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Speech Recognition Using Hidden Markov 
Models with Polynomial Regression 
Functions as Nonstationary States 

Li Deng, Senior Member, IEEE, Mike Aksmanovic, Xiaodong Sun, Member, IEEE, and C.  F. Jeff Wu 

Absfract- We propose, implement, and evaluate a class of 
nonstationary-state hidden Markov models (HMM’s) having each 
state associated with a distinct polynomial regression function of 
time plus white Gaussian noise. The model represents the tran- 
sitional acoustic trajectories of speech in a parametric manner, 
and includes the standard stationary-state HMM as a special, 
degenerated case. We develop an efficient dynamic program- 
ming technique which includes the state sojourn time as an 
optimization variable, in conjunction with a state-dependent 
orthogonal polynomial regression method, for estimating the 
model parameters. Experiments on fitting models to speech data 
and on limited-vocabulary speech recognition demonstrate con- 
sistent superiority of these nonstationary-state HMM’s over the 
traditional stationary-state HMM’s. 

I. INTRODUCTION 
N the traditional formulation of the hidden Markov model 

I (HMM),  individual states are assumed to be stationary 
stochastic sequences. Successive observation sequences pro- 
duced from these state-dependent random processes are either 
independent and identically distributed (IID) [l], 171, or can 
be allowed to embed temporal correlation [2], [9]. In either 
case, the parameters (e.g., means, covariances, and autoregres- 
sion matrices) that characterize the state-dependent random 
sequences are assumed to be independent of time, hence 
stationary states. This stationary-state assumption appears to 
be reasonable when a state is intended to represent a short 
segment of sonorant or fricative speech sounds. However, 
for longer segments of these sounds and for all types of 
plosive sounds, such an assumption is inadequate and it is 
desirable to make the HMM states nonstationary so as to 
more accurately represent these sound pattems. Glides, liquids, 
diphthongs, and transition regions between phones reveal the 
most notable nonstationary nature in speech. In continuously 
spoken sentences, even vowels contain virtually no stationary 
portions [ 111. 

In a previous work, we proposed a mathematical framework 
for a nonstationary-state HMM, or the trended HMM, where 
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polynomial trend functions (or regression functions of time) 
are used as time-varying means in the output Gaussian distri- 
butions in the HMM states [3]. In that model, the observation 
vector sequences, Ot , t = 1,2, . . . , T are generated from the 
model according to 

M 

Ot = Bi(m)tm +&(E,) (1) 
m=O 

where the first term is the state-dependent polynomial regres- 
sion function of order M, the second term is the residual noise 
assumed to be the output of an IID, zero-mean Gaussian source 
with state-dependent covariance matrix Ci, and state i at a 
given time t is determined by evolution of the underlying 
Markov chain in the HMM. 

In the above model formulation, the time origins of the 
regression functions for all the states are fixed at the origin 
of the utterance: t = 0. This is appropriate only for HMM 
representation of entire words uttered with a relatively constant 
speaking rate. For HMM representation of general speech units 
such as subword units and for continuous speech recognition, 
many states in the HMM representing an utterance have to 
be tied (i.e., taking the same parameter values across the 
states). In particular, the tying includes the parameters in the 
regression functions. For such trying to be sensible, the time 
origin of the regression function in each state in the HMM 
should start from the time when the state is first entered rather 
than from the origin of the utterance. Further, for speech 
utterances having a wide range of speaking rates, use of the 
state-transition-dependent time origins for regression functions 
(instead of using a fixed time origin for all states) would 
significantly reduce error accumulation due to speaking rate 
variation from one speech token to another. 

In Section I1 of this paper, we formulate this nonstation- 
ary-state hidden Markov model whose states are defined 
by polynomial regression functions plus noise where each 
state-dependent regression function starts with t = 0 when 
the state transition into the current state occurs. Section 111 
provides a solution to the parameter estimation problem for 
this new HMM via a modified Viterbi algorithm. It also 
provides a scoring algorithm for the decoding stage in speech 
recognition. In particular, we describe some heuristic methods 
we have developed for approximation of the solutions, which 
allow significant reduction of the computation cost but only 
minimally effect speech recognition performance. We present 
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results, in Section IV, on fitting raw speech data using the 
nonstationary-state (trended) HMM, in comparison with the 
less accurate fitting using the standard stationary-state HMM 
of [7]. In presenting these results, we try to illustrate inter- 
utterance variation of speech tokens and its effect on the model 
fitting. Speech recognition experiments are reported in Section 
V, demonstrating superiority of the new model under several 
limiting conditions. Finally, we draw conclusions from this 
study and point to future directions in Section VI. 

