

SPEECH RECOGNITION USING NEURAL NETWORKS

by

Pablo Zegers

Copyright © Pablo Zegers 1998

A Thesis Submitted to the Faculty of the

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

In Partial Fulfillment of the Requirements

For the degree of

MASTER OF SCIENCE

WITH A MAJOR IN ELECTRICAL ENGINEERING

In the Graduate College

THE UNIVERSITY OF ARIZONA

1 9 9 8

 2

STATEMENT BY AUTHOR

 This Thesis has been submitted in partial fulfillment of requirements for an
advanced degree at The University of Arizona and is deposited in the University Library
to be made available to borrowers under rules of the Library.

 Brief quotations from this thesis are allowable without special permission,
provided that accurate acknowledgment of source is made. Requests for permission for
extended quotation from or reproduction of this manuscript in whole or in part may be
granted by the copyright holder.

 SIGNED: _________________________________

APPROVAL BY THESIS DIRECTOR

This Thesis has been approved on the date shown below:

Malur K. Sundareshan

Professor of
Electrical and Computer Engineering

Date

DEDICATION

To God, “for thou hast made us for thyself and restless is our heart until it comes to rest

in thee.”

Saint Augustine, Confessions

 4

TABLE OF CONTENTS

1. INTRODUCTION .. 11

1.1 LANGUAGES.. 11

1.1.1 Introduction.. 11

1.1.2 Spoken Language ... 13

1.1.3 Learning Spoken Language ... 18

1.1.4 Written Language... 20

1.1.5 Learning Written Language ... 21

1.2 SPEECH RECOGNITION .. 21

1.2.1 Some Basics.. 21

1.2.2 A Brief History of Speech Recognition Research ... 26

1.2.3 State of the Art.. 28

1.3 CONTRIBUTIONS OF THIS THESIS ... 34

1.4 ORGANIZATION OF THIS THESIS .. 35

1.5 COMPUTATIONAL RESOURCES .. 36

2. NEURAL NETWORKS AND SPEECH RECOGNITION... 37

2.1 BIOLOGICAL NEURAL NETWORKS... 37

2.2 ARTIFICIAL NEURAL NETWORKS... 37

2.2.1 Self Organizing Map .. 39

2.2.2 Multi-Layer Perceptron.. 41

2.2.3 Recurrent Neural Networks.. 43

2.3 NEURAL NETWORKS AND SPEECH RECOGNITION.. 44

3. DESIGN OF A FEATURE EXTRACTOR .. 46

 5

3.1 SPEECH CODING.. 46

3.1.1 Speech Samples .. 46

3.1.2 Speech Sampling .. 47

3.1.3 Word Isolation.. 48

3.1.4 Pre-emphasis Filter.. 49

3.1.5 Speech Coding.. 49

3.2 DIMENSIONALITY REDUCTION .. 54

3.3 OPTIONAL SIGNAL SCALING.. 58

3.4 COMMENTS... 62

4. DESIGN OF A RECOGNIZER... 64

4.1 FIXED POINT APPROACH... 65

4.1.1 Template Approach .. 69

4.1.2 The Multi Layer Perceptron... 72

4.2 TRAJECTORY APPROACH .. 82

4.2.1 Recurrent Neural Network Trained with Back-Propagation Through Time.............................. 82

4.3 DISCUSSION ON THE VARIOUS APPROACHES USED FOR RECOGNITION ... 87

5. CONCLUSIONS ... 92

5.1 SUMMARY OF RESULTS REPORTED IN THIS THESIS... 92

5.2 DIRECTIONS FOR FUTURE RESEARCH.. 92

6. REFERENCES.. 95

 6

LIST OF FIGURES

FIGURE 1-1. RELATIONSHIP BETWEEN LANGUAGES AND INNER CORE THOUGHT PROCESSES........................ 12

FIGURE 1-2. SPEECH SIGNAL FOR THE WORD ‘ZERO’. .. 15

FIGURE 1-3. BASIC BUILDING BLOCKS OF A SPEECH RECOGNIZER. .. 25

FIGURE 1-4. HIDDEN MARKOV MODEL EXAMPLE.. 33

FIGURE 2-1. ARTIFICIAL NEURON. ... 38

FIGURE 2-2. UNIT SQUARE MAPPED ONTO A 1-D SOM LATTICE.. 41

FIGURE 2-3. MLP WITH 1 HIDDEN LAYER.. 42

FIGURE 2-4. RNN ARCHITECTURE... 43

FIGURE 3-1. SPEECH SIGNAL FOR THE WORD ‘ZERO’, SAMPLED AT 11,025 HERTZ WITH A PRECISION OF 8

BITS.. 48

FIGURE 3-2. EXAMPLES OF LPC CEPSTRUM EVOLUTION FOR ALL THE DIGITS. .. 52

FIGURE 3-3. EXAMPLES OF LPC CEPSTRUM EVOLUTION FOR ALL THE DIGITS. (CONTINUATION) 53

FIGURE 3-4. REDUCED FEATURE SPACE TRAJECTORIES, ALL DIGITS... 59

FIGURE 3-5. REDUCED FEATURE SPACE TRAJECTORIES, ALL DIGITS. (CONTINUATION).................................. 60

FIGURE 3-6. REDUCED FEATURE SPACE TRAJECTORIES, ALL DIGITS. (CONTINUATION).................................. 61

FIGURE 3-7. FE BLOCK SCHEMATIC... 63

FIGURE 4-1. NORMALIZED REDUCED FEATURE SPACE TRAJECTORIES, 20 EXAMPLES FOR EACH DIGIT........... 66

FIGURE 4-2. NORMALIZED REDUCED FEATURE SPACE TRAJECTORIES, 20 EXAMPLES FOR EACH DIGIT.

(CONTINUATION) .. 67

FIGURE 4-3. NORMALIZED REDUCED FEATURE SPACE TRAJECTORIES, 20 EXAMPLES FOR EACH DIGIT.

(CONTINUATION) .. 68

FIGURE 4-4. TRAINING EXAMPLES USE EVOLUTION. .. 81

FIGURE 4-5. PERCENTAGE OF COMPUTATIONAL RESOURCES AS A FUNCTION OF THE ACTUAL TRAINING SET

 7

 ... 82

FIGURE 4-6. RNN OUTPUT FOR TRAINING UTTERANCES. ... 87

 8

LIST OF TABLES

TABLE 1-1. AMERICAN ENGLISH ARPABET PHONEMES AND EXAMPLES ... 14

TABLE 4-1. TESTING SET RESULTS FOR TEMPLATE APPROACH. ... 71

TABLE 4-2. TESTING SET RESULTS FOR MLP APPROACH. .. 80

 9

ABSTRACT

Although speech recognition products are already available in the market at

present, their development is mainly based on statistical techniques which work

under very specific assumptions. The work presented in this thesis investigates the

feasibility of alternative approaches for solving the problem more efficiently. A

speech recognizer system comprised of two distinct blocks, a Feature Extractor and

a Recognizer, is presented. The Feature Extractor block uses a standard LPC

Cepstrum coder, which translates the incoming speech into a trajectory in the LPC

Cepstrum feature space, followed by a Self Organizing Map, which tailors the

outcome of the coder in order to produce optimal trajectory representations of

words in reduced dimension feature spaces. Designs of the Recognizer blocks based

on three different approaches are compared. The performance of Templates, Multi-

Layer Perceptrons, and Recurrent Neural Networks based recognizers is tested on a

small isolated speaker dependent word recognition problem. Experimental results

indicate that trajectories on such reduced dimension spaces can provide reliable

representations of spoken words, while reducing the training complexity and the

operation of the Recognizer. The comparison between the different approaches to

the design of the Recognizers conducted here gives a better understanding of the

problem and its possible solutions. A new learning procedure that optimizes the

usage of the training set is also presented. Optimal tailoring of trajectories, new

 10

insights into the use of neural networks in this class of problems, and a new training

paradigm for designing learning systems are the main contributions of this work.

 11

1. INTRODUCTION

1.1 Languages

1.1.1 Introduction

 Language is what allows us to communicate, i.e. to convey information from one

person to another. It is this ability that permits groups of individuals to transform into an

information sharing community with formidable powers. Thanks to the existence of

language, anyone can benefit from the knowledge of others, even if this knowledge was

acquired in a different place or at different times.

 Language is a complex phenomenon, and it can appear in very different forms,

such as body positions, facial expressions, spoken languages, etc. Not only that, these

different types can be used separately or in combination, rendering really complex and

powerful methods to communicate information. For example, dance is a method of

communication that emphasizes the use of body position and facial expressions. Like

dancing, a face to face conversation relies on body gestures and facial expressions, but it

also relies on the use of sounds and spoken language. Summing up, when we are speaking

about a language, we should not restrict ourselves to think about it as a collection of

sounds ordered by some grammar. Any language is far more than that.

 Modern language theories state that what we call languages are surface

manifestations, or exterior representations, of a common inner core, not directly seen

from the outside, where thought processes occur (see Figure 1-1). In other words, they

state that we do not think using what we would normally call a language, but internal

 12

mental representations that condense all sorts of cognitive processes [1]. Under this point

of view, the different languages that a person uses are nothing more than a set of different

interfaces between the processing results of that inner core and the community.

Inner
Core

Community

Languages

Figure 1-1. Relationship between Languages and Inner Core Thought processes.

 Even though under normal conditions we normally use all types of languages at

the same time, it can be said that spoken language is the one that conveys the most of the

information, while the others normally enhance or back up the meanings conveyed by

spoken language.

 An amazing discovery done by language researchers is the fact that irrespective of

the civilization stage of a culture, its language is as complex as the one developed by any

other culture [1]. For example, the languages currently used by certain stone age tribes in

New Zealand are as powerful and complex as English, Spanish or any other culture. The

same is true with all the languages currently used in the world. This is even true for sign

languages: their description power and complexity matches those of spoken language.

Quoting Pinker [1], “language is a complex, specialized skill, which develops in the child

 13

spontaneously, without conscious effort or formal instruction, is deployed without

awareness of its underlying logic, is qualitatively the same in every individual, and is

distinct from more general abilities to process information or behave intelligently.”

Current research in cognitive sciences states that language corresponds more to an

instinct [1] than to a socially developed skill, implying that is something inherently

human. More than this, it seems to be inherently biological: the capacity of speaking a

language is a consequence of human biology, while its manifestation, i.e. the actual way

we speak, a consequence of the culture where persons live.

Even more, it seems that only humans possess this skill. All studies done in

animals, even the more advanced primates, indicate orders of magnitude of difference

between human languages and the animal ones. So big is this difference that if language

is defined as something similar to human languages, it can be safely considered that

animals do not have the ability to communicate using a language.

1.1.2 Spoken Language

The basic building block of any language is a set of sounds named phonemes. As

an example, a condensed list of American English phonemes, in their ARPABET

representation, is given in Table 1-1 [2].

 14

ARPABET Example ARPABET Example
IY beat NX sing
IH bit P pet
EY bait T 10
EH bet K kit
AE bat B bet
AA Bob D debt
AH but H get
AO bought HH hat
OW boat F fat
UH book TH thing
UW boot S sat
AX about SH shut
IX roses V vat
ER bird DH that
AXR butter Z zoo
AW down ZH azure
AY buy CH church
OY boy JH judge
Y you WH which
W wit EL battle
R rent EM bottom
L let EN button
M met DX batter
N net Q glottal stop

Table 1-1. American English ARPABET phonemes and examples.

The phonemes of Table 1-1 comprise all the building blocks needed to produce

what is called standard American English. Other versions of English use slightly different

sets of phonemes, but similar enough to allow understanding by any English speaker.

These differences explain the different accents existing in modern English. As it is in

English, all languages follow this structure: they are built upon a basic set of phonemes. It

is interesting to note that the number of phonemes in a set of basic phonemes never

 15

exceeds seventy. This fact might indicate a limit on the number of sounds a human can

produce or distinguish in order to communicate efficiently.

The second level of building blocks of a spoken language consist of the words.

These building blocks are built from sequentially concatenated phonemes extracted from

the basic set of phonemes of the language. An utterance of the word ‘ZERO’ is shown in

Figure 1-2. It can be seen in the figure that there are roughly four distinct zones in the

utterance, each of them directly related to one of the four phonemes that comprise the

utterance of that word.

0 0.1 0.2 0.3 0.4 0.5
-150

-100

-50

0

50

100

150

Time [ms]

A
m

pl
itu

de

Speech Signal of the Word "ZERO"

Figure 1-2. Speech Signal for the word ‘ZERO’.

All the words in a language constitute a set called vocabulary. It is generally

agreed among experts that a normal person understands and uses an average of 60,000

words [1] of his native language.

