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ABSTRACT 

 

Although speech recognition products are already available in the market at 

present, their development is mainly based on statistical techniques which work 

under very specific assumptions. The work presented in this thesis investigates the 

feasibility of alternative approaches for solving the problem more efficiently. A 

speech recognizer system comprised of two distinct blocks, a Feature Extractor and 

a Recognizer, is presented. The Feature Extractor block uses a standard LPC 

Cepstrum coder, which translates the incoming speech into a trajectory in the LPC 

Cepstrum feature space, followed by a Self Organizing Map, which tailors the 

outcome of the coder in order to produce optimal trajectory representations of 

words in reduced dimension feature spaces. Designs of the Recognizer blocks based 

on three different approaches are compared. The performance of Templates, Multi-

Layer Perceptrons, and Recurrent Neural Networks based recognizers is tested on a 

small isolated speaker dependent word recognition problem. Experimental results 

indicate that trajectories on such reduced dimension spaces can provide reliable 

representations of spoken words, while reducing the training complexity and the 

operation of the Recognizer. The comparison between the different approaches to 

the design of the Recognizers conducted here gives a better understanding of the 

problem and its possible solutions. A new learning procedure that optimizes the 

usage of the training set is also presented. Optimal tailoring of trajectories, new 
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insights into the use of neural networks in this class of problems, and a new training 

paradigm for designing learning systems are the main contributions of this work. 
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1. INTRODUCTION 

1.1  Languages 

1.1.1  Introduction 

 Language is what allows us to communicate, i.e. to convey information from one 

person to another. It is this ability that permits groups of individuals to transform into an 

information sharing community with formidable powers. Thanks to the existence of 

language, anyone can benefit from the knowledge of others, even if this knowledge was 

acquired in a different place or at different times. 

 Language is a complex phenomenon, and it can appear in very different forms, 

such as body positions, facial expressions, spoken languages, etc. Not only that, these 

different types can be used separately or in combination, rendering really complex and 

powerful methods to communicate information. For example, dance is a method of 

communication that emphasizes the use of body position and facial expressions. Like 

dancing, a face to face conversation relies on body gestures and facial expressions, but it 

also relies on the use of sounds and spoken language. Summing up, when we are speaking 

about a language, we should not restrict ourselves to think about it as a collection of 

sounds ordered by some grammar. Any language is far more than that. 

 Modern language theories state that what we call languages are surface 

manifestations, or exterior representations, of a common inner core, not directly seen 

from the outside, where thought processes occur (see Figure 1-1). In other words, they 

state that we do not think using what we would normally call a language, but internal 
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mental representations that condense all sorts of cognitive processes [1]. Under this point 

of view, the different languages that a person uses are nothing more than a set of different 

interfaces between the processing results of that inner core and the community. 

Inner
Core

Community

Languages

 

Figure 1-1. Relationship between Languages and Inner Core Thought processes. 

 Even though under normal conditions we normally use all types of languages at 

the same time, it can be said that spoken language is the one that conveys the most of the 

information, while the others normally enhance or back up the meanings conveyed by 

spoken language. 

 An amazing discovery done by language researchers is the fact that irrespective of 

the civilization stage of a culture, its language is as complex as the one developed by any 

other culture [1]. For example, the languages currently used by certain stone age tribes in 

New Zealand are as powerful and complex as English, Spanish or any other culture. The 

same is true with all the languages currently used in the world. This is even true for sign 

languages: their description power and complexity matches those of spoken language. 

Quoting Pinker [1], “language is a complex, specialized skill, which develops in the child 
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spontaneously, without conscious effort or formal instruction, is deployed without 

awareness of its underlying logic, is qualitatively the same in every individual, and is 

distinct from more general abilities to process information or behave intelligently.” 

Current research in cognitive sciences states that language corresponds more to an 

instinct [1] than to a socially developed skill, implying that is something inherently 

human. More than this, it seems to be inherently biological: the capacity of speaking a 

language is a consequence of human biology, while its manifestation, i.e. the actual way 

we speak, a consequence of the culture where persons live.  

Even more, it seems that only humans possess this skill. All studies done in 

animals, even the more advanced primates, indicate orders of magnitude of difference 

between human languages and the animal ones. So big is this difference that if language 

is defined as something similar to human languages, it can be safely considered that 

animals do not have the ability to communicate using a language. 