11. THE MODEL 
The nonstationary-state or trended HMM investigated in 

this paper is of a data-generative type. The model generates 
the (vector-valued) observations data sequences of length T ,  
Ot , t = 1,2, . . . , T, from the following polynomial regression 
function of time plus additive zero-mean IID Gaussian noise 
relation 

M 
Ot = Bi(m)fm(t - ~ i )  + &(xi )  (2) 

m=O 

where i is the label of a state in the HMM, and f m ( . )  is 
an m-order polynomial. We use orthogonal polynomials for 
their better stability properties in estimating the polynomial 
coefficients &(m) (see Section IILB for detail). In this study, 
we choose to use the Legendre polynomials. Note that the 
polynomial for each state depends not only on the coefficients 
Bi(m), but also on the time-shift parameter ~ i .  7; registers the 
time when state i in the HMM is just entered before regression 
on time takes place; i.e., (t - ~ i )  represents the sojoum time 
in state i. However, only the polynomial coefficients Bi(m) 
(for state i )  are considered as true model parameters, and 
~i is used merely as the auxiliary parameter so as to obtain 
maximal accuracy in estimating Bi(m) (over all possible q 
values). In the speech recognition step, 7" is again estimated 
as the auxiliary parameter so as to achieve a maximal score in 
matching the model to the unknown utterance over all possible 
T; values. 

111. ESTMATION OF MODEL PARAMETERS 

An effective and efficient algorithm is developed in this 
study for automatic training of the parameters, notably the 
state-dependent polynomial coefficients of the regression func- 
tions, in the trended HMM's.' The algorithm is motivated 
by and is extension of the segmental K-means algorithm 
developed in the past for training standard HMM's [6] .  Like 
the segmental K-means algorithm, the algorithm developed 
here also involves two iterative steps-the segmentation step 
and the optimization step-which are both described in detail 
below. 

A. Segmentation Step 

The objective of the segmentation step is to find a state 
sequence which maximizes the joint likelihood of observation 

' Estimation of the transition probabilities and for the residual covariance 
matrices is very similar to that for the standard HMM and is omitted here. 

sequence and state sequence. For the standard stationary- 
state HMM's, such as Baum's model [I]  and the hidden 
filter model [9], the likelihood of each observation given 
a state does not depent on the sojourn time in the state. 
Therefore, the standard Viterbi algorithm can be used for the 
segmentation purpose [IO]. In contrast, for the nonstationary- 
state or trended HMM studied in this paper, the mean in 
the state-dependent Gaussian random process is a function of 
the state sojoum time (i.e., polynomial trend function), and 
hence so is the likelihood for an observation in that state. This 
requires extension of the standard Viterbi algorithm over a new 
maximization dimension-that of state sojoum time-in order 
to achieve the optimum in the segmentation step. 

We now formally describe this modified Viterbi algorithm. 
Let Q = { q l ,  qz, . . . , QT} be the state sequence and 0 = 
{ 0 1 , 0 2 ,  . . . , OT} be the given observation sequence of length 
T (vector-valued with dimensionality 0): Define a duration 
sequence { d l ,  d z ,  . . . , d T }  where dt denotes the sojoum time 
in state qt (the time spent in the current state qt since the last 
state transition). Note that { d l ,  dz,. . . , d T }  can be derived 
directly from Q 

{Q : dt = s> e IJ 
N 

{Q : ~ t - 8 - 1  # 2, 

qt-s = qt-s+l = ' .  ' = qt = i}, 
1=1 

0 5 s < t. 

Then the largest probability along a single state-sequence path 
up to time t, with duration time d at state i can be expressed as 

where 0 is the parameter vector of the HMM. 
The essence of the modified Viterbi algorithm is to effi- 

ciently compute & ( j ,  d )  in an iterative way. To keep track of 
the optimal state sequence, we use $ t ( j ,  d )  to trace the most 
likely state information (state identity and state sojoum time) 
at time t - 1 given that qt = i and dt = d in the following 
procedural description of the modijied Viterbi algorithm: 

1)  Initialization: 

6 i ( i ,  d)  = I[d=o] . ? ~ t  . bi(O1, d 1 0), 1 5 i 5 N (3) 
$ l ( i ,  d )  = (0,O) (4) 

where { T I ,  . . . , T N }  is the initial probability of Markov 
states. 

2) Recursion: 

zWe will treat the case with multiple training tokens in Appendix n. 
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observation sequence; X is the TO x (M+ 1) regression matrix 
of the form 

is 

M 
where fm (x) is the Legendre orthogonal polynomial of order 
m defined on [0, TO]. (Note the time origin for each polynomial 
is reset to zero for every new Markov state entered). These 
polynomials satisfy the orthogonality relationship 3) Termination: 

f o r t  = T -  1 , . . . , 1  . 
4) Backtracking: 

Q: = $t+l ( d + l ) ,  t = T - 1, T - 2, . . . I 1. (9) 

Note that in the above termination stage, the maximum joint 
likelihood of observation and state sequence P* (obtained 
from (7)) can be used to score any input speech token 
0 = {Ol,O2, . . . , OT}. This likelihood is thus also called 
the Viterbi score which, as a by-product in the model training 
stage, finds its important uses in the decoding stage of speech 
recognition. Also, note that the computational complexity of 
the above algorithm is quadratically related to the observation 
length (T'), which is significantly greater than the complexity 
of the standard Viterbi algorithm (only linearly related to T). 
To alleviate this difficulty, we have devised a method which 
utilizes state duration constraints to reduce the computation 
with only minimal effects on state segmentation accuracy. We 
will give the method in detail in Appendix I. 