 16

The next building block assembles the words into phrases and sentences. They are

made up from successively braided words, according to the language’s vocabulary,

grammar, and the information to be conveyed. Let us consider the following sentences:

• ‘OLD HAPPY NEW TABLE POWERLESS’

• ‘THE ELEPHANT IRONED THE WRINKLES OF HIS WINGS’

• ‘I RECEIVED A PHONE CALL FROM YOUR MOTHER’

The first one is formed by using words from an existing vocabulary, but does not

respect a grammar or a context. The second respects a vocabulary and a grammar, but it is

not true within a normal context. The third one respects all three aspects.

The topmost level of a language building blocks reflects the way in which the

phrases and sentences are combined. Within this level there is an infinite set of

possibilities, mainly ranging between two extremes: a lecture mode which does not have

interruptions, like a politician’s speech, and a conversational mode, which exhibits an

enormous amount of interaction, like an argument between any two persons. While the

first one does not rely on interaction and tries to convey all the information through

spoken language, the other is highly interactive and normally relies in other languages as

well.

 Phonemes combine into words, words combine into phrases and sentences,

phrases and sentences combine to form spoken language. This seems to be all, but it is

not. Normally, not only what is said conveys information, but also how it is said. The

manner in which expressions are uttered is described by its prosody: the characteristic

stresses, rhythms, and intonations of a sentence. Each word has its own pattern of stresses

 17

that must be precisely kept, i.e. the meaning of the word ‘CONTENT’ depends on which

vowel is stressed. A good example of spoken English’s rhythm is provided by the

following lines of Tennyson:

 ‘BREAK, BREAK, BREAK,

 ON THY COLD GRAY STONES, O SEA!”

where the time spanned by the utterances between the underlined vowels is normally kept

constant, no matter how many phonemes are between them [3]. This rhythm is normally

used by all native speakers of the English language in everything they say, and it is one of

the aspects that other languages like Spanish or Japanese completely lack. In the case of

intonation, the meaning of the sentence “YOU ARE INTELLIGENT” completely changes

if a statement-like intonation is used instead of a question-like one.

It is only under ideal conditions that the actual utterance of a word exactly follows

the sequences of phonemes that define that word. Normally, the phonemes are slurred, the

vowels which are more difficult to pronounce are replaced by easier-to-pronounce ones,

and the words are merged such that the ending phoneme of a word is merged with the

starting phoneme of the following word, a phenomenon called coarticulation. This occurs

because all utterances are produced by a physical system which is always trying to

produce the desired output while minimizing the effort necessary to do that. This trade-

off normally sacrifices some of the enunciation quality in order to diminish the spent

energy. That the speech producing system minimizes energy is seen in the fact that the

most used sound in a language normally corresponds to positions where almost no energy

is needed to produce the sound. As an example, the vowel sound in the English word

 18

‘BUT’ is generated with all the speech organs in a relaxed position. This is the most used

sound in the English language.

A final aspect that explains the variability of an utterance is noise. Noise can be

originated by speech glitches, like mouth pops, coughing, false starts, incomplete

sentences, stuttering, laughter, lip smacks, heavy breathing, and the environment.

 Summing up, the enormous number of possible utterances within a given

language is explained by all possible combinations of phonemes, words, phrases and

sentences, degree of interaction with other people, possible manifestations of the stresses,

rhythms, and intonations, the continuous effort to optimize performed by the speech

organs, and noise. It is important to note that there is a set of possible utterances for a

given word. It is not necessarily valid to model all of them as deviations from a “correct”

one. On the contrary, each of them is equally valid. Within the language context,

utterance variability does not necessarily mean utterance deviation. Utterance variability

cannot be explained as an ideal template distorted by some error. The concept of error is

only useful to explain the always present noise.

1.1.3 Learning Spoken Language

 The following description of an infant’s language skills development is based on

the description given by Pinker in [1].

Spoken language acquisition is an unconscious process. During their first year of

existence, children learn the basic set of phonemes. During the first two months children

produce all kinds of sounds to express themselves. After that, they start playing with them

 19

and babbling in syllables like ‘BA-BA-BA’. When they are 10 months old, they tune their

phoneme hearing capacity such that they start to react more frequently to the sounds

spoken by their parents. This transition is done before they understand words, implying

that they learn to identify phonemes before they start understanding words.

 At the end of the first year they start to understand syllable sequences that

resemble speech. By listening to their babbling they receive a feedback that helps them to

finish the development of their vocal tract and to learn how to control it.

 Around the first year they start understanding words and produce words. The one

word stage can last from two months to a year. Around the world, scientists have proven

that the content of this vocabulary is similar: half of them are used to designate objects

(‘JUICE’, ‘EYE’, ‘DIAPER’, ‘CAR’, ‘DOLL’, ‘BOTTLE’, ‘DOG’, etc.), the rest are for

basic actions (‘EAT’, ‘OPEN’, ‘UP’, etc.), modifiers (‘MORE’, ‘HOT’, ‘DIRTY’, etc.),

and social interaction routines (‘LOOK AT THAT’, ‘WHAT IS THAT’, ‘HI’, ‘BYE-

BYE’, etc.).

 Language starts to develop at an astonishing rate at eighteen months. They already

understand sentences according to their grammar. They start to produce two and three

word utterances and sentences that are correctly ordered despite some missing words.

 After late twos, the language employed by children develops so fast that in the

words of Pinker [1]: “it overwhelms the researchers who study it, and no one has worked

out the exact sequence.” Sentence length and grammar complexity increases

exponentially.

 20

 Why does it take almost the very first three years of our lives to master a

language? Before birth, virtually all nerve cells are formed and are in their proper places,

but it is after birth that head size, brain weight, thickness of the cerebral cortex, long

distance connections, myelin insulators and synapses grow. It is during these first years

that the qualitative aspects of our behavior are developed by adding and chipping away

material from our brains. Later, the growth is more devoted to quantity rather than

quality.

1.1.4 Written Language

 Written language is what permits us to communicate through physical tokens in a

completely time independent manner. While speech uses configurations of matter that

change through space and time to convey information, written language only uses

permanent configurations of matter that do not change over reasonable changes of space

and time. It seems to be a small difference, but it turns out to be of transcendental

importance. Thanks to this characteristic it is possible to communicate no matter the

distance in space and time. As an example, it is due to this that it is possible to read

Homero’s Odyssey, which was written in Greece thousands of years ago.

 Written language is a cultural phenomenon. Not every culture developed it.

Moreover, impressive cultures have existed without needing a written language at all.

Good examples are all the cultures that flourished in the Americas before the arrival of

Christopher Columbus.

 21

 Written language correlates uttered words to symbolic expressions. While

languages like Chinese correlate complete word utterances to one symbol, languages like

Spanish correlate phonemes to symbols. While spelling is meaningless in Chinese, it is

straightforward in Spanish. Languages like English are in between these two: while some

utterances follow definite and precise rules, others are spelled in a manner unrelated to

their enunciation. George Bernard Shaw clearly stated this lack of consistency with the

following example: the word ‘FISH’ can be spelled like ‘GHOTI’ using ‘GH’ as in

‘TOUGH’, ‘O’ as in ‘WOMEN’, and ‘TI’ as in ‘NATION’ [1].

1.1.5 Learning Written Language

 Written language acquisition is done from learning the correlation between

utterances and their symbolic representations. The character and type of this correlation

depends on the language. It usually involves learning how to write. This process, as

everything related to written language, is a cultural process. While spoken language is

normally learned in an unconscious way during the early infancy, written language is an

excellent example of a conscious process.

1.2 Speech Recognition

1.2.1 Some Basics

An observer is a system that assigns labels to events occurring in the environment.

If the labels belong to sets without a metric distance it is said that the result of the

observation is a classification and the labels belong to one of several sets. If, on the

 22

contrary, the sets are related by a metric, it is said that the result is an estimation and the

labels belong to a metric space. According to these definitions, the goal of this work is to

devise an observer that describes air pressure waves using the labels contained by some

written language. Because these labels are not related by a metric, the desired process is a

classification.

Why does the speech recognition problem attract researchers and funding? If an

efficient speech recognizer is produced, a very natural human-machine interface would be

obtained. By natural one means something that is intuitive and easy to use by a person, a

method that does not require special tools or machines but only the natural capabilities

that every human possesses. Such a system could be used by any person able to speak and

will allow an even broader use of machines, specifically computers. This potentiality

promises huge economical rewards to those who learn to master the techniques needed to

solve the problem, and explains the surge of interest in the field during the last 10 years.

 If an efficient speech recognition machine is enhanced by natural language

systems and speech producing techniques, it would be possible to produce computational

applications that do not require a keyboard and a screen. This would allow incredible

miniaturization of known systems facilitating the creation of small intelligent devices that

can interact with a user through the use of speech [4]. An example of this type of

machines is the Carnegie Mellon University JANUS system [13] that does real time

speech recognition and language translation between English, Japanese and German. A

perfected version of this system could be commercially deployed to allow future

 23

customers of different countries to interact without worrying about their language

differences. The economical consequences of such a device would be gigantic.

 Phonemes and written words follow cultural conventions. The speech recognizer

does not create its own classifications and has to follow the cultural rules that define the

target language. This implies that a speech recognizer must be taught to follow those

cultural conventions. The speech recognizer cannot fully self organize. It has to be raised

in a society!

The complexity of the speech recognition problem is defined by the following

aspects [2]:

• Vocabulary size, i.e. the bigger the vocabulary the more difficult the task is. This is

explained by the appearance of similar words that start to generate recognition

conflicts, i.e. ‘WHOLE’ and ‘HOLE’.

• Grammar complexity.

• Segmented or continuous speech, i.e. segmented streams of speech are easier to

recognize than continuous ones. In the latter, words are affected by the coarticulation

phenomenon.

• Number of speakers, i.e. the greater the numbers of speakers whose voice needs to be

recognized, the more difficult the problem is.

• Environmental noise.

 A speech recognition system, sampling a stream of speech at 8 kHz with 8 bit

precision, receives a stream of information at 64 Kbits per second as input. After

 24

processing this stream, written words come out at a rate of more or less 60 bits per

second. This implies an enormous reduction in the amount of information while

preserving almost all of the relevant information. A speech recognizer has to be very

efficient in order to achieve this compression rate (more than 1000:1).

In order to improve its efficiency, a recognizer must use as much a priori

knowledge as possible. It is important to understand that there are different levels of a

priori knowledge. The topmost level is constituted by a priori knowledge that holds true

at any instant of time. The lowermost extreme is formed by a priori knowledge that only

holds valid within specific contexts. In the specific case of a speech recognizer, the

physical properties of the human vocal tract remain the same no matter the utterance, and

a priori knowledge derived from these properties is always valid. On the other extreme,

all the a priori knowledge collected about the manner in which a specific person utters

words is only valid when analyzing the utterances of that person. Based on this fact,

speech recognizers are normally divided into two stages, as shown by the schematic

diagram in Figure 1-3. The Feature Extractor (FE) block shown in this figure generates a

sequence of feature vectors, a trajectory in some feature space, that represents the input

speech signal. The FE block is the one designed to use the human vocal tract knowledge

to compress the information contained by the utterance. Since it is based on a priori

knowledge that is always true, it does not change with time. The next stage, the

Recognizer, performs the trajectory recognition and generates the correct output word.

Since this stage uses information about the specific ways a user produce utterances, it

must adapt to the user.

 25

Speech
Signal

Feature
Extractor Recognizer

Speech Recognizer

Text

Figure 1-3. Basic building blocks of a Speech Recognizer.

The FE block can be modeled after the stages evidenced in the human biology and

development. This is a block that transforms the incoming sound into an internal

representation such that it is possible to reconstruct the original signal from it. This stage

can be modeled after the hearing organs, which first transduces the incoming air pressure

waves into a fluid pressure wave and then converts them into a specific neuronal firing

pattern. After the first stage, comes the one that analyzes the incoming information and

classifies it into the phonemes of the corresponding language. This Recognizer block is

modeled after the functionality acquired by a child during his first six months of

existence, where he adapts his hearing organs to specially recognize the voice of his

parents.

Once the FE block completes its work, its output is classified by the Recognizer

module. It integrates the sequences of phonemes into words. This module sees the world

as if it where only composed of words and classifies each of the incoming trajectories into

one word of a specific vocabulary.

 26

The process of correlating utterances to their symbolic expressions, translating

spoken language into written language, is called speech recognition. It is important to

understand that it is not the same problem as speech understanding, a much broader and

powerful concept that involves giving meaning to the received information.

1.2.2 A Brief History of Speech Recognition Research

 The next paragraphs present a brief summary of the efforts done in the speech

recognition field. This summary is based on [2].

Researchers have worked in automatic speech recognition for almost four

decades. The earliest attempts were made in the 50’s. In 1952, at Bell Laboratories,

Davis, Biddulph and Balashek built a system for isolated digit recognition for a single

speaker. In 1956, at RCA Laboratories, Olson and Belar developed a system designed to

recognize 10 distinct syllables of a single speaker. In 1959, at University College in

England, Fried and Dener demostrated a system designed to recognize four vowels and

nine consonants. The same year, at MIT’s Lincoln Laboratories, Forgie and Forgie built a

system to recognize 10 vowels in a speaker independent manner. All of these systems

used spectral information to extract voice features.

