, this asks for complex data-intensive machine-learning
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techniques that are prevalent in the current state-of-the-art ASR. In spite of significant engineer-
ing advances in this direction, current ASR is still very sensitive to linear distortions, room rever-
berations, frequency-localized noise, or peculiarities of a particular speaker of the message –
all of which are reasonably well handled by human listeners. We believe that some of these
problems might be alleviated by greater emphasis on information carried in frequency-localized
spectral dynamics of speech.

2. Carrier nature of speech

Over centuries of research in phonetics, there was a growing belief that the phonetic values
of speech sounds are in some way related to resonance frequencies of the vocal tract in their
production. Young Isaac Newton observed that when filling his tall glass with beer and a quarter-
wave resonance of a column of air above the beer was increasing, he could hear a sequence of
vowels going from the rounded /uh/ with its power concentrated at low frequencies to the extreme
front /yi/, which has most of its power at high frequencies (Ladefoged 1967). Von Helmholtz
supported Newton’s observation by finding dominant resonance frequencies of his vocal tract in
the production of vowels using tuning forks (von Helmholtz 1863).

However, in spite of the opinions of such highly respected scientists – as Newton and
Helmhotz certainly are – the pioneering works of Homer Dudley (Dudley 1939, 1940) are very
clear in his opinion about the roles of the carrier (vocal tract excitation) and the varying modu-
lating envelope (the changing shape of the vocal tract). In his view, the vocal tract shape, slowly
changing with frequency up to 10 Hz due to ‘sluggishness of muscles’ is reflected in the chang-
ing amounts of power in frequency bands of the signal. Excitation of the vocal tract, either by
combined effects of vibrations of vocal cords and by air turbulence at vocal tract constrictions in
normal speech or purely by air turbulence in whispered speech, merely makes these movements
of the vocal tract audible to human hearing. Thus, Dudley is very clear about the modulation
envelope being the carrier of the phonetic information. This view is evident in the vocoder
design, where spectral energies in several frequency bands are low-pass filtered at 20 Hz to be
transmitted to the receiving side where they modulate the carrier signal in respective frequency
bands to obtain the reconstructed speech. This is even more obvious in Dudley’s Voder design,
where the signal amplitudes in 10 frequency sub-bands are directly controlled by the 10 fingers
of a highly trained Voder operator. There is no control of resonance frequencies as in later for-
mant syntheses. It is clearly the change of signal amplitudes in the individual bands that Dudley
considers important for preserving the message in speech. Why is it his message was lost for a
long time for ASR research? Some of the speculative reasons are discussed below.

3. Resonances of the vocal tract (formants of speech) and short-term spectral envelopes

The invention of the SpectrographTM then emulated frequency filtering in human periphery by
dividing the spectrum of a speech signal into a number sub-bands and displayed temporal tra-
jectories of energies in these sub-bands (to help in decoding encrypted speech during World
War II and to display underwater sounds originating from different ships (Schroeder 1998))
yielded speech spectrograms with clearly visible resonance frequencies of the vocal tract (for-
mants of speech) moving in time. Relative success in visual decoding of the spectrograms (Potter
et al 1947), with a successive flood of publications, sealed the role of the changing spectral
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envelope of speech as a dominant carrier of the phonetic information. It has been shown that
lower formants correlate well with phonetic values of sustained sonorant sounds such as carefully
produced vowels (Peterson & Barney 1952).

Digital signal processing that became dominant in the 1970s abandoned the original
SpectrographTM technique of applying band-pass filters to the original speech signal to compute
spectrograms. Instead, the digital processing revolution rediscovered the Fast Fourier Trans-
form, which allowed for constructing spectrograms by sequencing frames of short-term spectra
of speech, resulting in a two-dimensional series S(ω, t), called here as the spectrogram. Thus,
the spectrogram is derived by computing the series of spectral vectors S(ω, ti ), computed from
the original signal x(t) within the time window �t centred at time ti , for each i ∈ 〈1, N 〉, where
N = T/�t , T being the length of the signal x(t). In the digital spectrogram, short-term speech
features represent samples of the signal spectral dynamics, just as the dynamics of a visual scene
in a movie are emulated by sampling the scene by a sequence of still images. The minimum
required sampling rate �t of a speech spectrum has been determined by trial and error in the
early days of digital speech coding (Gold 1998) to be somewhere around �t = 10 ms and reflects
the low-pass character of speech spectral envelopes resulting from inertia of dominant human
vocal organs. The spectral resolution of S(ω, t) is often modified by various means to reflect
spectral resolution of the human hearing periphery (Mermelstein 1976; Hermansky 1990).