B. Maximization Step 

Once all the state boundaries are determined via the above 
segmentation step, estimation of the parameters in the state- 
dependent nonstationary Gaussian processes is essentially the 
problem of polynomial regression. Unlike the Baum-Welch 
algorithm, this maximization step in the segmental k-means 
algorithm can be done for each state independently. In the 
following description of the polynomial regression, we thus 
drop the state index. 

For estimating the regression coefficients for each state, we 
consider the standard regression equation 

where the unknown to be solved, d = 1 , 2 ,  . . . , D, is the 
(M + 1) x 1 vector consisting of up to Mth-order polynomial 
coefficients for only the dth components in the multivariate 
polynomial coefficients; O(d) ,  d = 1 , 2 , .  . . , D, is the vector 
of length TO (state duration determined by the modified 
Viterbi algorithm) comprising only the dth components in the 

The polynomials up to order four used in this study, with 
x = t/To, are 

fo(t) = 1 

f l ( t )  = 4 2 2  - 1) 

f3 ( t )  = J?(2oZ3 - 30x2 + 122 - 1) 

fz(t) = 6 ( 6 z 2  - 62 + 1) 

f4(t) = 3(70z4 - 1 4 0 ~ ~  + 90%' - 2 0 ~  + 1). 

If the standard nonorthogonal polynomials: f o ( t )  = 1; 
f l ( t )  = t; f Z ( t )  = t'; . . . were used, then the regression matrix 

would become highly ill-conditioned for moderate orders of 
polynomials, and hence the parameter estimation based on 
(XTTX)-' would be very unstable. Use of the orthogonal 
polynomials described above has substantially alleviated this 
ill-conditioning problem. In order to completely eliminate 
the ill-conditioning problem, we have further adopted the 
following SWEEP algorithm for the solution of the polynomial 
regression. 

C .  The SWEEP Algorithm 

the HMM) 
To solve the standard regression equation (for each state in 

XT'X[B(1) I B(2) I . . . I B ( D ) ]  

= XT'[0(l) I I . . . I O(D)]  (13) 

the Gauss-Jordan elimination method could be applied as 
was done usually. However, Gauss-Jordan elimination fails 
when the matrix XTX is not of full rank, for example, 
in the case that collinearity exists among the X variables. 
The SWEEP algorithm [5 ]  has the advantage of dealing with 
this problem automatically. It performs in such a way that 
each operation "sweeps" out one X variable and obtains 
simultaneously the corresponding regression coefficient. When 
the algorithm encounters a variable that is highly correlated 
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with the previously swept variables (up to a threshold value), 
it automatically ignores that variable by setting the corre- 
sponding regression coefficient zero and continues to proceed. 
As a result, the ill-conditioning problem can never occur, 
even when the number of parameters are greater than the 
number of observations. For example, in the case of fitting 
a polynomial of order two based on only two data points, the 
SWEEP algorithm will set the coefficient of the second-order 
polynomial to zero automatically after fitting the first-order 
line. This is particularly useful for our current problem of 
estimating regression parameters in the HMM when a state 
has a short segmentation (i.e., dimensionality of 0 and X in 
(13) is small). 

The SWEEP algorithm, which has been implemented for 
estimating regression coefficients in the trended HMM in this 
study, is formally described below. Let 

C = ( c ~ , ~ ) ( M + I ) ~ ( M + ~ + D )  
= [XTPX I XnO(’) I Xn0(’) I . . . I XndD)]  (14) 

where M is the order of the polynomial regression functions, 
and D is the dimension of observation vector. Then the 
SWEEP algorithm can be described as the following iterative 
steps: 

1) Initialization: Set k = 1 and set a threshold value TOL 
(e.g., 1.h-20). 

2) Set D = Ckk, if D < TOL, keep record of the index k 
and go to (5). 

3) Divide row k by D. 
4) Subtract cik times row k from each row i # k (similar 

5 )  k + k + 1; if k 5 p go to (3). 
6) Termination: The columns from M + 2 to M + 1 + D are 

the estimated regression coefficients [B(’) I B(*) I . . . I 
B(D)], where the rows with indices recorded at step (b) 
are Set to zero. 

The method for estimating the parameters of the model from 
training data has been described above in this section for the 
case of single training token. The case for multiple training 
tokens is treated similarly with details described in Appendix 
11. 

to the Gauss-Jordan elimination method). 

Iv. ANALYSIS OF THE MODEL: FITTING SPEECH DATA 
In the above sections we have shown that theoretically the 

trended HMM includes the standard HMM as a special case 
where only zeroth-order polynomials (i.e., constants) are used 
as the trend functions. In this section, we provide experimental 
evidence to show that the trended HMM in practice is able to 
fit actual speech data, both for the training data (those used 
to estimate model parameters) and for the test data (those not 
used to estimate model parameters), more closely than the 
standard HMM. 