 In the 60’s, Japanese laboratories appeared in the arena. Suzuki and Nakata, from

the Radio Research Laboratories in Tokyo, developed a hardware vowel recognizer in

1961. Sakai and Doshita, from Kyoto University, presented a phoneme recognizer in

1962. Nagata and coworkers, from NEC Laboratories, presented a digit recognizer in

1963. Meanwhile, in the late 60’s, at RCA Laboratories, Martin and his colleagues

 27

worked on the non-uniformity of time scales in speech events. In the Soviet Union,

Vintsyuk proposed dynamic programming methods for time aligning a pair of speech

utterances. This work remained unknown in the West until the early 80’s. A final

achievement of the 60’s was the pioneering research of Reddy in continuous speech

recognition by dynamic tracking of phonemes. This research spawned the speech

recognition program at Carnegie Mellon University, which, to this day remains a world

leader in continuous speech recognition systems.

 In the 70’s, researchers achieved a number of significant milestones, mainly

focusing on isolated word recognition. This effort made isolated word recognition a

viable and usable technology. Itakura’s research in USA showed how to use linear

predictive coding in speech recognition tasks. Sakoe and Chiba in Japan showed how to

apply dynamic programming. Velichko and Zagoruyko in Russia helped in the use of

pattern recognition techniques in speech understanding. Important also were IBM

contributions to the area of large vocabulary recognition. Also, researchers at ATT Bell

Labs began a series of experiments aimed at making speech recognition systems truly

speaker independent.

 In the 80’s, the topic was connected word recognition. Speech recognition

research was characterized by a shift in technology from template-based approaches to

statistical modeling methods, especially Hidden Markov Models (HMM). Thanks to the

widespread publication of the theory and methods of this technique in the mid 80’s, the

approach of employing HMMs has now become widely applied in virtually every speech

recognition laboratory of the world. Another idea that appeared in the arena was the use

 28

of neural nets in speech recognition problems. The impetus given by DARPA to solve the

large vocabulary, continuous speech recognition problem for defense applications was

decisive in terms of increasing the research in the area.

 Today’s research focuses on a broader definition of speech recognition. It is not

only concerned with recognizing the word content but also prosody and personal

signature. It also recognizes that other languages are used together with speech, taking a

multimodal approach that also tries to extract information from gestures and facial

expressions.

 Despite all of the advances in the speech recognition area, the problem is far from

being completely solved. A number of excellent commercial products, which are getting

closer and closer to the final goal, are currently sold in the commercial market. Products

that recognize the voice of a person within the scope of a credit card phone system,

command recognizers that permit voice control of different types of machines, “electronic

typewriters” that can recognize continuous voice and manage several tens of thousands

word vocabularies, and so on. However, although these applications may seem

impressive, they are still computationally intensive, and in order to make their usage

widespread more efficient algorithms must be developed. Summing up, there is still room

for a lot of improvement and of course, research.

1.2.3 State of the Art

 An overview of some of the popular methods for speech recognition is presented

in this section following the schematic diagram that outlines the constituent blocks as in

 29

Figure 1-3. The functionality of the individual blocks is also described in order to

precisely state the contributions that stem from the work outlined in this thesis.

1.2.3.1 Feature Extractors

 The objective of the FE block is to use a priori knowledge to transform an input

in the signal space to an output in a feature space to achieve some desired criteria.

Because a priori knowledge is used, the FE block is usually a static module that once

designed will not appreciably change. The criteria to be used depend on the problem to be

solved. For example, if a noisy signal is received, the objective is to produce a signal with

less noise; if image segmentation is required, the objective is to produce the original

image plus border maps and texture zones; if lots of clusters in a high dimensional space

must be classified, the objective is to transform that space such that classifying becomes

easier, etc.

The FE block used in speech recognition should aim towards reducing the

complexity of the problem before later stages start to work with the data. Furthermore,

existing relevant relationships between sequences of points in the input space have to be

preserved in the sequence of points in the output space. The rate at which points in the

signal space are processed by the FE block does not have to be the same rate at which

points in the feature space are produced. This implies that time in the output feature

space could occur at a different rate than time in the input signal space.

 30

 A priori knowledge concerning which are the relevant features that should be used

in a speech recognition problem comes from very different sources. Results from

biological facts, such as the EIH model (which is based on the inner workings of the

human hearing system [2]), descriptive methods (like banks of pass band filters [2]), data

reduction techniques (such as PCA [5]), speech coding techniques (such as LPC

Cepstrum [7]), and neural networks (such as SOM [8]), have been combined and utilized

in the design of speech recognition feature extractors. An important result obtained by

Jankowski et al [5], which summarizes all of the above mentioned a priori knowledge,

suggests that under relatively low noise conditions all systems behave in similar ways

when tested with the same classifier. This explains why the speech recognition

community has adopted the LPC Cepstrum, which is very efficient in terms of

computational requirements, as the method of choice.

1.2.3.2 Recognizers

 Recognizers deal with speech variability and account for learning the relationship

between specific utterances and the corresponding word or words. There are several types

of classifiers but only two are mentioned: the Template approach and the approach that

employs Hidden Markov Models.

The first one, the Template Approach, is described by the following steps:

1. First, templates for each class to be recognized are defined. There are several methods

for forming the templates. One of these consists in randomly collecting a fixed amount

 31

of examples for each class in order to capture the acoustic variability of that specific

class. The template of a class is defined as the set of collected examples for that class.

2. Select a method to deal with utterance time warpings. A commonly used technique is a

procedure called Dynamic Time Warping [14]. It consists of an adaptation of dynamic

programming optimization procedures for time warped utterances.

3. Select some distance measure for comparing an unknown example against the template

of each class after time warping correction. This distance measure can be based on

geometrical measures, like Euclidean distance, or perceptual ones, like Mel or Bark

scales [2].

4. Compare unknown patterns against the collected templates using the selected time

warping correction and the chosen distance measurement. The unknown pattern is

classified according to the values obtained from the distance measurements.

One drawback of the template procedure is that nothing guarantees that the chosen

examples would really capture the class variability. The main problem with this method is

that several utterances must be collected in order to capture the word’s variability. For

small vocabularies this may not be a problem, but for large ones it is something

unthinkable: no user would willingly utter thousands and thousands of examples.

 Another approach is based on HMM, and solves the temporal and acoustic

problems at once using statistical considerations. It is described by the following steps

[9]:

1. Like the Template Approach, something that stores the knowledge about the possible

variations of a class must be defined. The difference is that in this case it is an HMM

 32

instead of a template. Consider a system that may be described at any time by means

of a set of M distinct states, such as a word which can be represented by a collection

of phonemes. At regularly spaced, discrete times, the system undergoes a change of

state according to a set of probabilities associated with each state. Let us assume that

each time the system moves to another state, an output selected from a set of N

distinct outputs is produced. The outputs are selected according to a probability mass

function. The states are hidden from the outside world, which only observes the

outputs. In other words, a HMM is an embedded stochastic process with an

underlying stochastic process that is not directly observable but can be observed only

through another set of stochastic processes that produces the sequence of

observations. In order to obtain the HMM that represents a class, the number of

hidden states, state transition probabilities, and output generation probabilities must

be defined. Usually, the number of states is defined by trial and error. The

probabilities are instead obtained through iterative methods that work with sets of

training examples. An example of an HMM is shown in Figure 1-4, where the solid

circles represent the possible states, and the arrows represent the transitions between

states as an utterance progresses. In the most basic level, a HMM is used to model a

word and each state represents a phoneme. The number of states used to model a

word depends on the number of phonemes needed to describe that word.

 33

 Figure 1-4. Hidden Markov Model example.

2. Once the HMMs have been determined, whenever an unknown utterance is presented

to the system, each model evaluates the probability of producing the output sequence

associated to that utterance. The word associated to the model with the highest

probability is then assigned to the unknown utterance.

The HMM method does not have some of the drawbacks exhibited by the

Template Approach. Because it models the utterances as stochastic processes, it can

capture the variability within a class of words. In terms of scalability, it offers much more

flexibility. Instead of defining one HMM for each word, a hierarchy of HMMs is built,

where the bottommost layer of HMMs models phonemes, a second layer which models

short sequences of connected phonemes and uses the output of the first layer as input, and

a final layer which models each word and uses the output of the second layer as input.

This hierarchical approach constitutes the most successful approach ever devised for

speech recognition.

The limitations of the HMMs are that they rely on certain a priori assumptions

that do not necessarily hold in a speech recognition problem [6] [15]:

 34

• The First Order Assumption, that all probabilities depend solely on the current state, is

false for speech applications. This is the reason why HMMs have strong problems

modeling coarticulations, where utterances are in fact strongly affected by recent state

history.

• The Independence Assumption, that there is no correlation between adjacent time

frames, is also false. At a certain instant of time, both words can be described by the

same state but the only thing that differentiates them is their behavior before that state,

which is something completely ignored by the HMM model.

A characteristic common to all speech recognizers is that they are composed of

layered hierarchies of sub-recognizers. Normally, the first layer is composed of a set of

sub-recognizers whose output is integrated by the following layer of sub-recognizers, and

so on, until the desired output is obtained. An example is the architecture used in a HMM

based recognizer: the first layer is composed of a set of HMMs, each of them specialized

in recognizing phonemes. The second layer, again composed of a set of HMMs, uses as

input the output of the first layer and specializes in recognizing collections of phonemes.

The third layer, based on HMMs too, uses the output of the second layer to recognize

words. Finally, the fourth layer integrates the words into sentences using built-in

knowledge about the grammar of the target language.

1.3 Contributions of this Thesis

 The main contributions of this thesis are the following:

 35

• The speech recognition problem is transformed into a simplified trajectory recognition

problem. The trajectories generated by the FE block are simplified while preserving

most of the useful information by means of a SOM. Then, word recognition turns into

a problem of trajectory recognition in a smaller dimensional feature space.

• Another contribution is that the comparison between the different recognizers

conducted here sheds new light on future directions of research in the field.

• Finally, a new paradigm that simplifies the training of a learning system is presented.

The procedure allows a better usage of the training examples and reduces the

computational costs normally associated with the design of a learning system.

It is important to understand that it is not the purpose of this work to develop a full-scale

speech recognizer but only to test new techniques and explore their usefulness in

providing more efficient solutions.

1.4 Organization of this Thesis

 The major results of this research are presented following the conceptual division

stated in Figure 1-3. The architecture used for the implementation of the FE block is

detailed first. Then, a comparison between the different recognizers is presented. The

thesis concludes by commenting on the results and proposing future steps for continuing

this type of research.

 36

1.5 Computational Resources

 All the software used in this thesis to obtain the results was coded by the author in

C++ and run in a Pentium class machine. All the plots were produced with the Matlab

package.

 37

2. NEURAL NETWORKS AND SPEECH RECOGNITION

2.1 Biological Neural Networks

 The central idea behind most of the developments in neural sciences is that a great

deal of all intelligent behavior is a consequence of the brain activity [16]. Even more, the

different brain functions emerge as a result from the dynamic operation of millions and

millions of interconnected cells called neurons. Roughly speaking, a typical neuron

receives its inputs through thousands of dendrites, processes them in its soma, transmit

the obtained output through its axon, and uses synaptic connections to carry the signal of

the axon to thousands of other dendrites that belong to other neurons.

It is the manner in which this massively interconnected network is structured and

the mechanisms by which neurons produce their individual outputs that determine most

of the intelligent behavior. These two aspects are determined in living beings by

evolutionary mechanisms and learning processes.

2.2 Artificial Neural Networks

During the last 30 years, a new computational paradigm based on the ideas from

neural sciences has risen [17]. Its name, neural networks, comes from the fact that these

techniques are based upon analogies drawn from the inner workings of the human

nervous system. The main idea behind the neural network paradigm is to simulate the

behavior of the brain using interconnected abstractions of the real neurons (see Figure 2-

1), to obtain systems that exhibit complex behaviors, and hopefully intelligent ones.

 38

Figure 2-1. Artificial neuron.

 In an artificial neuron, numerical values are used as inputs to the “dendrites.”

Each input is multiplied by a value called weight, which simulates the response of a real

dendrite. All the results from the “dendrites” are added and thresholded in the “soma.”

Finally, the thresholded result is sent to the “dendrites” of other neurons through an

“axon.” This sequence of events can be expressed in mathematical terms as:

 y f w xi i
i

n

=

=
∑

1
 (2.1)

where xi is the input received by a dendrite, wi the weight associated to the i th

“dendrite,” ()f a threshold function, y the output of the neuron.