The short-term spectrum frame-based approach was successfully applied in the late sixties in
digital coding for speech, and it yields reasonably intelligible reconstructed speech. It was easy to
adopt the frame-based techniques also in automatic recognition of speech (ASR), which started
to evolve around the same time. The issues with the convolved way the information about speech
sounds is coded in the short-term spectral envelope were set aside. This was not a problem in the
early ASR systems, where the units of recognition were whole words. Later, large-vocabulary
ASR that was based on recognizing sub-word units introduced context-dependent multi-state
phoneme-like units to deal with coarticulation effects, and various compensation and adaptation
techniques were applied to deal with excessive dependence of the short-term spectral envelopes
on speakers and communication channels. Current ASR systems are complex examples of engi-
neering sophistication, but the frame-based speech features derived from the short-term spectra
of speech are today found in the front-ends of most state-of-the-art ASR systems.

However, even for sonorants, some well-known problems with speech spectra persist. Iner-
tia of vocal organs produces coarticulation among neighbouring speech sounds (phones), which
causes each short-term spectrum to be dependent not only on the current phone but also on the
phones that surround it. Large differences exist in formant frequencies in phonetically identi-
cal sounds produced by different speakers. The ease with which the spectral envelope can be
corrupted by relatively benign modifications such as linear filtering of the signal is alarming.
In general, obstruents are more difficult to characterize by a single short-term spectral frame as
they typically change in time rather rapidly and the only reasonable way to characterize them is
by the sequence of several short-term spectral frames. However, even the sequence of short-term
spectral frames fails to characterize certain obstruents such as /k/ or /h/ (Potter et al 1947) that
are only defined in relation to the following sonorant, e.g., the /k/ is perceived whenever power
of the noise burst is slightly above the major concentration of the following sonorant power. This
can be at very low frequencies in the case of the syllable /k//uh/, but at much higher frequen-
cies in /k//ih/. The /h/ has concentrations of fricative noise in the same places as the following
sonorant.

In our view, the formant concept with its emphasis on the short-term spectral envelope is
not wrong. After all, resonances of a vocal tract control the relative amount of power in each
frequency band. Further, the values of the instantaneous power at the individual frequencies



732 Hynek Hermansky

describe the short-term spectral envelope. However, just as when trying to perform long division
using Roman numerals, it is the form of the representation (Marr 1982) rather than the content of
the information that causes the problems. The examples above demonstrate that phonetic values
of speech sounds relate to short-term speech spectra often in rather complicated ways.

3.1 Dynamics of short-term spectra of speech

Most natural signals such as speech change over time and the information is carried in these
changes. The signal changes are reflected in the dynamics of spectral components. Yet, in current
machine extraction of information from speech, speech spectral dynamics are mostly treated as
a nuisance. In earlier whole-utterance template-matching systems, the spectral dynamics were
arbitrarily distorted by dynamic time warping in order to compensate for variable speed of
speech production. However, the utterance-level template matching at least respects the overall
trends of the spectral dynamics (and uses the coarticulation patterns to its advantage). Hidden
Markov Model (HMM)-based systems are even more adverse to the dynamics of the signal
by approximating the dynamics by sequences of models of stationary stochastic processes.
For more accurate approximations, a large number of models would be required, increasing
the number of free parameters that need to be estimated from training data. To deal with the
coarticulation, multi-state context-dependent speech sound models are introduced, increasing
the complexity of the system. Short-term spectrum-based features in these models are com-
plemented, almost always with advantage, by so-called ‘dynamic’ features (Mlouka & Lienard
1975; Furui 1981) that reflect dynamic trends of the spectral envelopes at a given instant of
time computed from larger (up to about 100 ms) segments of the signal. Although in principle,
the dynamic features should require different sequences of stationary stochastic models than the
‘static’ envelope-based features, most often the dynamic features are successfully appended to
the static ones.