The speech data was taken from several tokens of word 
beet /bi:t/, spoken by a native English male speaker. The raw 
speech data was in the form of digitally sampled signal at 16 
kHz. A Hamming window of duration 25.6 msec was applied 
every IO msec (the frame length). Within each window, mel- 
frequency cepstral coefficients were computed. For the sake of 

space saving, we show here the data fitting results only for the 
first and second-order cepstral coefficients (C1 and C2). C1 
contains information about the difference of the log channel 
energies between low-frequency and high-frequency channels: 
C2 contains information about summation of log channel 
energies of low and high-frequency channels subtracting those 
of mid-frequency channels? 

The parameters of the trended HMM’s, varying in the 
order of the polynomial regression functions from zero (stan- 
dard HMM), one (linearly trended HMM), two (quadratically 
trended HMM), to three (cubic trended HMM), were trained 
using the segmental K-means algorithm described in Section 
III. Two tokens of word beef were used for the training. As an 
illustration of the data fitting results, we select the example of a 
three-state left-to-right model (N = 3) and show the results for 
the training data first: The dotted lines in all four subgraphs 
of Fig. 1 are the same speech data C1 sequence from one 
training token to be fitted, where the vertical axis represents 
the magnitude of C 1  and the horizontal axis is the frame 
number. Superimposed on Fig. l(a)-(d) as solid lines are the 
polynomial regression functions from the trended HMM’s with 
the polynomial orders 0, 1, 2, and 3, respectively. Given the 
model parameters, the process of fitting the models to the data 
proceeded by first finding the optimal segmentation of the data 
into the HMM states (via use of the modified Viterbi algorithm 
described in Section IILA) and then fitting the segmented 
data using the polynomial fitting functions associated with 
the corresponding states. The two breakpoints in each graph 
correspond to the frames where the “optimal” state transitions, 
from state 1 to state 2 and from state 2 to state 3, occur. 
Comparison among the four graphs in Fig. 1 demonstrates 
that as the polynomial order increases, the degree to which 
the trended HMM is able to accurately fit the data improves 
accordingly in a highly significant way. A quantitative measure 
for the accuracy of the data fitting can be obtained by summing 
state-dependent frame residual errors over frames 

l 2  M 

RSS = 0t - Bi(m)f,(t - 7;) 
i=l t=?,-, T” [ m=O 

where ~ i ,  i = 0, 1 , 2 , .  . . , N are the Viterbi segmentation 
boundaries. The smaller the RSS is, the better the data fit- 
ting would be. (Zero RSS indicates perfect fitting.) As the 
polynomial order increases from zero (Fig. l(a)), one (b), two 
(c), to three (d), the RSS value decreases substantially from 
558, 214, 161, to 42, respectively. 

Fig. 2(a)-(d) show the same type of data fitting as Fig. 1 for 
the C2 cepstral coefficients. The same results are obtained: as 
the polynomial order increases, the fitting error RSS reduces 
quickly from 260, 214, 136, to 87. 

One might argue that the superior data fitting performance 
of the trended HMM over the standard HMM (degenerated 
trended HMM) could be due just to its higher number of model 
parameters or its higher degree of freedom in data fitting. To 
be sure that this is not the case, we conducted two sets of 

3Similar results have heen obtained for higher order cepstral coefficients, 

4Similar results have been obtained for other numbers of states. 
which will not be shown in this paper due to space limitation. 
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”beet“ (train token, order=O) 

-.. 

0 10 20 30 40 

RSS - 5M) 
(a) 

“beet” (train token, order=2) 

0 10 20 30 40 

RSS - 161 

(C) 

“beet” (train token, order=l) 

I 

0 10 20 30 40 

RSS I 214 

@) 

“beet” (train token, order=3) 

0 10 20 30 40 

RSS - 42 

( 4  

Fig. 1. Fitting of a standard stationary-state HMM with polynomial order zero (a) and of nonstationary-state HMM’s with polynomial order one (b), two 
(c). and three (d) to speech data consisting of mel-frequency cepstral coefficient sequence C1 from an utterance of word beet. This data sequence was 
used to training all the four models. Dotted lines are the CI data sequence. Solid lines are the polynomial regression functions of time for corresponding 
HMM states in three-state trended HMM’s. The two breakpints in each graph correspond to the time when the “optimal” state transitions, from state 1 
to state 2 and from state 2 to state 3, occur according to the modified vlterbi algorithm. RSS is a measure of the accuracy of the data fitting, defined 
as sum of statedependent frame residual errors over all frames. 

data fitting experiments. First, we canied out the fitting on 
test tokens (i.e., word tokens of beer not used in training the 
models). Figs. 3 and 4 show the fitting results for the C1 and 
C2 speech data, respectively. The same kind of the superiority 
of the trended HMM over the standard HMM as that shown in 
Figs. 1 and 2 is demonstrated here. In particular, the poor data 
fitting performance of the standard HMM is clearly revealed 
as the constant mean associated with the second state (both in 
Figs. 3(a) and 4(a)) is uniformly greater than the corresponding 
data over the entire state sojourn interval. 