Although the model suggested by Figure 2-1 is a simplistic reduction of a real

neuron, its usefulness is not based on the individual capacities that each individual neuron

exhibits but on the emergent behavior that arises when these simple neurons are

interconnected to form a neural network. As in biological neurons, the interconnection

 39

architecture of the neurons and the manner in which neurons process their inputs

determines the behavior exhibited by the neural network.

 In contrast with biological neural networks, the architecture of a neural network is

set by a design process, and the parameters that define the way its neurons process their

respective inputs are obtained through a learning process. The learning process involves

a search in a parameter space for determining the best parameter values according to

some optimality criteria.

2.2.1 Self Organizing Map

The Self Organizing Map (SOM) is a neural network that acts like a transform

which maps an m -dimensional input vector into a discretized n -dimensional space while

locally preserving the topology of the input data [18]. The expression “locally preserving

the topology” means that for certain volume size in the input space, points that are close

together in the input space correspond to neurons that are close in the output space. This

is the reason that explains why a SOM is called a feature map [19]: relevant features are

extracted from the input space and presented in the output space in an ordered manner. It

is always possible to reverse the mapping and restore the original set of data to the

original m -dimensional space with a bounded error. The bound on this error is

determined by the architecture of the network and the number of neurons. The SOM

considers the data set as a collection of independent points and does not deal with the

temporal characteristics of the data. It is a very special transform in the sense that it re-

 40

expresses the data in a space with a different number of dimensions while preserving

some of the topology.

 A useful training procedure for a SOM is as follows [20]:

1. The neurons are arranged in a n -dimensional lattice. Each neuron stores a point in an

m -dimensional space.

2. A randomly chosen input vector is presented to the SOM. The neurons start to

compete until the one that stores the closest point to the input vector prevails. Once the

dynamics of the network converges, all the neurons but the prevailing one will be

inactive. The output of the SOM is defined as the coordinates of the prevailing neuron

in the lattice.

3. A neighborhood function is centered around the prevailing neuron of the lattice. The

value of this function is one at the position of the active neuron, and decreases with the

distance measured from the position of the winning neuron.

4. The points stored by all the neurons are moved towards the input vector in an amount

proportional to the neighborhood function evaluated in the position of the lattice where

the neuron being modified stands.

5. Return to 2, and repeat steps 2, 3, and 4 until the average error between the input

vectors and the winning neurons reduces to a small value.

 After the SOM is trained, the coordinates of the active neuron in the lattice are

used as its outputs.

 41

 Figure 2-2 shows a mapping from the unitary square in a 2-dimensional space

onto a lattice of neurons in a 1-dimensional space. The resulting mapping resembles a

Peano space-filling curve [21].

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

X

Y

SOM of a 2-D Space Onto a 1-D One

Figure 2-2. Unit Square mapped onto a 1-D SOM lattice.

2.2.2 Multi-Layer Perceptron

The functionality of the Multi-Layer Perceptron (MLP) can be best defined by the

result proven by Kolmogorov, then rediscovered by Cybenko [22], Funahashi [23], and

others. They proved that an MLP with one hidden layer with enough neurons is able to

approximate any given continuous function. The MLP is a universal function

approximator. As in the case of the SOM, the MLP does not deal with temporal behavior.

An MLP is comprised of several neurons arranged in different layers (see Figure

2-3). The layer that consists of the neurons which receive the external inputs is called the

input layer. The layer that produces the outputs is called the output layer. All the layers

between the input and the output layers are called hidden layers. Any input vector fed into

 42

the network is propagated from the input layer, passing through the hidden layers,

towards the output layer. This behavior originated the other name for this class of neural

networks, viz. feed-forward neural networks.

Figure 2-3. MLP with 1 hidden layer.

 The parameters of the MLP are set in a training stage during which the data pairs

formed by the input vectors and the corresponding output vectors are used to guide a

parameter search algorithm. One approach consists in minimizing the errors caused by the

training examples by means of a gradient descent algorithm. This procedure is called

Error backpropagation method [17]. It is important to note that this is only one approach

and many more are available, like reinforced learning, simulated annealing, genetic

algorithms, etc.

 43

2.2.3 Recurrent Neural Networks

 A Recurrent Neural Network (RNN) is similar to a MLP but differs in that it also

has feedback connections. Experimental results show that like a MLP, these networks

also perform as universal function approximators. Experimental results also show that

RNNs are able to approximate simple functions between temporal trajectories in the input

space and temporal trajectories in the output space. Although they constitute a

generalization of the MLP, nobody has yet proven that they are universal function

approximators. So far, the only proof comes from Funahashi, who proved that a RNN,

provided that is has enough neurons, can generate any finite time trajectory [24]. An

example of a RNN architecture is shown in Figure 2-4. The main difference with the

MLP consists of the existence of feedback connections between the neurons. This allows

these type of neural networks to display all type of dynamical behaviors.

Figure 2-4. RNN architecture.

 44

2.3 Neural Networks and Speech Recognition

Since the early eighties, researchers have been using neural networks in the speech

recognition problem. One of the first attempts was Kohonen’s electronic typewriter [25].

It uses the clustering and classification characteristics of the SOM to obtain an ordered

map from a sequence of feature vectors. The training was divided into two stages, where

the first of these was used to obtain the SOM. Speech feature vectors were fed into the

SOM until it converged. The second training stage consisted in labeling the SOM, i.e.

each neuron of the feature map was assigned a phoneme label. Once the labeling process

was completed, the training process ended. Then, unclassified speech was fed into the

system, which was then translated it into a sequence of labels. This way, the feature

extractor plus the SOM behaved like a transducer, transforming a sequence of speech

samples into a sequence of labels. Then, the sequence of labels was processed by some AI

scheme in order to obtain words from it.

 Another approach is Waibel’s Time Delay Neural Network (TDNN) [26]. It used

a modified MLP to capture the space deviations and time warpings in a sequence of

features. One input layer, two hidden layers and, one output layer were used to classify

the different phonemes produced by English native speakers. The weights that defined the

TDNN were defined such that the system was somewhat invariant to time warpings in the

speech signal. It only recognized speech at a phoneme level and it was not used to make

decisions in longer time spans, i.e., it was not directly used for word recognition.

 As larger segments of speech are considered, approaches like the Electronic

Typewriter or the TDNN become less useful. It is difficult for these approaches to deal

 45

with the time warpings, a problem which so far has impeded the neural networks to be

successfully employed in the speech recognition problem. To integrate large time spans

has become a critical problem and no technique using neural networks has yet been

devised to solve this problem in a satisfactory manner.

 In order to address the problem stated above, hybrid solutions have been used

instead. Usually, after the phoneme recognition block, either HMM models [27] or Time

Delay Warping (TDW) [28] measure procedures are used to manipulate the sequences of

features produced by the feature extractors. In this thesis, alternate approaches, solely

based on neural networks are developed.

 46

3. DESIGN OF A FEATURE EXTRACTOR

As stated before, in a speech recognition problem the FE block has to process the

incoming information, viz. the speech signal, such that its output eases the work of the

classification stage. The approach used in this work to design the FE block divides it into

two consecutive sub-blocks: the first is based on speech coding techniques, and the

second uses a SOM for further optimization.

3.1 Speech Coding

Why do we employ speech coding techniques to design the FE block? Because it

has been extensively proven that speech coding techniques produce compact

representations of speech which can be used to obtain high quality reconstructions of the

original signal. These techniques can provide a compression of the incoming data while

preserving its content. Digital telephony is a field that heavily relies on these techniques

and its results prove that these methods are quite effective.

3.1.1 Speech Samples

 The context of the present work is speech recognition in a small vocabulary,

segmented speech, and a single speaker. For developing experimental results, the set of

English digits, recorded with a pause between them, and uttered by the author, was used.

 47

All the examples were uttered in a relatively quiet room. No special efforts were

made in order to diminish whatever noises were being produced at the moment of

recording.

3.1.2 Speech Sampling

 The speech was recorded and sampled using an off-the-shelf relatively

inexpensive dynamic microphone and a standard PC sound card. The incoming signal

was sampled at 11,025 Hertz with 8 bits of precision.

It might be argued that a higher sampling frequency, or more sampling precision,

is needed for achieving a high recognition accuracy. However, if a normal digital phone,

which samples speech at 8,000 Hertz with an 8 bit precision is able to preserve most of

the information carried by the signal [2], it does not seem necessary to increase the

sampling rate beyond 11,025 Hertz, or the sampling precision to something higher than 8

bits. Another reason behind these settings is that commercial speech recognizers typically

use comparable parameter values and achieve impressive results.

 48

0 0.1 0.2 0.3 0.4 0.5
-150

-100

-50

0

50

100

150

Time [ms]

A
m

pl
itu

de

Speech Signal of the Word "ZERO"

Figure 3-1. Speech signal for the word ‘ZERO’, sampled at 11,025 Hertz with a precision

of 8 bits.

3.1.3 Word Isolation

Despite the fact that the sampled signal had pauses between the utterances, it was

still needed to determine the starting and ending points of the word utterances in order to

know exactly the signal that characterized each word [2]. To accomplish this, a moving

average of the sampled values was used. After the end of a word was found, whenever the

moving average exceeded a threshold, a word start point was defined, and whenever the

moving average fell below the same threshold, a word stop point was defined. Both the

temporal width of the moving average and the threshold were determined experimentally

using randomly chosen utterances. Once those values were set, they were not changed. It

must be noted that no correction for mouth pops, lip smacks or heavy breathing, which

can change the starting and ending points of an utterance, was done.

 49

3.1.4 Pre-emphasis Filter

As is common in speech recognizers, a pre-emphasis filter [2] was applied to the

digitized speech to spectrally flatten the signal and diminish the effects of finite numeric

precision in further calculations.

The transfer function of the pre-emphasis filter corresponds to a first order FIR

filter defined by:

H w ae jw() = − −1 (3.1)

 A value of a = 0 95. , which leads to a commonly used filter [2], was used. This

type of filter boosts the magnitude of the high frequency components, leaving relatively

untouched the lower ones.

3.1.5 Speech Coding

After the signal was sampled, the utterances were isolated, and the spectrum was

flattened, each signal was divided into a sequence of data blocks, each block spanning 30

ms, or 330 samples, and separated by 10 ms, or 110 samples [2]. Next, each block was

multiplied by a Hamming window, which had the same width as that of the block, to

lessen the leakage effects [2][28]. The Hamming window is defined by:

() []w n
n

N
n N and N= −

−

 ∈ − =054 0 46

2
1

0 1 330. . cos , ,
π

 (3.2)

 50

Then, a vector of 12 Linear Predicting Coding (LPC) Cepstrum coefficients was obtained

from each data block using Durbin’s method [2] and the recursive expressions developed

by Furui [7]. The procedure is briefly outlined in the following:

1. First, the auto-correlation coefficients were obtained using:

 () () ()r m x n x n m m and N
n

N m
= + = =

=

− −
∑ 0

1
12 330, (3.3)

 where ()x i corresponds to the speech sample located at the i th position of the frame.

2. Then, the LPC values were obtained using the following recursion:

() ()
() ()

()
() () (){ }

()
() () () ()()
() () (){ }

()
()

l E l r l

l k l
r l

E l
E l E l k l

a k l

l k l
E l

r l a r l i

E l E l k l
a a k l a
a k l

l
l

i
l

i

l

m
l

m
l

l m
l

l
l

= =

= =
−

= − −
=

> =
−

− −

= − −
= −
=

−
=

−

−
−
−

∑

0

1
1
1 1

1
1

1
1 1

2

1
1

1

2

1 1

:

:

:
 (3.4)

 where []m l∈ 1, , []∀ ∈l p1, , and a an n
p= is the nth LPC coefficient. A value of

p = 12 was used in this feature extractor [2].

3. Finally, the LPC Cepstrum coefficients were obtained using:

[]

c
a

kc a
m

m p
kc a

m
m p

m

m
k m k

k

m

k m k
k

m
=

+ ∈

>

−
=

−

−
=

−

∑

∑

1

1

1

1

1, ,

,
 (3.5)

 where a value of m = 12 was used in the feature extractor, resulting in 12 LPC

Cepstrum values per frame.

 51

As a result of the LPC Cepstrum extraction procedure, each utterance was

translated into a sequence of points, each belonging to the LPC Cepstrum feature space of

dimension 12, and each 10 ms apart. In other words, this procedure translates an air

pressure wave into a discretized trajectory in the LPC Cepstrum feature space.

Figure 3-2 and Figure 3-3 contain one example of the evolution of the LPC

Cepstrum components for each of the digits. It is interesting to note in these plots that the

length in time of the different utterances differs by important amounts. The shortest

utterance lasts approximately 30 [ms], while the longest around 80 [ms]. It can also be

appreciated that the values of the parameters also differ by important amounts. These

differences between the utterances will be of great importance for the task of the

Recognizer. Ideally speaking, the FE block should process the sampled speech such that

the output clearly differs between different classes while the within class variance is kept

as low as possible.