4. History of modulation spectrum of speech

4.1 Defining modulation spectrum of speech

The concept of the modulation spectrum of speech (figure 1) (Houtgast & Steeneken 1973)
is consistent with Dudley’s view of the carrier nature of speech. Evolution of the short-term
spectrum in the spectrogram S(ω, t) at the frequency ω0 is described by a one-dimensional time
series S(ω0, t). The discrete Fourier transform (DFT) of a logarithm of these time series within
the time window �T centred at the time t0 with its mean removed, i.e.

F(�, t0) = ��T (log(S(ω0, t) − log(1/�T )��T S(ω0, t))e− j�t

is what we call in this article, the modulation spectrum at the time t0. The modulation spectrum
is the time series that describes the shape of the time trajectory S(ω0, t) within the time interval
�T . The resolution of such a modulation spectrum 1/�T is inversely proportional to the length
of the window over which the spectrum is computed. The modulation spectrum is complex, but
in some applications, only the absolute values |F(�, t0)| are of interest.

Since the DFT operation is linear, in many applications described in this article, the DFT step
is omitted and we deal without the loss of any information only with the series S(ω0, t) within
the time window �T .
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Figure 1. Principle of the modulation spectrum of speech. A conventional spectrogram consists of a
sequence of short-term spectra. The short-term spectrum at the time t0 is shown in the right part of the
figure. Its spectral envelope S(ω, t0) is indicated by the thicker line. An alternative way of looking at the
spectrogram is to see it as a sequence of temporal trajectories of logarithms of spectral power S(ωi , t). One
of the trajectories at a frequency ω0 is illustrated at the bottom of the figure. A segment of this temporal
profile, centered at the time t0, can be described by the Fourier series. When its mean is removed, the series
describes just its shape. Coefficients of such Fourier series define modulation spectrum at the time t0. Res-
olution of this modulation spectrum is given by the length of the segment. When the segment is extracted
using the square window, 1 s of the signal is required for 1 Hz spectral resolution (as defined by the width
of the main lobe of the window). Tapered windows such as the Hamming window require appropriately
longer segments for the same resolution.

4.2 Modulations and human hearing

Since the early experiments by Riesz (1928), it is known and confirmed many times by others
that human hearing is most sensitive to relatively slow modulations. Riesz’s result is summarized
in figure 2.

It is not surprising that most of the energy of the modulation spectrum of speech is present
in the area where hearing is the most sensitive, typically peaking at around 4 Hz, reflecting the
syllabic rate of speech. Expected deviations from this typical shape of the modulation spectrum
resulting from noise and reverberations and measured using artificial signals (speech transmis-
sion index) have been proposed to reflect the intelligibility of speech in noisy and reverberant
environments (Houtgast & Steeneken 1973). Extensions involving real speech and more involved
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Figure 2. Results of Riesz’s experiment in sensitivity of human hearing to modulations. It indicates that
human hearing is most sensitive in the range of about 2–8 Hz, where only about 2.5% depth of modulation
is required for the modulation to be perceived. The figure was made using Riesz’s data (Riesz 1928).

spectral projections than a simple 1/3-octave integration have been proposed more recently
(Kollmeier et al 1999; Elhilali et al 2003).

Attenuating components of the modulation spectrum around 4 Hz significantly lowers intelli-
gibility of speech. This was first shown by (Drullman et al 1994), using a set-up that modified
Hilbert envelopes of sub-band signals, and was subsequently verified by (Arai et al 1999), who
used a residual-excited vocoder. Arai et al also showed that attenuation of modulation spec-
trum components below 1 Hz and above 16 Hz has only small effects on speech intelligibility.
The results of one of their experiments are shown in figure 3. The 2-dimensional plot shows
the performance surface as a function of high and low cut-offs of the modulation spectrum. The
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Figure 3. Recognition accuracy of phonemes in nonsense Japanese syllables as a function of frequency
cutoffs of high-pass and low-pass modulation frequency filters on temporal evolutions of spectral envelopes
in a residual-excited LP vocoder. The results indicate that restricting modulation frequencies in such modi-
fied speech to 1–16 Hz range has only a minimal effect on the accuracy of human recognition of phonemes
in the experiment. The figure is reproduced from (Arai et al 1999) and used with permission.
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surface remains quite flat and close to maximum as long as the modulation spectrum components
between 1 and 16 Hz are preserved.