 

1.1.2  Spoken Language 

The basic building block of any language is a set of sounds named phonemes. As 

an example, a condensed list of American English phonemes, in their ARPABET 

representation, is given in Table 1-1 [2].  
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ARPABET Example ARPABET Example 
IY beat NX sing 
IH bit P pet 
EY bait T 10 
EH bet K kit 
AE bat B bet 
AA Bob D debt 
AH but H get 
AO bought HH hat 
OW boat F fat 
UH book TH thing 
UW boot S sat 
AX about SH shut 
IX roses V vat 
ER bird DH that 
AXR butter Z zoo 
AW down ZH azure 
AY buy CH church 
OY boy JH judge 
Y you WH which 
W wit EL battle 
R rent EM bottom 
L let EN button 
M met DX batter 
N net Q glottal stop 

Table 1-1. American English ARPABET phonemes and examples. 

The phonemes of Table 1-1 comprise all the building blocks needed to produce 

what is called standard American English. Other versions of English use slightly different 

sets of phonemes, but similar enough to allow understanding by any English speaker. 

These differences explain the different accents existing in modern English. As it is in 

English, all languages follow this structure: they are built upon a basic set of phonemes. It 

is interesting to note that the number of phonemes in a set of basic phonemes never 
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exceeds seventy. This fact might indicate a limit on the number of sounds a human can 

produce or distinguish in order to communicate efficiently.  

The second level of building blocks of a spoken language consist of the words. 

These building blocks are built from sequentially concatenated phonemes extracted from 

the basic set of phonemes of the language. An utterance of the word ‘ZERO’ is shown in 

Figure 1-2. It can be seen in the figure that there are roughly four distinct zones in the 

utterance, each of them directly related to one of the four phonemes that comprise the 

utterance of that word. 
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Figure 1-2. Speech Signal for the word ‘ZERO’. 

All the words in a language constitute a set called vocabulary. It is generally 

agreed among experts that a normal person understands and uses an average of 60,000 

words [1] of his native language. 
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The next building block assembles the words into phrases and sentences. They are 

made up from successively braided words, according to the language’s vocabulary, 

grammar, and the information to be conveyed. Let us consider the following sentences: 

•  ‘OLD HAPPY NEW TABLE POWERLESS’ 

•  ‘THE ELEPHANT IRONED THE WRINKLES OF HIS WINGS’ 

•  ‘I RECEIVED A PHONE CALL FROM YOUR MOTHER’ 

The first one is formed by using words from an existing vocabulary, but does not 

respect a grammar or a context. The second respects a vocabulary and a grammar, but it is 

not true within a normal context. The third one respects all three aspects. 

The topmost level of a language building blocks reflects the way in which the 

phrases and sentences are combined. Within this level there is an infinite set of 

possibilities, mainly ranging between two extremes: a lecture mode which does not have 

interruptions, like a politician’s speech, and a conversational mode, which exhibits an 

enormous amount of interaction, like an argument between any two persons. While the 

first one does not rely on interaction and tries to convey all the information through 

spoken language, the other is highly interactive and normally relies in other languages as 

well. 

 Phonemes combine into words, words combine into phrases and sentences, 

phrases and sentences combine to form spoken language. This seems to be all, but it is 

not. Normally, not only what is said conveys information, but also how it is said. The 

manner in which expressions are uttered is described by its prosody: the characteristic 

stresses, rhythms, and intonations of a sentence. Each word has its own pattern of stresses 
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that must be precisely kept, i.e. the meaning of the word ‘CONTENT’ depends on which 

vowel is stressed. A good example of spoken English’s rhythm is provided by the 

following lines of Tennyson: 

 ‘BREAK, BREAK, BREAK, 

 ON THY COLD GRAY STONES, O SEA!” 

where the time spanned by the utterances between the underlined vowels is normally kept 

constant, no matter how many phonemes are between them [3]. This rhythm is normally 

used by all native speakers of the English language in everything they say, and it is one of 

the aspects that other languages like Spanish or Japanese completely lack. In the case of 

intonation, the meaning of the sentence “YOU ARE INTELLIGENT” completely changes 

if a statement-like intonation is used instead of a question-like one. 