 52

0
2

4
6

8
10

20
40

60
80

100

-2

0

2

LPC Cepstrum Components Evolution, 'ZERO' Class

ComponentTime [tens of ms]

C
om

po
ne

nt
 V

al
ue

0
2

4
6

8
10

20
40

60
80

100

-2

0

2

LPC Cepstrum Components Evolution, 'ONE' Class

ComponentTime [tens of ms]

C
om

po
ne

nt
 V

al
ue

0
2

4
6

8
10

20
40

60
80

100

-2

0

2

LPC Cepstrum Components Evolution, 'TWO' Class

ComponentTime [tens of ms]

C
om

po
ne

nt
 V

al
ue

0
2

4
6

8
10

20
40

60
80

100

-2

0

2

LPC Cepstrum Components Evolution, 'THREE' Class

ComponentTime [tens of ms]

C
om

po
ne

nt
 V

al
ue

0
2

4
6

8
10

20
40

60
80

100

-2

0

2

LPC Cepstrum Components Evolution, 'FOUR' Class

ComponentTime [tens of ms]

C
om

po
ne

nt
 V

al
ue

0
2

4
6

8
10

20
40

60
80

100

-2

0

2

LPC Cepstrum Components Evolution, 'FIVE' Class

ComponentTime [tens of ms]

C
om

po
ne

nt
 V

al
ue

Figure 3-2. Examples of LPC Cepstrum evolution for all the digits.

 53

0
2

4
6

8
10

20
40

60
80

100

-2

0

2

LPC Cepstrum Components Evolution, 'SIX' Class

ComponentTime [tens of ms]

C
om

po
ne

nt
 V

al
ue

0
2

4
6

8
10

20
40

60
80

100

-2

0

2

LPC Cepstrum Components Evolution, 'SEVEN' Class

ComponentTime [tens of ms]

C
om

po
ne

nt
 V

al
ue

0
2

4
6

8
10

20
40

60
80

100

-2

0

2

LPC Cepstrum Components Evolution, 'EIGHT' Class

ComponentTime [tens of ms]

C
om

po
ne

nt
 V

al
ue

0
2

4
6

8
10

20
40

60
80

100

-2

0

2

LPC Cepstrum Components Evolution, 'NINE' Class

ComponentTime [tens of ms]

C
om

po
ne

nt
 V

al
ue

Figure 3-3. Examples of LPC Cepstrum evolution for all the digits. (continuation)

 54

3.2 Dimensionality Reduction

Once the utterance is translated into a trajectory in some feature space, several

options exist:

• The most common approach is to use the obtained trajectory to generate a sequence of

labels, normally by means of a vector quantization (VQ) scheme [29]. This sequence is

then used for recognition. As an example, Carnegie mellon’s SPHINX speech

recognition system [9] fed the output of the speech coding scheme into a VQ system

which translated the incoming data into a sequence of phonemes. The SPHINX system

then used an HMM approach to process the sequences of labels and recognize the

words. Although it cannot be said that this approach is inferior because it has been

successfully used in practical speech recognition systems, it is still throwing away

information. It does not keep information about the topological relationships between

the output labels. In other words, for any sequence of labels there is no indication

concerning the closeness in the feature space of the vectors that generated these labels.

• Another approach that may be found in the literature is to directly use the obtained

trajectory for recognition. This route was taken by Hasegawa et al [10], who

recognized trajectories in a feature space with 20 dimensions. The problem with this

approach is that processing trajectories in spaces with as many dimensions as 20

normally demands an excessive amount of computational resources.

One of the objectives of the present work is to convert the word recognition

problem into a trajectory recognition problem, similar to the approach taken by Hasegawa

et al [10], but with a modification, i.e. the dimensionality of the trajectories is reduced

 55

before feeding them into the recognizer block. In this manner, the trajectory classification

is highly simplified.

 Desire for achieving dimensionality reduction pervades several applications and

several methods have been devised to accomplish it. This is specially true in the field of

Automatic Control, where the characterization of highly nonlinear high order dynamic

systems poses some major challenges for designing efficient control policies. Some

examples [11] of the approaches used in this field to reduce the order of the system to be

controlled are: Modal Aggregation, Continued Fraction Reduction, Moment Matching,

and Pade Approximations. All of these methods require a previous identification of the

system to be controlled. Once the system to be controlled is identified, the mathematical

expression that relates the states of the system to its inputs and outputs is manipulated

according to one of the procedures stated above in order to obtain a simplified version

whose behavior resembles that of the original system. From the perspective of the speech

recognition problem, the limitation of these approaches is that they simplify the model

that generates the trajectories, not the trajectories themselves. The speech recognition

problem is not a system identification problem, but a trajectory recognition one.

Even more, despite the fact that the utterances are produced by a biological

system, a system that necessarily produces continuous outputs, different utterances can

represent the same word. It is important to note that each of these alternate utterances is

valid and none of them can be regarded as a deviation from some ideal way to enunciate

that word or as an incorrect output. In other words, there is no one-to-one relationship

between the set of possible utterances and the class to which they belong: one utterance

 56

necessarily implies only one class, but a class does not necessarily imply only one

utterance. This aspect makes any analytical representation of the problem more complex

than it could be expected.

Using the fact that the SOM is a VQ scheme that preserves some of the topology

in the original space [8], the basic idea behind the approach employed in this work is to

use the output of a SOM trained with the output of the LPC Cepstrum block to obtain

reduced state space trajectories that preserve some of the behavior of the original

trajectory. The problem is now reduced to find the correct number of neurons for

constituting the SOM and their geometrical arrangement.

The SPHINX speech recognition system quantized the trajectories, which

belonged to a space of 12 dimensions, using a VQ scheme with 256 vectors to generate a

sequence of labels [9]. The SPHINX system achieved a high recognition accuracy in a

much more difficult problem than the one being investigated in this work. It consisted of

recognizing words from a 1000 word vocabulary, under continuous speech conditions,

and in the presence of multiple speakers. Based on these results, since a SOM is a VQ

scheme that preserves some of the topology of the original space, a SOM with as many

neurons as vectors the SPHINX system had in its codebook set should be capable of an

efficient quantization of the input space. In other words, it should be capable of at least

retaining the amount of information needed to achieve the recognition accuracy reached

by the SPHINX system.

Based on the ideas stated above, it was decided that a SOM with 256 neurons was

enough to reduce the dimensionality of the trajectories while keeping enough information

 57

to achieve a high recognition accuracy. The SOM was arranged in a 2-D lattice. The

coordinates of the lattice were used as the coordinates of the reduced space trajectory. The

fact that the outcome is a 2-D trajectory which can be graphically represented for visual

display was not particularly important for our decision about the number of dimensions of

the output space.

Figure 3-4, Figure 3-5 and Figure 3-6 show the temporal evolution of the two

components of the trajectories for each of the digits. It also depicts the same trajectory

projected onto the reduced feature space, i.e. the trajectory was projected along the time

axis onto the reduced feature space such that all of its temporal characteristics are not

shown.

 What remains to be demonstrated is whether the SOM mapped similar utterances

onto similar trajectories. In other words, did the SOM preserve some of the original

topology of the trajectories? The answer to this question will be given in the following

chapter of this thesis.

It must be noted that a similar approach was used by Kohonen [8], but instead of

reducing the dimensionality of the trajectory, he used the SOM to generate a sequence of

labels, which was then used by a word classifier. Thus the present use of the SOM for

order reduction in trajectory representations is a novel one, and this application can find

appropriate use in other problems besides speech recognition where similar trajectories

arise.

 58

3.3 Optional Signal Scaling

The output of the SOM is defined by the coordinates of the neuron that was

activated by the input. The output values may need to be scaled before they are fed into

the Recognizer. All the approaches used in this work to design a recognizer, with the

exception of the one that employed a RNN, did not require scaling of the outputs.

 59

20 40 60 80 100 0

5

10

15

0

5

10

15

Reduced State Space Trajectory, 'ZERO' Class

1st Dim

2n
d

D
im

0 5 10 15
0

5

10

15
Projected Reduced State Space Trajectory, 'ZERO' Class

1st Dim

2n
d

D
im

20 40 60 80 100 0

5

10

15

0

5

10

15

Reduced State Space Trajectory, 'ONE' Class

1st Dim

2n
d

D
im

0 5 10 15
0

5

10

15
Projected Reduced State Space Trajectory, 'ONE' Class

1st Dim

2n
d

D
im

20 40 60 80 100 0

5

10

15

0

5

10

15

Reduced State Space Trajectory, 'TWO' Class

1st Dim

2n
d

D
im

0 5 10 15
0

5

10

15
Projected Reduced State Space Trajectory, 'TWO' Class

1st Dim

2n
d

D
im

20 40 60 80 100 0

5

10

15

0

5

10

15

Reduced State Space Trajectory, 'THREE' Class

1st Dim

2n
d

D
im

0 5 10 15
0

5

10

15
Projected Reduced State Space Trajectory, 'THREE' Class

1st Dim

2n
d

D
im

Figure 3-4. Reduced feature space trajectories, all digits.

 60

20 40 60 80 100 0

5

10

15

0

5

10

15

Reduced State Space Trajectory, 'FOUR' Class

1st Dim

2n
d

D
im

0 5 10 15
0

5

10

15
Projected Reduced State Space Trajectory, 'FOUR' Class

1st Dim

2n
d

D
im

20 40 60 80 100 0

5

10

15

0

5

10

15

Reduced State Space Trajectory, 'FIVE' Class

1st Dim

2n
d

D
im

0 5 10 15
0

5

10

15
Projected Reduced State Space Trajectory, 'FIVE' Class

1st Dim

2n
d

D
im

20 40 60 80 100 0

5

10

15

0

5

10

15

Reduced State Space Trajectory, 'SIX' Class

1st Dim

2n
d

D
im

0 5 10 15
0

5

10

15
Projected Reduced State Space Trajectory, 'SIX' Class

1st Dim

2n
d

D
im

20 40 60 80 100 0

5

10

15

0

5

10

15

Reduced State Space Trajectory, 'SEVEN' Class

1st Dim

2n
d

D
im

0 5 10 15
0

5

10

15
Projected Reduced State Space Trajectory, 'SEVEN' Class

1st Dim

2n
d

D
im

Figure 3-5. Reduced feature space trajectories, all digits. (Continuation)

 61

20 40 60 80 100 0

5

10

15

0

5

10

15

Reduced State Space Trajectory, 'EIGHT' Class

1st Dim

2n
d

D
im

0 5 10 15
0

5

10

15
Projected Reduced State Space Trajectory, 'EIGHT' Class

1st Dim

2n
d

D
im

20 40 60 80 100 0

5

10

15

0

5

10

15

Reduced State Space Trajectory, 'NINE' Class

1st Dim

2n
d

D
im

0 5 10 15
0

5

10

15
Projected Reduced State Space Trajectory, 'NINE' Class

1st Dim

2n
d

D
im

Figure 3-6. Reduced feature space trajectories, all digits. (Continuation)

 62

3.4 Comments

 As it was defined before, the Feature Extractor block works as a transducer that

translates the information contained by an air pressure wave into a trajectory in some

feature space.

Figure 3-7 sums up the processing done by the FE block. The different steps

follow one another according to the following sequence:

1. The incoming pressure wave is reduced to a signal through a sampling process.

2. The starting and the ending points of the utterance embedded into the signal are

obtained using the energy of the signal.

3. The spectrum of the extracted utterance is enhanced by means of a preemphasis filter

which boosts the high frequency components.

4. Several data blocks are extracted from the enhanced signal.

5. The extracted data blocks are windowed to reduce leakage effects.

6. LPC components are extracted from the filtered blocks.

7. LPC Cepstrum components are then extracted from the LPC vectors.

8. The dimensionality of the LPC Cepstrum vectors is reduced using a SOM.

9. The resulting vectors are scaled if the Recognizer that is being used requires it.

 Nothing can still be said about the overall effectiveness of the FE block, since it

depends on the recognition accuracy of the overall system. As an example, if the

complete system achieves low recognition percentages, that can be caused by the FE

block or the Recognizer, but, if it achieves higher percentages that means that the FE

block was at least able to produce data that allowed these recognition accuracies. In other

 63

words, in order to know the usefulness of the FE block, the Recognizer outputs must be

obtained first.

Speech
Signal

Feature Extractor

Sampling

Trajectory

Start/Stop
Points

BlockingWindowing

Cepstrum
Analysis

Preemphasis

SOM Optional
Signal
Scaling

LPC
Analysis

Figure 3-7. FE block schematic.

 64

4. DESIGN OF A RECOGNIZER

 The output of the FE block is “blind,” i.e. it does not care about the word that is

being represented by that trajectory. The FE block only transduces an incoming pressure

wave into a trajectory in some feature space. It is the Recognizer block that discovers the

relationships between the trajectories and the classes to which they belong, and adds the

notion of class of utterance, i.e. type of word, into the system.