Dau and his colleagues (Dau et al 1997) successfully verified and promoted the earlier pro-
posal of Houtgast (1989) on the existence of band-pass modulation frequency filters. Findings
of ongoing works on the physiology of mammalian auditory cortices – see e.g., Kowalski et al
1996 – further support this concept.

5. RASTA processing

5.1 How it all started

Our interest in processing of modulation spectrum started with an anecdotal description of a
simple but convincing experiment in speech perception (Cohen 1990), which goes as follows:

Extract a spectral envelope of a vowel from a spoken utterance (indicated by an arrow in the
left part of figure 4) and filter the whole utterance with a filter with a frequency response that is
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Figure 4. Left part of the figure shows the time domain signal of the utterance ‘beet’ (/b/ /ee/ /t/) together
with its spectrogram computed by the conventional DFT analysis (left middle part of the figure) and by
the RASTA–PLP technique (left bottom part of the figure). Above the speech waveform, a single spectral
slice from the spectrogram, extracted at the time instant indicated by the arrow (spectrum of the vowel
/ee/), is shown, together with its spectral envelope. The right part of the figure shows the speech waveform,
the conventional spectrogram, the RASTA–PLP–derived spectrogram, and the spectral slice from the /ee/
vowel part after the speech waveform was filtered by the filter that has a frequency response that is the
inverse of the spectral envelope of the vowel /ee/. The filtering flattens the spectral envelope of the vowel
/ee/ but has only a negligible effect on the RASTA–PLP representation of speech.
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the inverse of the extracted envelope. This makes the spectrum of the given vowel flat (shown in
the right part of figure 4). In spite of that, the listeners typically report hearing an unambiguous
vowel in the part of the utterance with this flattened spectrum. To emulate this human ability, we
proposed an ad hoc but effective RASTA filtering that only passed modulation spectrum between
1 and 15 Hz to alleviate negative effects of such fixed linear distortions (Hermansky et al 1991;
Hermansky & Morgan 1994). Figure 5 shows the frequency response of the original RASTA
filter. As illustrated in the lower part of figure 4, this turned out to be very effective not only to
deal with this particular effect but also to combat typical linear distortions introduced by non-flat
frequency responses of communication channels. However, since the original filter is a recursive
infinite impulse response filter, it introduces significant phase modifications of the modulation
spectrum.

5.2 Speech beyond 20 ms

RASTA with its rather long (> 200 ms) time constant spurred more interest in syllable-level
spectral dynamics (Hermansky 1994; Hermansky et al 1995). We soon realized that the spectral
transforms (Fourier or cosine transform) on the temporal trajectory of the signal power that yield
the modulation spectrum are a mere convenience for the subsequent processing. Thus, the term
‘modulation spectrum’ is actually a synonym for shapes of temporal trajectories of elements of
spectral envelopes of speech, which in their turn reflect temporal movements of the vocal organs.
The critical issue is the length of the signal that carries the information, which is relevant for
recognizing speech sounds. Since the modulation spectrum components that are most important
for perception of speech are around 4 Hz, this time interval must be at least 250 ms. This is much
longer than the conventional 10–20 ms analysis windows of the short-term spectral analysis used
in speech so far!

One can present many arguments for this relatively long time interval, some of which can
be summarized, e.g., in Hermansky (1998c). Such a time interval comes as no surprise to any
physiologist or psychophysicist, and it is surprising that it escaped the attention of most speech
engineers for such a long time. It is found in many psychophysical phenomena and on higher
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Figure 5. Logarithmic magnitude frequency response of a RASTA filter that was found optimal for
recognition of telephone speech, corrupted by linear distortions. It indicates that alleviating modulation
frequencies below about 1 Hz and above about 20 Hz is desirable to alleviate effects introduced by linear
distortions. The figure was derived from (Hermansky & Morgan 1994).
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levels of neural processing and motor control. It does not, however, imply that human perception
necessarily recognizes these relatively long speech segments (syllables) (Greenberg 1999). It
merely implies that, due to coarticulation, these segments carry the information about elements
(speech sounds) within them (Kozhevnikov & Chistovich 1967; Hermansky 1998c).