In the second set of fitting experiments, we varied the 
number of states in the trended HMM’s according to their 
polynomial orders. This was done so as to make all the 
HMM’s differing in their polynomial order nevertheless have 
approximately the same total number of model parameters. 
Such a criterion produced the zero-order trended HMM with 

12 states (Figs. 5-7(a)), the first-order trended HMM with 
six states (Figs. 5-7(b)), the second-order trended HMM with 
four state (Figs. 5-7(c)), and the third-order trended HMM 
with three states (Figs. 5-7(d)). For the model fitting to a 
training token (Fig. 5 for C1 and Fig. 6 for C2), the zero- 
order trended HMM (standard HMM) tended to fit the token 
most closely (but nearly the same as the third-order trended 
Hh4M when comparing Fig. 5(a) and 5(d)). However, for the 
fitting to test tokens, the standard HMM often provided the 
worst fitting, with one typical example shown in Fig. 7 (for 
C1 data). On the other hand, we also observed cases where 
for the same number of model parameters the standard HMM 
gave better data fitting to test tokens than the higher-order 
trended HMM’s. One example for such comparative fitting is 
shown in Fig. 8 for C2 data. It appears that for low-order 
cepstral speech data which are temporally “smooth,” use of 



512 IEEE TRANSACTIONS ON SPEECH A N 0  AUDIO PROCESSING, VOL. 2, NO. 4, CKTOBER IS94 

"beet" (train token, order=O) "beet" (train token, order=l) 

.... i 

L J 

0 10 20 30 40 

RSS 280 

(a) 

"beet" (train token, order+ 

L 
0 10 M 30 40 

RSS-214 

(b) 

"beet" (train token, orderd) 

* l \  

I 

0 10 20 30 40 

RSS - 136 
(C) 

Fig. 2. Fitting of models to a C2 cepstral coefficient training data sequence. 

high-order trended HMM's with a small number of states 
provides closer data fitting than the low-order trended HMM's 
having more states; while temporally "rough" data (high-order 
cepstral coefficients) would be better fitted by the standard 
HMM having a large number of states. 

v .  SPEECH RECOGNITION EXPERIMENTS 

The vocabulary of the isolated-word, speaker-dependent rec- 
ognizer used for evaluation of the nonstationary-state trended 
HMM's consists of highly confusible 36 CVC words, where 
C encompasses six stop consonants /p/, /t/, /k/, /b/, Id, /g/ and 
V is the vowel /i:/. All speech materials were uttered with 
a short pause in between by three native English speakers in 
a normal office environment. Training data consists of eight 
tokens of each of the 36 vocabulary words; test data consists 
of 14 disjoint examples of the 36 words, resulting in 504 test 
tokens for each speaker. 

Training and test speech data were obtained using a DSP 
Sona-Graph workstation. Fifteen-dimensional vectors compris- 

ing mel-frequency cepstral coefficients and their differences 
over time were computed as the output of the speech pre- 
processor. 

We chose to evaluate the nonstationary-state trended 
HMM's, with the benchmark of the standard stationary- 
state HMM's, using two different speech units for the 
HMM representation: whole word unit and context-dependent 
allophonic unit. 

With use of whole-word units, we created a total of 36 
trended HMM's, one for each CVC word. The polynomial 
order of each model varied from zero (benchmark model) to 
three, and the number of states in each model varied from 
one to 20. (The state number was run high enough to ensure 
saturation of the performance.) Table I lists the performance of 
the recognizer, measured by the percentage of the test words 
correctly identified as the top word choice out of 36 candidates 
by the recognizer according the scores from the modified 
Viterbi algorithm, as a function of the polynomial order (P) 
and of the number of states (N) in the models. The recognition 
accuracy is listed for the cases when four tokens (left) and 



DENG et al.: NONSTATIONARY-STATE HIDDEN MARKOV MODELS 

"beet" (test token, order=O) 

0 N 
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z z  
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b 
0 
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0 10 PO 30 40 
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(a) 

"beet" (test token, order-2) 

w 

c - 
%' In 

0 
: :  ..I 

0 10 20 30 40 

RSS -280 
(C) 

Fig. 3. Fitting of models to a C1 cepsual coefficient test data sequence. 

TABLE I 
SPEECH RECOGNITION ACCURACY (PERCENTAGE CO") AS 

A FUNCTION OF TRAINING DATA S m  (4 OR 8 TRAINING TOKENS), 
POLYNOMIAL ORDER (P) ,  AND OP N m m  OF STAW ( N )  IN THE 

TRENDED HMM'S (SPEAKER 1; No DURATION CONSTRAINT) 

eight tokens (right) of each word were used for training 
each trended HMM. For both cases, the highest recognition 
accuracy, 77% and 83%, respectively, was obtained with use 
of the nonstationary-state trended HMM (P = 1 and P = 3). 
For each fixed number of states N, the superior performance 
of the trended HMM over the standard stationary-state HMM 
was particularly clear when a small number of HMM states 
were used. 