 The Recognizer behaves like an observer. It fuses all the pieces of information

provided by the FE block and produces an estimate. If this estimate belongs to a metric

space, the Recognizer is called an estimator. On the other hand, if the estimate belongs to

a set where the metric is ignored, or without a metric at all, the Recognizer is called a

classifier. Since the output of a speech recognizer must belong to a vocabulary, a set of

labels which does not have a metric associated to it, the speech recognizer must act like a

classifier.

As mentioned before, it is not the purpose of this work to develop a full scale

speech recognizer, but to test new techniques. Considering this goal, all the approaches

developed in this chapter were tested on a simple problem: recognizing only one digit

among the others.

 All the experiments reported in this chapter used a training set comprised of 200

utterances, 20 for each digit, and a testing set composed of 100 utterances, 10 for each

digit, different from the ones included in the training set. All the digits were uttered by

the author.

 65

The following sections describe two distinct treatments of the trajectories prior to

feeding them into the Recognizer. The first translates each trajectory into a point that

belongs to a higher dimensionality feature space. In this way, the trajectory recognition

problem is converted into a Fixed Point recognition one, which explains why it is called

the Fixed Point approach. The other treatment, which is called the Trajectory approach,

directly works with the trajectories in time and analyzes them as they evolve.

4.1 Fixed Point Approach

 This approach translates the time varying trajectory into a point in a space,

reducing the trajectory classification problem into a point classification one.

Since the utterances exhibited a great deal of variation, not only in the feature

space but also across time, they were normalized such that all time warping was canceled.

All the trajectories in the training and the testing sets were normalized into trajectories of

100 points such that the Euclidean distance between adjacent points in the reduced

feature space was always one hundredth of the length of the trajectory projected into the

reduced feature space. This way, all possible time warpings were neutralized, leaving

only the reduced feature space distortions [30] (see Figure 4-1, Figure 4-2, and Figure 4-

3).

It is important to note that time warpings are not something that necessarily

requires to be corrected. On the contrary, time warpings can convey important

information which can be used to improve the accuracy of the recognition process.

 66

Nevertheless, in order to simplify the task, the normalization approach was preferred to

directly working with time warped trajectories.

0
50

100 0 5
10

15
0

5

10

15

20 Reduced State Space Trajectories, 'ZERO' Class

Normalized Time
1st Dim

2n
d

D
im

0 5 10 15

0

5

10

15
20 Reduced State Space Trajectories, 'ZERO' Class

1st Dim

2n
d

D
im

0
50

100 0 5
10

15
0

5

10

15

20 Reduced State Space Trajectories, 'ONE' Class

Normalized Time
1st Dim

2n
d

D
im

0 5 10 15
0

5

10

15
20 Reduced State Space Trajectories, 'ONE' Class

1st Dim

2n
d

D
im

Figure 4-1. Normalized reduced feature space trajectories, 20 examples for each digit.

 67

0
50

100 0 5
10

15
0

5

10

15

20 Reduced State Space Trajectories, 'TWO' Class

Normalized Time
1st Dim

2n
d

D
im

0 5 10 15

0

5

10

15
20 Reduced State Space Trajectories, 'TWO' Class

1st Dim

2n
d

D
im

0
50

100 0 5
10

15
0

5

10

15

20 Reduced State Space Trajectories, 'THREE' Class

Normalized Time
1st Dim

2n
d

D
im

0 5 10 15
0

5

10

15
20 Reduced State Space Trajectories, 'THREE' Class

1st Dim

2n
d

D
im

0
50

100 0 5
10

15
0

2

4

6

8

10

12

14

20 Reduced State Space Trajectories, 'FOUR' Class

Normalized Time
1st Dim

2n
d

D
im

0 5 10 15

0

2

4

6

8

10

12

14
20 Reduced State Space Trajectories, 'FOUR' Class

1st Dim

2n
d

D
im

0
50

100 0 5
10

15
0

5

10

15

20 Reduced State Space Trajectories, 'FIVE' Class

Normalized Time
1st Dim

2n
d

D
im

0 5 10 15
0

5

10

15
20 Reduced State Space Trajectories, 'FIVE' Class

1st Dim

2n
d

D
im

Figure 4-2. Normalized reduced feature space trajectories, 20 examples for each digit.

(continuation)

 68

0
50

100 0 5
10

15
0

5

10

15

20 Reduced State Space Trajectories, 'SIX' Class

Normalized Time
1st Dim

2n
d

D
im

0 5 10 15

0

5

10

15
20 Reduced State Space Trajectories, 'SIX' Class

1st Dim

2n
d

D
im

0
50

100 0 5
10

15
0

5

10

15

20 Reduced State Space Trajectories, 'SEVEN' Class

Normalized Time
1st Dim

2n
d

D
im

0 5 10 15
0

5

10

15
20 Reduced State Space Trajectories, 'SEVEN' Class

1st Dim

2n
d

D
im

0
50

100 0 5
10

15
0

5

10

15

20 Reduced State Space Trajectories, 'EIGHT' Class

Normalized Time
1st Dim

2n
d

D
im

0 5 10 15

0

5

10

15
20 Reduced State Space Trajectories, 'EIGHT' Class

1st Dim

2n
d

D
im

0
50

100 0 5
10

15
0

5

10

15

20 Reduced State Space Trajectories, 'NINE' Class

Normalized Time
1st Dim

2n
d

D
im

0 5 10 15
0

5

10

15
20 Reduced State Space Trajectories, 'NINE' Class

1st Dim

2n
d

D
im

Figure 4-3. Normalized reduced feature space trajectories, 20 examples for each digit.

(continuation)

 69

Then, each normalized trajectory was transformed into a Fixed Point in a higher

dimensionality space. This was done by interpreting all the components of the vectors that

defined a normalized trajectory, viz. 100 points, each of which belonged to a space of two

dimensions, as a component of a point in a space of 200 dimensions. The components of

the 100 vectors were stacked one after the other according to a lexicographic ordering

until one vector with 200 components was obtained.

4.1.1 Template Approach

This approach divided the recognizer into two modules: the Template, a set that

contained reference utterances of each of the digits, and a Comparator that compared an

incoming trajectory against those stored in the Template.

The training set was divided into two subsets, each with an equal number of

examples for each digit. The first of these subsets was used to build the Template, and the

second to calibrate the Comparator.

The Template stored all the trajectories that belonged to a certain digit class, from

now on let us say the digit ‘ZERO’, which were contained by the first of the smaller

training subsets. Being all of them valid instances of that utterance, they were simply

copied into the Template. This way, the intrinsic variability of the class was captured

without the need for further data processing or system refinements.

The other module, the Comparator, worked as follows:

1. The mean Euclidean distance between the incoming trajectory and each of the

trajectories stored in the Template, in this case 10 trajectories belonging to the class

 70

‘ZERO’, was calculated. The expression that measures the mean Euclidean distance

between the unknown trajectory and the i th trajectory contained by the Template was

defined by:

() ()()D t k t ki i unknownk
= −

=∑
1

100 1

100 2
 (4.1)

2. Then, if D Dimin min= , []∀ ∈i 110, , was below the TZERO threshold, it was said that the

unknown trajectory belonged to the class ‘ZERO.’ If not, it was said that the unknown

trajectory did not belong to the class ‘ZERO’.

To calculate TZERO , each of the ‘ZERO’ utterances contained in the second smaller

subset obtained from the training set was compared against those stored in the Template.

The ‘ZERO’ threshold for the digit ‘ZERO’ was defined as T DZERO i= max , []∀ ∈i 110, .

This value of the ZERO’ threshold assured that at least all the ‘ZERO’ utterances

contained in the training set were correctly identified.

4.1.1.1 Template Experiment

The procedure specified above was applied to all the digits. As expected, all the

trajectories belonging to the training set were correctly classified. The results for the

trajectories contained by the testing set are presented in Table 4-1.

 71

Digit # of Errors Recognition Accuracy

0 11 89%

1 33 67%

2 22 78%

3 60 40%

4 15 85%

5 81 19%

6 22 78%

7 52 48%

8 11 89%

9 76 24%

Table 4-1. Testing set results for Template approach.

 From Table 4-1 it can be appreciated that there are important variations between

the results. While the recognizers for the digits ‘ZERO’ and ‘EIGHT’ achieved an 89% of

accuracy, the recognizer for digit ‘FIVE’ only achieved 19%. This behavior can be

explained by the fact that the recognition accuracy depends on the training examples

stored in the template. If they do not capture the true variability of the utterance, the

results will be poor. This could explain the poor results obtained for the ‘FIVE’ digit.

 72

4.1.2 The Multi Layer Perceptron

In contrast with the previous approach, this approach employs a Recognizer

composed of a MLP which simultaneously obtained the template and elaborated a way to

compare the incoming points against the template. In an MLP, the final template and

comparison method are encoded in distributed manner across the entire set of weights of

the network.

The MLP had 200 input nodes, 5 hidden neurons, and 1 output neuron. The output

of the neurons was inside the interval [-1,+1]. The hyperbolic tangent was used as the

threshold function. Each neuron had an extra connection, whose input was kept constant

and equal to one (the literature usually refers to this connection as bias or threshold). The

weights were initialized with random values selected within the interval [-0.1,+0.1].

The MLP was trained using an approach that optimizes the usage of the training

patterns and the Error backpropagation method. Details of this procedure are detailed in

the following sections.

4.1.2.1 A New Learning Approach

 Since the procedure outlined here is applicable to any general learning problem,

the discussion in this section will be in a more general context than what is required for

the specific problem of speech recognition.

 A learning problem can be defined by the following assertions:

• The problem of interest is described by a set of infinite events.

 73

• The events are indexed with the letter k .

• Each event is described by a pair of vectors, ()� �x yk k, , where �xk and �yk may belong to

different metric spaces.

• All �xk and �yk are confined within limited regions of their respective metric spaces.

• All the data pairs are independent, i.e. ()� �x yk k, is independent of ()� �x yl l, for every

k l≠ .

• All the data pairs are identically distributed.

• There is a system, dubbed the Learning Block (LB), which observes the events one at a

time according to the order established by the indexing.

• The LB is a system composed of an arrangement of basic systems. The architecture of

LB defines the way in which the basic systems are connected. Each of the basic

systems is defined by an algorithm. This basic system is uniquely defined by an

algorithm and a set of parameters. Summing up, an LB is completely described by an

architecture, a set of algorithms, and a set of parameters. It will be assumed that the

correct architecture and necessary basic algorithms has already been discovered

through an evolutive process or set by design decisions. The only thing that is not

defined about the LB is its set of parameters.

• One objective of the LB is to self configure its parameters using the observed data

pairs such that when observing the k th
* one for the first time, for every �xk , ∀ ≥k k* , it

 74

is able to generate an estimate �>yk of �yk such that ()d y yy k k
� �, > < ε . ()d y yy k k

� �, > is a

distance measure defined for the space that contains the �y vectors.

• Another objective of the LB is to achieve the previous goal using as few observed data

pairs as possible.

• Another objective of the LB is to achieve the previous goals with the smallest possible

index k* .

• After the LB observes an event ()� �x yk k, , before observing another event, it undergoes

a training stage in which the parameters are adjusted in order to achieve the previously

stated goals. Execution of training stage k is instantaneous but it incurs a cost Ck .

The fourth objective of the LB is to achieve the previous goals while minimizing the

total cost C Ckk

k
=

=∑ 0
* .

 The traditional solution for this type of learning problems is defined by the

following procedure:

1. LB does nothing until ks events are observed.

2. At that moment, a training set Straining is formed using m past event pairs. The function

of Straining is to store those data pairs selected to train the LB. Also, n past event pairs

are selected to form a testing set Stesting . The function of Stesting is to store those data

pairs selected to test the LB. The selections are done such that S Straining testing∩ = ∅

and ()m n ks+ ≤ .

3. The parameters of the LB are randomly initialized.

 75

4. Before the event ks +1 is observed, the LB does its best to adapt its parameters using

all the data pairs stored in Straining in order to achieve its goals. The degree of

fulfillment of the function approximation goal is measured using Stesting . After this

training stage, the LB is never modified again.

 The problem with this approach is that it is based on a chain of arbitrary decisions

that are not optimized towards achieving the goals of LB. First, on what basis is the index

ks determined? The answer is none. The same applies to m and n . Furthermore, even if

these numbers are optimal, who assures that the selected event pairs contain the desired

information? In other words, there are no defined criteria referring to when the training

has to start, or how many events, or which ones, should be included in the training and

the testing sets.

This approach is equivalent to a teacher who has to teach calculus to a student,

and whose teaching procedure consists of spending an undetermined amount of time to

randomly gather information about the subject without ever opening the books that

describe the topic. Once he arbitrarily decides that enough material has been collected, he

hands all the gathered information over to the student. To make things worse, once the

student receives the books, he studies them all, going through all the material, even if the

material is repeated. It is easy to realize that there is a great inefficiency in this common

training procedure. There must be a different approach that allows one to achieve the

same goals in a more efficient manner. The next paragraphs will outline a new solution

that seems to be better.