It is only under ideal conditions that the actual utterance of a word exactly follows 

the sequences of phonemes that define that word. Normally, the phonemes are slurred, the 

vowels which are more difficult to pronounce are replaced by easier-to-pronounce ones, 

and the words are merged such that the ending phoneme of a word is merged with the 

starting phoneme of the following word, a phenomenon called coarticulation. This occurs 

because all utterances are produced by a physical system which is always trying to 

produce the desired output while minimizing the effort necessary to do that. This trade-

off normally sacrifices some of the enunciation quality in order to diminish the spent 

energy. That the speech producing system minimizes energy is seen in the fact that the 

most used sound in a language normally corresponds to positions where almost no energy 

is needed to produce the sound. As an example, the vowel sound in the English word 
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‘BUT’ is generated with all the speech organs in a relaxed position. This is the most used 

sound in the English language. 

A final aspect that explains the variability of an utterance is noise. Noise can be 

originated by speech glitches, like mouth pops, coughing, false starts, incomplete 

sentences, stuttering, laughter, lip smacks, heavy breathing, and the environment. 

 Summing up, the enormous number of possible utterances within a given 

language is explained by all possible combinations of phonemes, words, phrases and 

sentences, degree of interaction with other people, possible manifestations of the stresses, 

rhythms, and intonations, the continuous effort to optimize performed by the speech 

organs, and noise. It is important to note that there is a set of possible utterances for a 

given word. It is not necessarily valid to model all of them as deviations from a “correct” 

one. On the contrary, each of them is equally valid. Within the language context, 

utterance variability does not necessarily mean utterance deviation. Utterance variability 

cannot be explained as an ideal template distorted by some error. The concept of error is 

only useful to explain the always present noise. 

 

1.1.3  Learning Spoken Language 

 The following description of an infant’s language skills development is based on 

the description given by Pinker in [1]. 

Spoken language acquisition is an unconscious process. During their first year of 

existence, children learn the basic set of phonemes. During the first two months children 

produce all kinds of sounds to express themselves. After that, they start playing with them 
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and babbling in syllables like ‘BA-BA-BA’. When they are 10 months old, they tune their 

phoneme hearing capacity such that they start to react more frequently to the sounds 

spoken by their parents. This transition is done before they understand words, implying 

that they learn to identify phonemes before they start understanding words.  

 At the end of the first year they start to understand syllable sequences that 

resemble speech. By listening to their babbling they receive a feedback that helps them to 

finish the development of their vocal tract and to learn how to control it.  

 Around the first year they start understanding words and produce words. The one 

word stage can last from two months to a year. Around the world, scientists have proven 

that the content of this vocabulary is similar: half of them are used to designate objects 

(‘JUICE’, ‘EYE’, ‘DIAPER’, ‘CAR’, ‘DOLL’, ‘BOTTLE’, ‘DOG’, etc.), the rest are for 

basic actions (‘EAT’, ‘OPEN’, ‘UP’, etc.), modifiers (‘MORE’, ‘HOT’, ‘DIRTY’, etc.), 

and social interaction routines (‘LOOK AT THAT’, ‘WHAT IS THAT’, ‘HI’, ‘BYE-

BYE’, etc.).  

 Language starts to develop at an astonishing rate at eighteen months. They already 

understand sentences according to their grammar. They start to produce two and three 

word utterances and sentences that are correctly ordered despite some missing words. 

 After late twos, the language employed by children develops so fast that in the 

words of Pinker [1]: “it overwhelms the researchers who study it, and no one has worked 

out the exact sequence.” Sentence length and grammar complexity increases 

exponentially. 
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 Why does it take almost the very first three years of our lives to master a 

language? Before birth, virtually all nerve cells are formed and are in their proper places, 

but it is after birth that head size, brain weight, thickness of the cerebral cortex, long 

distance connections, myelin insulators and synapses grow. It is during these first years 

that the qualitative aspects of our behavior are developed by adding and chipping away 

material from our brains. Later, the growth is more devoted to quantity rather than 

quality. 

 

1.1.4  Written Language 

 Written language is what permits us to communicate through physical tokens in a 

completely time independent manner. While speech uses configurations of matter that 

change through space and time to convey information, written language only uses 

permanent configurations of matter that do not change over reasonable changes of space 

and time. It seems to be a small difference, but it turns out to be of transcendental 

importance. Thanks to this characteristic it is possible to communicate no matter the 

distance in space and time. As an example, it is due to this that it is possible to read 

Homero’s Odyssey, which was written in Greece thousands of years ago.    