Tables I1 and 111 show the same type of comparative 
speech recognition accuracy for two other speakers' speech 
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"beet" (test token, order=l) 

0 10 20 30 40 

ASS - 318 

(b) 

"beet" (test token, order=3) 

data. These results, again, demonstrate limited recognition 
performance achieved by the standard stationary-state HMM. 
Note that as the number of states increases, the recognition 
accuracy achievable by most of the trended HMM's, including 
the degenerated ones (P = O), increases to a plateau first, 
and then declines. Yet, above all, the best recognition rate 
is, again, achieved by the nonstationary-state trended HMM 
having a relatively few states (e.g. 96% for N = 10 and 
P = 1 in Table 11). These findings indicate that although use 
of many states in the stationary-state HMM can in principle 
approximate continuously varying speech data in a piece-wise 
constant fashion, it is not adequate for high-accuracy speech 
recognition. Better performance is achievable with use of the 
nonstationary-state trended HMM, which is more structured 
and more economical in the use of model parameters. These 
performance results are consistent with the results of fitting 
models to speech data described in Section IV. 

In addition to the above experiments where whole-word 
HMM's were used, we conducted a parallel set of experiments 
using HMM representation of allophones. Two allophones 
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"beet" (test token, order=O) 

3. 
: !  I. .? ! , .  * .  . ,  . .  * .  . .  

. .  . .  . .  . . .  * . . .  
e . .  

. .  " : 

: : :  

; j ;. . . .  . I .  . . .  . .  . .  : ... 8 

... 

"beet" (test token, orderml) 

0 10 20 30 40 

Rss - 212 

(b) 

"beet" (test token, order=3) 

. ~~ 
~ 

0 10 20 30 40 

RSS - 212 

(a) 

"beet" (test token, order=2) 

" I \  

I 

0 10 20 30 40 

RSS - 152 

(C) 

Fig. 4. Fitting of models to a C2 cepstral coefficient test data sequence. 

TABLE I1 
SPEECH RECOGNITION ACCURACY (PERCENTAGE CORRECT) AS 

POLYXOMLU ORDER (P), AND OF N u "  OF STATES ( N )  IN THE 
A FUNCTION OF TRAINING DATA SaE (4 OR 8 TRAINING TOKENS), 

TRENDED HMM'S (SPeAKER 2; NO DURATION CONSTRAINT) 

were chosen for each of six stop consonants, one for the 
pre-vocalic stop and the other for the post-vocalic stop. This 
created a total of 13 models for representing all 36 words in the 
vocabulary: 12 stop allophone models plus one vowel model. 
Like the whole-word HMM's, the polynomial order of each 
allophone model varied from zero (benchmark model) to three. 
The number of states for all allophone models were made the 
same, varying from one to 9; that is, the total number of states 
in the concatenated word HMM's varied from 3 to 27. 

0 10 20 30 40 

RSS I 153 

( 4  

TABLE 111 
SPEECH RECOGNITION ACCURACY (PERCENTAGE CORRECT) AS 

A FUNCTION OF TRAINING DATA SEE (4 OR 8 TRAINING TOKENS), 
POLYNOMIAL ORDER (P) ,  AND OF NUMBER OF STAW ( N )  IN THE 

TRENDED W ' s  ( S m m  3; No DURATION CONSTRAINT) 

Tables IV-VI, for the three speakers, respectively, contain 
the percent recognition accuracy results obtained via use of the 
trended HMM representation for the allophones. The compar- 
ative performance between use of nonstationary-state HMM's 
and of stationary-state HMM's follows a similar pattem to 
that shown in Tables 1-111. The absolute performance, given 
a fixed polynomial order and the number of states, is higher 
with these allophone models than with the previous whole- 
word models. This is probably due to a better acoustic data 
sharing mechanism associated with the allophone models. 
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Fig. 5. 
orders (so as to keep the total number of model parameters constant). 

Fitting of models to a C1 cepstral coefficient training data sequence using a varying number of states for models with different polynomial 

TABLE IV 
SPEECH RECOGNITION ACCURACY (PERCENTAGE C o w )  USING 

ALLOPHONIC TRENDED HMM's (SPEAKER 3; DURATION CONSTRAINT f3) 

TABLE V 
SPEECH RECOGN~ION ACC~RACY (-CENTAGE C o m a )  USING 

ALLOPHONIC TRENDED HMM's (SPEAKER 1; DURATION CONSTRAINT f3) 

VI. CONCLUSION AND DISCUSSION 

In this study, we proposed, implemented, and evaluated 
a type. of nonstationary-state trended HMM's where each 

state is associated with a distinct polynomial regression func- 
tion of time plus Gaussian noise. The principal motivation 
of this new type of HMM's is to parametrically describe 
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TABLE VI 
SPEECH RECOGNITION ACCURACY (PERCENTAGE coma) USING 

ALLOPHONIC n E N D U )  m ' S  (SPEAKER 3: DURATION CONSTRALW f 3) 

P=3 I 23.0 I 66.1 I 77.6 I 69.0 I 58.3 I 36.1 

continuously-varying transitional acoustic pattems of speech 
in a more natural and a more structural manner than the 
standard stationary-state HMM's developed and widely used 
in the past. One desirable attribute of this new model is that 

when a relatively steady-state speech segment, such as some 
mid-portion of a vowel is encountered, then the higher-order 
polynomial coefficients can be automatically set to zero and 
the model is reduced essentially to the standard HMM. 