6. Some further applications of the modulation spectrum in automatic
recognition of speech

6.1 Beyond RASTA

A series of subsequent studies soon followed. Some of the familiar studies are mentioned here.
First, Hermansky (1997, 1998a) discuss the concept of modulation spectrum in ASR. Aven-
dano & Hermansky (1997) & Avendano (1997) discuss the application to speech enhancement.
van Vuuren & Hermansky (1998) try to find the advantage of modulation spectrum for machine
identification of speakers. Kajarekar et al (2000) attempt to find different sources of variability
(information) in the modulation spectrum. Systematic experiments with filtering the modulation
spectrum are performed in Kanedera et al (1998, 1999). These works have shown that elim-
inating modulation frequency components below 1 Hz can increase the performance of ASR.
Kingsbury experimented with so-called MSG features (Kingsbury & Morgan 1997) that band-
pass filtered the modulation spectrum into two bands. In a parallel effort with RASTA processing,
Pueschel was developing his model of non-linear processing of the modulation spectrum, which
later became the Oldenburg PEMO model (Dau et al 1996). de Veth and Boves (1997) indicated
the importance of preserving the original modulation spectrum phase that is being modified by
the original ad hoc RASTA IIR filter. To our knowledge, at least one application successfully
applied RASTA processing in recognition of visual patterns (Kim et al 2002). van Vuuren &
Hermansky (1997), Hermansky (1998c) and later Valente & Hermansky (2006) investigated a
way of designing FIR RASTA filters using the linear discriminant analysis. The discriminant
matrix was derived using large phoneme-labelled data from multiple speakers and conditions.
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Figure 6. First four principal components of a discriminant matrix derived by linear discriminant analysis
of 1 s long segments of temporal trajectories of power in critical band at 5 Barks, representing optimal FIR
filters for filtering of this temporal trajectory. Results from other critical bands are very similar. All filters
emphasize modulation frequency components between 1 and 10 Hz.
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The first few discriminant vectors (representing impulse responses of the FIR RASTA filter-
bank), together with their frequency responses, carrying most of the discriminative variability
in the data, are shown in figure 6. Magnitude frequency responses of these filters are consistent
with the original ad hoc RASTA filter; the phases are close to zero or ±π.

At about the same time, we proposed the so-called multi-stream ASR (Tibrewala &
Hermansky 1997) where sub-bands on the modulation spectral domain were suggested as a way
of forming the sub-streams. So, it was tentatively concluded that human (and more generally all
mammalian) hearing may be not be evaluating the overall shape of the sound spectrum, but that
it rather evaluates temporal profiles of signals in individual sub-bands (Hermansky 1998b, c);
and one way of doing so is to evaluate the modulation spectrum within the individual sub-bands.

6.2 TRAP and related studies

This tentative proposal was first tested by the so-called TempoRAl Pattern (TRAP) (Hermansky
& Sharma 1998), where 1001 ms long temporal trajectories of spectral power in the individual
critical-band sub-bands (derived from Perceptual Linear Prediction (PLP) spectral analysis) with
their means removed were first classified as belonging to phoneme categories (with a rather high
error but still well above chance). The classification results from the individual sub-bands were
then merged using a non-linear (NN-based) classifier, yielding results that were comparable to
results from a conventional short-term spectrum-based ASR. Frequency-localized spectral power
is not measured and used for the description of the spectral envelope; that is, correlations among
the spectral sub-bands are not used. The power in the individual bands merely defines the local
signal-to-noise ratio (SNR). The information that TRAP uses is present in the local temporal
dynamics. Temporal trajectories in TRAP are (prior to any classification) often first projected on
the modulation spectrum domain, either through the cosine transform (e.g. Jain 2003) or through
a set of modulation spectrum band-pass filters (Hermansky & Fousek 2005).

The principle of TRAP-based processing schemes is shown in figure 7. Many variants on the
original TRAP concept have been proposed and studied, and to our knowledge at least five Ph.D.
theses (Sharma 1999; Jain 2003; Chen 2005; Grézl 2007; Schwarz 2008) and one habilitation
thesis (Cernocky 2003) have been at least partially devoted to TRAP. The largest advantage of
TRAP-based schemes is in combination with the conventional frame-based techniques where
they appear to complement the information that is available in the spectral envelope. Widely
used dynamic features (delta and double-delta) (Furui 1981) that are in ASR typically appended

Figure 7. Principle of TRAP-based feature extraction. Temporal trajectories of powers at individual fre-
quency bands are processed to extract frequency-localized information that is relevant for classification of
speech sounds. The frequency-localized information is fused to yield the final result.
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to the spectral envelope-based cepstral features represent band-pass filtering by simple Finite
Impulse Response (FIR) filters with pass-bands around 10 Hz.