 76

 The new approach is based on the following fundamental assumption:

• If the LB, for every �xk , k l< , produces an output ��yk such that ()d y yy k k
� �, � < ε , then,

for some pairs ()� �x ym m, , m l≥ , such that ()d x xx k m
� �, < δ , the relation ()d y yy m m

� �, � < ε

will be true. In other words, each time the LB learns the correct relation between a pair

of vectors, it is learning to react to other vectors too. ()d x xx k m
� �, and ()d y yy k k

� �, < are

distance measures defined for the spaces that contain the x and y vectors

respectively.

The new learning procedure, based on an idea presented by the author in [12] is as

follows:

1. The Controller is defined as a system that regulates the order in which the data pairs

are observed by the LB.

2. Before training starts, the parameters of the LB are randomly initialized. Also, an

empty training set Straining is assigned to the LB. The function of Straining is to store

those data pairs selected to train the LB.

3. The Controller starts showing data pairs to the LB commencing k = 0 event pair.

4. When the LB observes the k th pair, []k ∈ ∞0, , if ()d y yy k k
� �, � < ε , the system ignores

that pair, does not undergo a training stage, and waits until the Controller shows the

next data pair. On the contrary, if ()d y yy k k
� �, � ≥ ε , the pair is added to Straining and the

LB undergoes a training stage which uses the parameters found in the previous training

stage as a starting point and Straining . If the system underwent a training stage, the

 77

learning procedure returns to the previous state, where the Controller starts showing

data pairs to the LB from index k = 0 .

This approach is like a teacher that teaches the material lesson by lesson, such that

when he realizes that the student already knows a new lesson, the teacher moves on to

teach another.

According to the Fundamental Assumption, each learned pair implies that the

system has learned to correctly react to a neighborhood of examples close to that pair.

Hence, it becomes unnecessary to use all the observed data pairs. Only those data pairs

outside those neighborhoods, which contain information unknown to the LB, should be

used. With the selection of training examples in this manner, the training set is kept quite

small throughout the training process.

 Furthermore, after a pair is learned, the probability of finding a pair with new

information reduces because the unlearned region diminishes. The expected number of

redundant examples before finding a useful one is the expected number of trials

[] ()
E k

p
p

=
−1

 in a geometric distribution [31], where p is the probability of finding a

useful example. In other words, as the system learns more and more, the probability of

finding a pair that contains information unknown for the LB decreases.

 In the parameter space, the search for the correct parameters is also affected by the

new scheme. The relationship implied in each data pair can be satisfied by any parameter

vector from a specific set in the parameter space. Each data pair implies a different

specific set. The global solution, the solution that satisfies all the data pairs, is any of the

 78

parameter vectors located at the intersection of the different specific sets defined by all

the data pairs. The traditional approach tries to find any of the global solutions located

inside this overall intersection directly. The new approach produces a different strategy.

Since the training set is grown incrementally, and at the end of each training stage the LB

has a parameter vector located at the intersection of the various specific sets defined by

the data pairs contained by the training set at that instant, the search for the correct

parameters is guided and gradually converges to one of the global solutions. Each time

the LB starts a training stage it uses the previously found parameters, which are

guaranteed to be closer to the solution than most of the randomly chosen points. The

overall effect of this procedure is that the big parameter corrections are likely to be

executed when the training set is small, while the small ones are done when the training

set is bigger, keeping the computational load of the training process small.

Nothing is said about a stopping rule for the algorithm because as the LB learns

more, there are fewer training stages. Under the assumption that the LB can achieve zero

recognition error, it will eventually learn to respond adequately to all the possible cases

and it will never need to undergo a training stage again. In other words, the training

process automatically shuts off when it learns to correctly react to all the cases.

Due to the same reasons, there is no need for a testing set. Once the system learns

to correctly react to all cases, it will achieve a perfect score with any possible Stesting .

In summary, the new approach uses an optimally small training set and the

computational load is kept small throughout the complete procedure. Finally, only the

 79

best case of the traditional approach can be equivalent to the worst case of the new

approach, which makes the new approach the preferred one among the two.

4.1.2.2 Multi Layer Perceptron Experiment

The procedure presented above was applied to the recognition of all the digits. As

expected, all the trajectories belonging to the training set were correctly classified. The

results for the trajectories contained within the testing set are presented in Table 4-2.

Only 200 speech data pairs were available for training the MLP, which forced the

training to stop once all the training utterances were used.

An epoch was defined as the period in which the MLP was trained with a fixed

training set until all the errors produced by the data pairs in the training set were below a

threshold of 0.5. Every epoch comprised a variable number of backpropagation iterations.

The number of iterations within an epoch was variable because the system iterated until

all the errors were below the threshold of 0.5, or until the number of iterations reached

100,000.

Once trained, if the output of the MLP was positive, the incoming trajectory was

classified, as an example, as a ‘ZERO’. If it was negative, the trajectory was regarded as

belonging, as an example, to the class ‘NON-ZERO’.

 80

Digit # of Errors Recognition Accuracy

0 2 98%

1 9 91%

2 10 90%

3 4 96%

4 3 97%

5 13 87%

6 9 91%

7 8 92%

8 7 93%

9 12 88%

Table 4-2. Testing set results for MLP approach.

As a consequence of the training approach, as the epochs progressed the MLP

learned. As it learned it was more rare to find a data pair which caused an erroneous

output. Figure 4-4 shows the evolution in the number of ‘ZERO’ examples examined as

the training set grew. It is important to note that since each time a new example was

added to the training set a new epoch started, the size of the training set is the same as the

epoch number. Figure 4-4 shows that the MLP generated the correct outputs for the entire

training set after being trained with only 32 training examples. It also shows that in the

first few epochs the MLP was completely ignorant and used almost all the examined

 81

training examples. As the MLP learned, it became more and more difficult to find

unknown information, which explains the sort of exponential behavior of the curve.

0 10 20 30 40
0

50

100

150

200

Size of Training Set

E
xa

m
pl

es
 E

xa
m

in
ed

Examples Examined vs. Size of Training Set

Figure 4-4. Training examples use evolution.

Figure 4-5 shows that the percentage of computational resources is kept small,

even as the training set grew. The curve shows that some epochs required more iterations

in order to converge to the desired weight values. This behavior is expected, since for a

given weight configuration it might be more difficult to find the optimal parameter

combination given a training set.

 82

0 10 20 30 40
0

0.5

1

1.5

2

2.5

3

Size of Training Set

B
ac

kp
ro

pa
ga

tio
n

C
yc

le
s

[te
ns

 o
f t

ho
us

an
ds

] Backpropagation Cycles vs. Size of Training Set

Figure 4-5. Percentage of computational resources as a function of the actual training set.

4.2 Trajectory Approach

 This approach, rather than reducing the problem into a point classification one,

deals directly with the normalized trajectories. The trajectories are directly fed into the

recognizer, which, at the same time, is continuously producing an output that can be used

for classification purposes.

4.2.1 Recurrent Neural Network Trained with Back-Propagation Through Time

 Contrary to the MLP approach, which waits until a trajectory ends in order to

process it, this approach works with the trajectories as they appear. It does not transform a

trajectory into a point, but preserves its time characteristics. The only consideration

though, is that it works with normalized trajectories.

 83

As the MLP approach, an RNN constitutes a single, monolithic, block that

simultaneously stores the template and discovers the proper comparison method, such

that it is impossible to differentiate one from the other.

The RNN architecture was defined by a set of fully interconnected neurons, which

are either input, hidden, or output neurons. The dynamics of the RNN was defined by

[32]:

τ i i i ij j i
j

x x w y zD = − + +∑ (4.2)

where τ i is a time constant that regulates the speed at which the value of the states

change, xi is the state of neuron i , wij is the weight that goes from neuron j to neuron

i , y j is the output of neuron j , and zi is the input to the neuron i . The state of a neuron

and its output are related by the hyperbolic tangent function:

y
ei xi

=
+

−−

2
1

1 (4.3)

which is one type of bipolar functions. zi is zero for every neuron that does not have an

input. In other words, it is zero for every hidden and output neuron.

The RNN was trained with the backpropagation Through Time (BTT) algorithm

[33]. The equations that specify the implementation of this algorithm are obtained by

minimizing the value of a functional along the normalized trajectory [10]:

J Ldt
t

t
= ∫

0

1
 (4.4)

 84

where t0 marks the starting time of the normalized trajectory, t1 its ending time, and L

the functional to be minimized. The functional is a Lagrangian defined by the Kullback-

Leibler Divergence cost function and the dynamics of the system:

L
t t

y
t t

y
x x w y zi i

i

i i

i
i i i i ij j i

ji
=

+ +
+

+
− −

−

 + + − −

∑∑

1
2

1
1

1
2

1
1

log log Dλ τ (4.5)

where, []i N∈ 1, denotes all the neurons, ti is the desired output for neuron i , and λi is

the i th Lagrangian coefficient. The desired output of the i th neuron, ti , is defined as

follows:

t
d i
yi

i
th

i
=

;
;

if the neuron is an output one
otherwise

 (4.6)

 In all the previous equations, Dxi , xi , yi , zi , ti , and λi are functions of time. On

the other hand, τ i and wij are not functions of time.

The training of the network proceeds from minimizing J using the RNN

dynamics [3.2] as a constraint. The training method is obtained using the Euler-Lagrange

equations from variational calculus:

∂
∂

∂
∂

∂
∂ λ

L
x

d
dt

L
x

L
i i

i

−

=

=

�
0

0

 (4.7)

along with the border conditions

∂
∂ λ

L

i t t=

=
1

0 (4.8)

 85

The result of this approach is the following set of continuous-time equations:

() ()τ λ λ λ

λ

k k k k k k l lk
l

k t t

y t y wD = + − + −

=

∑

=

1
2

1
2

1

0

2

1

 (4.9)

 Using a gradient descent method to obtain the analytical expressions that dictate

the adjustment of weights and auxiliary variables:

∆

∆

w
J

w
y dt

J
x dt

ij
ij

i jt

t

j
j

j jt

t

= − =

= − = −

∫

∫

η
∂
∂

η λ

τ η
∂
∂ τ

η λ

0

1

0

1
D

 (4.10)

 Using the approximation:

() () ()df t
dt

f t t f t
t

≈
+ −∆

∆
 (4.11)

to obtain discrete expressions, it follows that the dynamics of the RNN can be rewritten

as:

() () () ()x k x k w y k z ki i ij j i
j

+ = + +∑1 (4.12)

and the dynamics of the backpropagating signal can be rewritten as:

()
() () ()() ()() ()

λ

λ λ

i

i i i i j ji
j

k

k y k t k y k k w

1

2

0

1
1
2

1
2

1

=

− = − − − − ∑
 (4.13)

and the weights modified by:

() ()∆w k y kij i jk k

k

o
=

=∑η λ1 (4.14)

where τ i = 1, ∀ i , and ∆t = 1.

 86

The RNN that was used in this work had two input neurons, two hidden neurons,

and 1 output neuron, totaling 5 fully interconnected neurons.

The value of di , the desired signal, was set to 0.95 if the corresponding input

trajectory belonged to the class that the RNN had to recognize, or -0.95 if the

corresponding input trajectory did not belong to the class that the RNN had to recognize.

Using the training method used for the MLP and the BTT, an RNN was trained to

recognize the word ‘ZERO’. The RNN only converged when at most 3 training examples,

1 positive and two negatives, were used. It was not possible to make the weights converge

when a bigger number of training trajectories was used. When more examples were used,

the training was so slow, that the method seemed completely impractical when compared

to the previous ones.

Although the RNN did not use the complete training set, it was applied to the

testing set and a recognition accuracy of 78.80% was achieved. Plots of the outputs of the

RNN for one positive and two negative trajectories are shown in Figure 4-6. The figure

shows that the positive trajectory’s output settles around 0.95 after some milliseconds,

while the negative trajectory’s outputs settle around -0.95 after a similar amount of time.

 87

0 20 40 60 80 100
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Time [tens of ms]

R
N

N
 O

ut
pu

t A
m

pl
itu

de

RNN Outputs for Training Utterances

Figure 4-6. RNN output for training utterances.

In all the tests, the initial RNN states were set to 0, and the RNN initial weight

values were randomly chosen in the interval [-0.1,0.1].

4.3 Discussion on the Various Approaches Used for Recognition

 Before speaking about the different recognition schemes it is important to note the

variability exhibited by the normalized trajectories in the reduced feature space. This

might be a natural characteristic of the utterances or a shortcoming of the FE block. If it is

the former, it is remarkable in the sense that when the associated utterances are heard they

are regarded as very similar, if not identical, despite their variability in the feature space.

If it is the latter, it suggests that the FE block must be improved.

 In general, all the three approaches solved the scalability problem in a trivial way:

to add a new word is just matter of adding an additional Template, MLP, or RNN.