There are two ways of formulating the nonstationary-state 
HMM's depending on choice of the time origin for the state- 
dependent polynomial regression function on time: 1)  the 
time origin for the regression functions of all states is set 
identically at the start of each word utterance; and 2) the 
time origin is reset once a state transition in the HMM 
occurs. For the first formulation, the efficient Baum-Welch 
algorithm is directly applicable for estimating polynomial 
coefficients. However, this formulation of the model can 
be applied only to whole-word HMM's for isolated word 
recognition and requires that the speaking rate variation from 
one speech token to another be relatively minor. For use of 
HMM representation for sub-word units, the above second 
formulation is necessary. Unfortunately, this formulation does 
not render direct use of the efficient Baum-Welch algorithm for 
model parameter estimation possible. One major contribution 
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Fig. 7. Fitting of models to a C1 cepstral coefficient test data sequence using a varying number of states for models with different polynomial orders. 

of this study is the development of the modified Viterbi 
algorithm, in conjunction with the state-dependent orthogonal 
polynomial regression technique, for accurately and robustly 
estimating polynomial coefficients in the model and for scoring 
utterances. An additional contribution is the development of a 
heuristic method which utilizes duration constraints to reduce 
otherwise very high computation cost associated with the 
modified Viterbi algorithm. Effectiveness of the parameter 
estimation algorithm and of use of the duration constraints 
is experimentally verified in this study. 

To help understand the properties of the nonstationary-state 
HMM's, we conducted experiments on fitting models to speech 
data. With use of residual square sum as a quantitative measure 
for goodness of fit, the experimental results demonstrated 
superiority of the nonstationary-state HMM's over the standard 
stationary-state HMM's. 

Isolated-word speakerdependent 36-CVC-word speech 
recognition experiments were designed to systematically 
evaluate the performance of the newly developed models as 

a function of a range of model parameters and experimental 
factors: 1) order in the pofynomial regression functions; 2) 
number of states in the HMM's; 3) type of speech units 
for HMM representation; 4) speaker identity; 5 )  size of the 
training data; and 6) strength of the duration constraint. We 
reached the following conclusions from detailed examinations 
of the recognition results: 

1) For any given order in the trended HMM, as the number 
of states increases the recognition accuracy tends to 
increase to a plateau and then declines. 

2) Over a wide range of the number of HMM states and for 
both the allophone and whole-word speech units, the best 
recognition rate is mostly achieved by the nonstationary- 
state trended HMM (polynomial order not equal to zero), 
rather than by the stationary-state HMM (polynomial 
order equal to zero). 

3) With the number of HMM states being one or two for 
a word, the recognition rate tends to increase monoton- 
ically with the polynomial order. 
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Fig. 8. Fitting of models to a C2 cepstral coefficient test data sequence using a varying number of states for models with different polynomial orders 

4) For both the allophone and whole-word speech units, 
doubling training data (eight versus four training tokens) 
significantly increases the recognition rate for nearly all 
polynomial orders and all numbers of the HMM states. 

5) Imposing stronger duration constraints only affects the 
recognition rate minimally while allowing significant 
reduction in computation costs associated with both 
training and decoding. 

Despite the high degree of generality of the nonstationary- 
state trended HMM developed here, three further improve- 
ments are possible for making the model more suitable for 
speech recognition. First, speaking rate variation from one 
speech token to another, given the same underlying phonetic 
representation of the HMM states, should be normalized. 
Because, unlike the stationary-state HMM, the polynomial 
regression model of each state is in general a function of time, 
significant variability is necessarily introduced when using 
the same, single regression model to describe speech data 
from muItiple tokens with varying state durations. Absence of 

temporal normalization as in the present model is one major 
weakness in the current model formulation. To overcome this 
difficulty, we propose to use auxiliary parameters to implement 
state-dependent time warping in the polynomial regression 
functions. Second, once the state durations are normalized to 
a fixed length, the restriction of the residual signal &(Xi) 
in (2) being an IID sequence can be easily removed. Then 
a full covariance matrix having its dimensionality as large 
as the product of the state length by the observation vec- 
tor's dimension can be constructed to completely account 
for statistical dependence of all observations within a state.5 
This way of characterizing long-term statistical dependence 
of observations cannot be implemented in the standard HMM 
having a large number of states. Third, for the future speaker- 
independent speech recognition, the current trended HMM can 
be generalized to the HMM with state-dependent mixtures of 
trended functions. Using the method for the model construction 

5When the number of states in the HMM is reduced to one, this improved 
model would behave similarly to the stochastic segment model [8]. 