6.3 Modulation spectra from frequency domain perceptual linear prediction

In most applications, the modulation spectrum is derived from temporal trajectories of spectral
envelopes obtained by integrating a frame-by-frame short-term Fourier transform over critical
bands of hearing. Temporal resolution of such trajectories is given by the analysis window in the
short-term analysis and is typically somewhere around 10 ms. Since in modulation spectrum-
based applications, we are primarily interested in temporal trajectories; hence it is tempting
to abandon the short-term analysis altogether. This is possible by using the frequency domain
perceptual linear prediction (FDPLP) (Athineos & Ellis 2007; Athineos et al 2004), where an
autoregressive model is computed from a cosine transform of the signal rather than from the
signal itself.

Given a real signal s(t), t = 1. . .N , the real and the imaginary parts of the signal spec-
trum DFT[(s(t)] (where DFT stands for the discrete Fourier transform) relate through the
Hilbert transform (Krammers–Kronig relation), i.e., DFT[(s(t)] = Re[S(ω)] + jH[Re[S(ω)]],
where DFT[ ] indicates the discrete fourier transform, and H[ ] indicates the Hilbert transform.
The power spectrum P(ω) is then given as {DFT[(s(t)]}2 = Re[S(ω)]2 + H[Re[S(ω)]]2. The
conventional autocorrelation method of the linear predictive analysis approximates the power
spectrum of a signal by the autoregressive model computed by the autocorrelation method of
linear predictive analysis from the signal s(t) (Makhoul 1975).

Similarly, if q(t)−s(t)+s(2N −1−t), t = 1, 2N −1 represents an even-symmetric sequence
in which the first half is equivalent to s(t), the cosine transform c(ω) of s(t) represents the first
half of the scaled inverse DFT of q(t), i.e., c(ω) = (2N − 1) DFT − 1[q(t)], ω = 1. . .N .
As the c(ω) is also real, its discrete Fourier transform also obeys the Krammer–Kroning rela-
tion, i.e., DFT[c(ω)] = q(t) + jH[q(t)]. The Hilbert envelope of the signal s(t) given as DFT
[c(ω)]2 = q(t)2 + jH[q(t)]2 is then approximated by the autoregressive model computed by the
autocorrelation method of linear predictive analysis from the c(ω).

Since the cosine transform of a time domain signal moves the signal to its frequency domain,
q(ω) covers the whole frequency range of s(t). To find the autoregressive model of the signal
in a restricted frequency range, one can place an appropriate limited-span window on q(ω). The
window span and shape determines the frequency response of the implied frequency filter. Thus,
by properly windowing the cosine transform of the signal, one can directly compute autoregres-
sive models of the Hilbert envelopes in the sub-bands over long segments of the speech signal,
entirely bypassing any short-term analysis windows (Athineos et al 2004). The principle of the
complete FDPLP computation is illustrated in figure 8.

The FDPLP model has been shown to be effective in applications that benefit from enhanced
spectral dynamics such as phoneme recognition (Ganapathy et al 2009), recognition of large-
vocabulary continuous speech (Thomas et al 2009), in handling linear distortions in recognition
of telephone speech (Thomas et al 2008a), and in recognition of reverberant speech (Thomas
et al 2008b).

6.4 Modulation spectrum in deriving posterior-based features of speech

Neither the modulation spectra nor the data in temporal trajectories have a normal distribution
or are correlated. As such, they are not suitable for direct interface with HMM–GMM ASR
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Figure 8. Frequency domain perceptual linear prediction as compared to the conventional time-domain
perceptual linear prediction. The process of deriving a conventional PLP-based spectrogram is shown in the
upper part of the figure. In the conventional technique, a windowed segment of the signal is used to derive
the auditory-like short-term spectrum of the segment. This spectrum is approximated by an autoregressive
PLP model. Stacking PLP spectra in time yields the PLP-based spectrogram shown in the upper right
corner. The lower part of the figure shows the process involved in deriving the FDPLP spectrogram. The
speech signal is transformed into the frequency domain by cosine transform. The window on the cosine-
transformed signal determines the frequency band of the signal to be approximated by the autoregressive
FDPLP model. The model approximates the temporal trajectory of power in the frequency band. Stacking
the all-pole FDPLP estimates from different frequency bands yields the FDPLP spectrogram, shown in the
lower right corner of the figure.