The following comments concerning the Template approach are in order:

 88

1. The major drawback of the method is its low recognition accuracy. The only way to

improve its efficiency seems to be to use a higher number of normalized trajectories

in the Tamplate, which inevitably would increase the memory requirements of the

implementation.

2. Another important drawback of the approach was its memory requirements. Since

each point of a trajectory corresponds to a point in the 16 by 16 neurons lattice of the

SOM, each point can be stored in one byte, i.e. a 100 points trajectory requires 100

bytes. Since each digit had a Template defined by 10 trajectories, each digit required

1,000 bytes of memory, without using any data compression techniques. If we were

working with a vocabulary of 50,000 words, and if each template had 10 trajectories

in order to achieve high recognition accuracy, 50,000,000 bytes of memory would be

required to store all the Templates. This is by no means a light, in terms of memory,

system.

3. One advantage of the Template Approach is that it quickly allowed to capture some of

the variability of a class of trajectories without any special computational

requirements.

Some comments concerning the MLP approach can also be made:

1. Its recognition accuracies were far better than the ones obtained with the Template

Approach. Even though its performance was better, it is still below the limits required

for practical applications.

2. If the problem with the Template Approach was that it was memory thirsty, the MLP

approach was even worse. The hidden layer was defined by 5 hidden neurons, each

 89

with 200 weights and 1 bias, totaling 1005 floating point values. The output layer

consisted of only 1 neuron, with 5 weights and 1 bias, totaling 6 floating point values.

In total, each MLP required 1011 floating point values. Hence, in order to build a

system with a 50,000 words capacity would require 202,200,000 bytes, assuming 4

bytes per each floating point value. Even though its recognition accuracy was far

better when compared against the one of the Template approach, its memory

requirements pose some limitations for practical implementations.

3. In terms of training, the MLP approach was definitely more complex than the one

based on the Template approach. Although the incrementally growing training set

approach considerably eased the training, it still required training times in the order of

minutes to hours to train the MLP recognizers.

A few comments concerning the RNN can also be made in the light of the items

used for comparison above:

1. It achieved only 80% of recognition accuracy, which sets this method as the worst of

the three approaches. Nonetheless, this result is only preliminary in the sense that the

system was only applied for recognizing the digit ‘ZERO’ and trained using only

three training examples.

2. In terms of memory requirement, it is the best. The fully connected RNN with 5

hidden neurons requires only 25 floating point values, which implies that a system

with a 50,000 words capacity would require 5,000,000 bytes, assuming 4 bytes per

each floating point value.

 90

3. It was by far the most complex system, so complex that it was not possible to train

better RNNs by means of bigger training sets. This was the reason that caused the

abandoning of this approach and that explains why only results for the ‘ZERO’ digit

were obtained.

Concerning the new approach for training a learning system:

1. Within the scope of the conducted experiments, the obtained results validate the

usefulness of the new learning approach. It achieved successful results using only a

fraction of the training sets.

2. There is a strong need for more general and conclusive experiments. There is need for

a thorough comparison between the traditional approach and this new method.

Experiments with different estimation and classification problems using different data

sets, different noise conditions, different learning blocks, different data orderings, and

different initial conditions must be conducted before more general statements can be

made concerning the new learning procedure. Additionally, all of the assumptions on

which the new approach rests should be revisited and the method generalized even

more according to them. This specially refers to the possibility of gradually

diminishing the function approximation error ε towards the final desired value as the

training set is augmented. This may speed up the training of the LB in the new

approach.

3. If the method proves to be robust enough, it may be useful to measure how good a the

LB block is within the context of a problem. So far, learning procedures are only

compared on the basis of the number of components they are made of, and the

 91

computational power that they require to solve a given problem. Another important

measure would be the amount of training examples required to solve the problem. A

powerful LB should require less training examples than a less powerful one. Such a

measure would signify the amount of exposure a LB needs to a problem in order to

solve it.

4. It may also be worthwhile to apply this method to learning problems in sequential

analysis and adaptive control. Both of these fields obtain estimates using the data as it

is observed in some adaptive manner. It would be interesting to see if the approach

presented in this work can be used to modify those techniques in some useful manner.

 92

5. CONCLUSIONS

5.1 Summary of Results Reported in This Thesis

Although none of the approaches proved to be good enough for practical purposes

with the present extent of development, they were good enough to prove that translating

speech into trajectories in a feature space works for recognition purposes. The human

speech is an inherently dynamical process that can be properly described as a trajectory in

a certain feature space. Even more, the dimensionality reduction scheme proved to reduce

the dimensionality while preserving some of the original topology of the trajectories, i.e.

it preserved enough information to allow a good recognition accuracy.

It is interesting to note that despite the fact that the SOM has been used in the

speech recognition field for more than a decade, nobody has used it to produce

trajectories, but only to generate sequences of labels.

Finally, the new approach developed for training the neural network’s architecture

proved to be simple and very efficient. It reduced considerably the amount of calculations

needed for finding the correct set of parameters. If the traditional approach had been used

instead, the amount of calculations would have been higher.

5.2 Directions for Future Research

Concerning future work, besides improving the FE block and devising a more

robust Recognizer, the scope of the problem should be broadened to larger vocabularies,

 93

continuous speech, and different speakers. From this perspective, the results presented in

this thesis are only preliminary.

As it could be appreciated, the reduced feature space trajectories were very noisy,

which complicated the recognition process. This can be a natural consequence of the

speech signal, or an artifact caused by the feature extraction scheme. If the latter were the

case, it would not be surprising since the LPC Cepstrum coder scheme is not very

efficient when it comes to represent noise-like sounds as the consonant ‘S’ [7]. It may be

more appropriate to use feature extractors that do not throw away information before the

dimensionality reduction scheme is used. As an example, the output of a Fourier or

Wavelet transform, both of which retain all the information needed to reconstruct the

original signal, could be directly used as input to the SOM.

With respect to the dimensionality reduction, as the vocabulary size grows, the

reduced feature space will start to crowd with trajectories. It is important to study how

this crowding effect affects the recognition accuracy when reduced space trajectories are

used.

 New approaches must be developed in order to avoid using the knowledge of

starting and ending points, plus the need of trajectory normalization. There is a strong

need for trajectory recognizers that are able to process highly distorted, both in space and

time, unknown trajectories in a sequential manner.

 Even though the Trajectory Approach did not produce encouraging results due to

the training complexity of the RNN, and that it seems less efficient when compared with

the Fixed Point approach, it does not have to be discarded because it should be possible to

 94

combine the lesser memory requirements of the Trajectory Approach with the simplicity

of the Fixed Point Approach. In this context, it must also be taken into account that only

one gradient descent method was used to train the RNN. It might be easier to train the

RNN with other gradient descent based methods, or radically different techniques like

reinforced learning [34], simulated annealing [17], or genetic algorithms [35].

Furthermore, the architecture of the RNN can be modified such that instead of training

one RNN for recognising a long and complex trajectory, it may be easier to train a

hierarchy of simpler RNNs, each designed to recognize portions of the long and complex

trajectory. Such an approach will go along the lines of the HMM scheme, which

organizes the HMMs in hierarchical layers.

So far, all the approaches that are used in speech recognition require a significant

amount of examples for each class. In a thousands-of-words vocabulary problem this

would require that the user of the system uttered hundreds of thousands of examples in

order to train the system. New approaches must be developed such that the information

acquired by one module can be used to train other modules, i.e. that use previously

learned information to deduce the trajectories that correspond to non-uttered words.

 95

6. REFERENCES

[1] S. Pinker, “The Language Instinct,” HarperPerennial, 1995.

[2] L. Rabiner and G. Juang, “Fundamentals of Speech Recognition,” Prentice-Hall,

1993.

[3] C. H. Prator and B. W. Robinett, “Manual of American English Pronunciation,”

Harcourt, Brace and Co., 1985.

[4] N. Negroponte, “Being Digital,” Vintage Books, 1995.

[5] C. R. Jankowski Jr., H. H. Vo, and R. P. Lippmann, “A Comparison of Signal

Processing Front Ends for Automatic Word Recognition,” IEEE Transactions on

Speech and Audio processing, vol. 3, no. 4, July 1995.

[6] J. Tebelskis, “Speech Recognition Using Neural Networks,” PhD Dissertation,

Carnegie Mellon University, 1995.

[7] S. Furui, “Digital Speech Processing, Synthesis and Recognition,” Marcel Dekker

Inc., 1989.

[8] K. Torkkola and M. Kokkonen, “Using the Topology-Preserving Properties of

SOMs in Speech Recognition,” Proceedings of the IEEE ICASSP, 1991.

[9] K-F Lee, H-W Hon, and R. Reddy, “An Overview of the SPHINX Speech

Recognition System,” IEEE Transactions on Acoustic, Speech, and Signal

Processing, vol. 38, no. 1, January 1990.

 96

[10] H. Hasegawa, M. Inazumi, “Speech Recognition by Dynamic Recurrent Neural

Networks,” Proceedings of 1993 International Joint Conference on Neural

Networks.

[11] M. Jamshidi, “Large-Scale Systems: Modelling and Control,” North-Holland,

1983.

[12] P. Zegers, “Reconocimiento de Voz Utilizando Redes Neuronales,” Engineer

Thesis, Pontificia Universidad Católica de Chile, 1992.

[13] M. Woszczyna et al, “JANUS 93: Towards Spontaneous Speech Translation,”

IEEE Proceedings Conference on Neural Networks, 1994.

[14] T. Zeppenfeld and A. Waibel, “A Hybrid Neural Network, Dynamic Programming

Word Spotter,” IEEE Proceedings ICASSP, 1992.

[15] Y. Gong, “Stochastic Trajectory Modeling and Sentence Searching for

Continuous Speech Recognition,” IEEE Transactions on Speech and Audio

Processing, vol. 5, no. 1, January 1997.

[16] D. Richard, C. Miall, and G. Mitchison, “The Computing Neuron,” Addison-

Wesley, 1989.

[17] S. Haykin, “Neural Networks: A Comprehensive Foundation,” Macmillan College

Publishing Company, 1994.

[18] T. Kohonen, “Self-Organization and Associative Memory,” Springer-Verlag,

1984.

[19] T. Kohonen, “Self-Organizing Maps,” Springer-Verlag, 1995.

 97

[20] T. Kohonen et al, “Engineering Applications of the Self-Organizing Map,”

Proceedings of the IEEE, 1996.

[21] H. Sagan, “Space-Filling Curves,” Springer-Verlag, 1994.

[22] G. Cybenko, “Approximation by Supperpositions of a Sigmoidal Function,”

Mathematics of Control, Signals and Systems, vol. 2, 1989.

[23] K. Funahashi, “On the Approximate Realization of Continuous Mappings by

Neural Networks,” Neural Networks, vol. 2, 1989.

[24] K-I Funahashi and Y. Nakamura, “Approximation of Dynamical Systems by

Continuous Time Recurrent Neural Networks,” Neural Networks, vol. 6, 1993.

[25] T. Kohonen, “The Neural Phonetic Typewriter,” Computer, vol. 21, no. 3, 1988.

[26] K. J. Lang and A. H. Waibel, “A Time-Delay Neural network Architecture for

Isolated Word Recognition,” Neural networks, vol. 3, 1990.

[27] E. Singer and R. P. Lippmann, “A Speech Recognizer using Radial Basis

Function Neural Networks in an HMM Framework,” IEEE Proceedings of the

ICASSP, 1992.

[28] H. Hild and A. Waibel, “Multi-Speaker/Speaker-Independent Architectures for the

Multi-State Time Delay Neural Network,” IEEE Proceedings of the ICNN, 1993.

[29] R. M. Gray, “Vector Quantization,” IEEE ASSP Magazine, April 1984.

[30] G. Z. Sun et al, “Time Warping Recurrent Neural Networks,” IEEE Proceedings

of the ICNN, 1992.

[31] A. Papoulis, “Probability, Random Variables, and Stochastic Processes,”

McGraw-Hill, 1991.

 98

[32] S. I. Sudharsanan and M. K. Sundareshan, “Supervised Training of Dynamical

Neural Networks for Associative Memory Design and Identification of Nonlinear

Maps,” International Journal of Neural Systems, vol. 5, no. 3, September 1994.

[33] B. A. Pearlmutter, “Gradient Calculations for Dynamic Recurrent Neural

Networks,” IEEE Transactions on Neural Networks, vol. 6, no. 5, September

1995.

[34] M. K. Sundareshan and T. A. Condarcure, “Recurrent Neural-Network Training

by a learning Automaton Approach for Trajectory Learning and Control System

Design,” IEEE Transactions on Neural Networks, vol. 9, no. 3, May 1998.

[35] D. B. Fogel, “An Introduction to Simulated Evolutionary Optimization,” IEEE

Transactions on Neural Networks, vol. 5, no. 1, January 1994.