519 DENG cl of.: NONSTATIONARY-STATE HIDDEN MARKOV MODELS 

similar to the one proposed and implemented in [4], we 
will achieve this generalization in a straightforward manner. 
Once the model for state-dependent mixtures of trends is 
implemented from our future work, speaker-independent data 
corpus can be used to further evaluate the model. We are 
currently investigating all these three ways of extension and 
improvement of the model described in this paper. 
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APPENDIX I 
STATE SEGMENTATION ALGORITHM 

WITH STATE DURATION CONSTRAINTS 

By considering the state duration in the modified Viterbi 
algorithm (Section IILA), an additional dimension is intro- 

TABLE VII 
EFFFCT OF THE DURATION CONSTRAINT ON SPEECH RECOGNITION ACCURACY 

(SMR 1). U m  AND LOWER TIME LIMITS ( L ,  U , )  IN (15) AND 
(16) WERE SET To BE f3 FROM THE BOUNDARIES OF STATE i 

DETERMINED BY THE STANDARD HMM AND THE RELATED V ~ B I  
ALGORITHM. THE RFSULTS SHOULD BE COWARED WITH THOSE M 

TABLE 1 WHERE No DURATION CONSTRAINTS WERE IMWSED 

TABLE VIII 
SAME AS TABLE vn EXCEPT ( L ~ ,  U , )  WLRE 
SET TO BE f l  FROM THE STATE BOWnADmr .I-...- ~~ 

duced in the maximization process compared to +e standard 
Viterbi algorithm [lo]. (The modified Viterbi algorithm was 
used both for training and for recognition.) From the recursive 

(16) formula (5), it is clear that the maximization was taken over 
the duration value up to the current time point (as well as where I < T ,  I I and I I U,. 
over the HMM states). This extra step of maximization over computation is only of order O ( T ) ,  rather than of order 

O(T2)  as in the recursive formula (5) where no state duration the standard Viterbi algorithm increases the computation up to 

constraint was used. O(T2)  (T is the total number of frames in the data). 
To reduce the computation, we note that the maximization of the duration constraint on speech reCOpi- 

for the duration from 0 to t- 1 for all the states is not necessary. tion accuracy is demonstrated in Tables vII and vIII. ne 
This is because the duration of each state has to fall within experimental conditions were identical to those under which 
a range shorter than such a full duration. Use of this state the results of Table I were obtained except here duration 
duration constraint can significantly reduce the computation constraints were imposed. The upper and lower time limits, 

( L j ,  U;) in (15) and (16), were set at f 3  (Table VII) and but without effecting the segmentation result. 
Let (L ,  Vi) be the lower and upper time limits for the state (Table vIII) from the State i 9 s  boundaries which were 

... determined by use of the stationary-state HMM and the related i, i = 1,. N .  In this study, (Li ,  Ui)  are determined by 

obtained via use of the standard Viterbi algorithm (which is and vIII and those in Table I, we observe very slight 
degradation of speech recognition accuracy resulting from very fast) based on the zeroth-order polynomial regression 

functions, by a fixed, small length. Note that use of the zeroth- use of duration while a significant of 

State boundaries a very Of somewhat larger when using a stronger constraint (Table VII) 
as it is just the standard Viterbi algorithm [lo]. 

N U, 
223 r=L, $t+l ( j ,  d )  = I [ ~ = ~ ~ ~  . arg max max &( i ,  T )  . aij 

+ 4d,O] ' ( j ,  d - 1) 

The 

incrementing and decrementing the HMM state boundaries, (fast) Viterbi Comparing the results in Tables VI1 

Order polynomial regession functions to the mM computation saving had been achieved, ( n e  degradation is 

than a weaker constraint (Table VIII).) 
With (Li ,  Ui)  being determined, the recursive formula (5) 

APPENDIX I1 
ESTIMATION OF MODEL PARAMETERS FOR 

THE CASE OF MULTIPLE TRAINING TOKENS 30 I Q) 

Q) When multiple tokens are used for training the state pa- 
rameters in the nonstationary-state H M M ,  we estimate the (15) 

1 1  1 ... 1 . . .  
Ti 1 2 . . .  Tz . . .  xn = 

T,M 
. . , . . .  ... 

~ 

1 1 " '  

. . .  . . . .  . . . .  
... 



520 IEEE TRANSAC 

regression parameters for each state by concatenating all 
the observation sequences as follows. Suppose we have the 
following K tokens for a particular state each with length 
TT,r  = l; . . ,K 

where each Oz,J,a = l ; . . ,K ; j  = ~ ; . . , T K  is a D- 
dimensional observation vector. We modify the regression 
matrix to the equation at the bottom of the preceding page 
and at the same time concatenate the K observation sequences 
into a single sequence 

Then the remaining estimation procedure becomes identical 
to the one described in the main text for the single training 
token case. 
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