systems. We have therefore initially applied all our modulation spectrum-based techniques only
in HMM/ANN hybrid recognizers, where the modulation spectrum-based features are used as
an input to an artificial neural net (ANN) estimator of posterior probabilities of speech classes
(Bourlard & Wellekens 1989). An important advance was the introduction of the TANDEM
approach (Hermansky et al 2000) that applies a series of processing steps to estimates of pos-
teriors of speech sounds from the ANN classifier, making them more suitable for the currently

-

Figure 9. Generic scheme of deriving posterior-based features in the modulation spectrum domain. Spec-
tral analysis, either conventional or FDPLP-based, yields a signal spectrogram. Features based on spectral
dynamics are derived from the spectrogram and form the input to the artificial neural network, trained on
labelled data to derive posterior probabilities of speech sounds (typically phonemes). The post-processing
(most often achieved by extracting values from inner layers of the trained neural net) yields posterior-based
features that are suitable as an input to a Gaussian mixture-based HMM recognizer.
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dominant HMM/GMM ASR technology. A generic system for computing ASR features based
on the modulation spectrum is shown in figure 9. The speech signal is first converted to an
auditory-like time-frequency representation, either by using conventional frame-based spectral
analysis or FDPLP. Sufficiently long (typically longer than 200 ms) segments of temporal tra-
jectories of spectral energies in the frequency sub-bands form, after some pre-processing, an
input to an estimator of posterior probabilities of speech sounds that has been trained on large
amounts of labelled speech data. The final features for an HMM/GMM-based state-of-the-art
ASR system are derived from these posteriors by some post-processing that ensures that the fea-
tures have approximately a normal distribution and are decorrelated. This post-processing may
include either appropriate static non-linearities (Hermansky et al 2000) or the full inverse of
the last layer of the ANN, in practice representing the values on the ANN hidden layer (Chen
et al 2004; Grézl et al 2007). Such features based on modulation spectra are successfully used
in many state-of-the-art experimental systems (Fousek et al 2008; Park et al 2009; Plahl et al
2009).

Using the module for converting the evidence from the signal to posterior probabilities of
speech sounds (currently we use the trained ANN for this purpose) allows relatively free choice
of what constitutes the ‘evidence.’ Currently, this evidence is typically derived by multiple
projections of the time–frequency plane with varying spectral and temporal properties (e.g.
Hermansky & Fousek 2005; Valente & Hermansky 2006; Thomas et al 2008a, b, 2009;
Ganapathy et al 2009). Such projections are consistent with our current knowledge about prop-
erties of cortical receptive fields in mammalian brains (e.g. Kowalski et al 1996), and sometimes
even directly derived from brain-obtained measurements (Thomas et al 2010). In principle, there
may be large numbers of different projections, forming processing channels differently affected
by different signal distortions. Exploiting this possibility for increased robustness of processing
is a current research interest (Mesgarani et al 2011).

7. Conclusion

The dynamics of signal envelopes in frequency sub-bands are important for describing linguistic
information in speech. This was the basis of the first speech coder (Dudley 1939). Unfortu-
nately, over the years this concept was lost for ASR, which puts emphasis on instantaneous
short-term spectral envelopes; spectral dynamics were treated more as a nuisance to be modified
by time-aligning techniques. However, recent research unambiguously points to the importance
of spectral dynamics in coding the phonetic information in speech, and the interest in spectral
dynamics has started to grow again. At the time of writing of this article, posterior-based features
that are derived from spectral dynamics of speech are used in most state-of-the-art experimental
ASR technology. It is likely that as our appreciation of information in spectral dynamics grows,
new ASR techniques will emerge. Coarticulation may be recognized as an important carrier of
information in speech; recognizing speech sounds without extensive use of the top-down lan-
guage constraints may become a respectable engineering endeavour; and human-like robustness
of speech processing in the presence of reasonable signal degradations may become a reality.

This paper describes the work of many colleagues, most of them hopefully acknowledged by
references to their earlier publications. Our own incomplete knowledge necessarily caused some
fine works to be omitted, for which we apologize. Writing of the paper was partially supported
by IARPA BEST and DARPA RATS grants, and by the JHU Center of Excellence in Human
Language Technology.
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