 Written language is a cultural phenomenon. Not every culture developed it. 

Moreover, impressive cultures have existed without needing a written language at all. 

Good examples are all the cultures that flourished in the Americas before the arrival of 

Christopher Columbus. 
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 Written language correlates uttered words to symbolic expressions. While 

languages like Chinese correlate complete word utterances to one symbol, languages like 

Spanish correlate phonemes to symbols. While spelling is meaningless in Chinese, it is 

straightforward in Spanish. Languages like English are in between these two: while some 

utterances follow definite and precise rules, others are spelled in a manner unrelated to 

their enunciation. George Bernard Shaw clearly stated this lack of consistency with the 

following example: the word ‘FISH’ can be spelled like ‘GHOTI’ using ‘GH’ as in 

‘TOUGH’, ‘O’ as in ‘WOMEN’, and ‘TI’ as in ‘NATION’ [1]. 

 

1.1.5  Learning Written Language 

 Written language acquisition is done from learning the correlation between 

utterances and their symbolic representations. The character and type of this correlation 

depends on the language. It usually involves learning how to write. This process, as 

everything related to written language, is a cultural process. While spoken language is 

normally learned in an unconscious way during the early infancy, written language is an 

excellent example of a conscious process. 

 

1.2  Speech Recognition 

1.2.1  Some Basics 

An observer is a system that assigns labels to events occurring in the environment. 

If the labels belong to sets without a metric distance it is said that the result of the 

observation is a classification and the labels belong to one of several sets. If, on the 
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contrary, the sets are related by a metric, it is said that the result is an estimation and the 

labels belong to a metric space. According to these definitions, the goal of this work is to 

devise an observer that describes air pressure waves using the labels contained by some 

written language. Because these labels are not related by a metric, the desired process is a 

classification. 

Why does the speech recognition problem attract researchers and funding? If an 

efficient speech recognizer is produced, a very natural human-machine interface would be 

obtained. By natural one means something that is intuitive and easy to use by a person, a 

method that does not require special tools or machines but only the natural capabilities 

that every human possesses. Such a system could be used by any person able to speak and 

will allow an even broader use of machines, specifically computers. This potentiality 

promises huge economical rewards to those who learn to master the techniques needed to 

solve the problem, and explains the surge of interest in the field during the last 10 years.  

 If an efficient speech recognition machine is enhanced by natural language 

systems and speech producing techniques, it would be possible to produce computational 

applications that do not require a keyboard and a screen. This would allow incredible 

miniaturization of known systems facilitating the creation of small intelligent devices that 

can interact with a user through the use of speech [4]. An example of this type of 

machines is the Carnegie Mellon University JANUS system [13] that does real time 

speech recognition and language translation between English, Japanese and German. A 

perfected version of this system could be commercially deployed to allow future 
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customers of different countries to interact without worrying about their language 

differences. The economical consequences of such a device would be gigantic. 

 Phonemes and written words follow cultural conventions. The speech recognizer 

does not create its own classifications and has to follow the cultural rules that define the 

target language. This implies that a speech recognizer must be taught to follow those 

cultural conventions. The speech recognizer cannot fully self organize. It has to be raised 

in a society! 

The complexity of the speech recognition problem is defined by the following 

aspects [2]: 

•  Vocabulary size, i.e. the bigger the vocabulary the more difficult the task is. This is 

explained by the appearance of similar words that start to generate recognition 

conflicts, i.e. ‘WHOLE’ and ‘HOLE’. 

•  Grammar complexity. 

•  Segmented or continuous speech, i.e. segmented streams of speech are easier to 

recognize than continuous ones. In the latter, words are affected by the coarticulation 

phenomenon. 

•  Number of speakers, i.e. the greater the numbers of speakers whose voice needs to be 

recognized, the more difficult the problem is. 

•  Environmental noise. 

 A speech recognition system, sampling a stream of speech at 8 kHz with 8 bit 

precision, receives a stream of information at 64 Kbits per second as input. After 
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processing this stream, written words come out at a rate of more or less 60 bits per 

second. This implies an enormous reduction in the amount of information while 

preserving almost all of the relevant information. A speech recognizer has to be very 

efficient in order to achieve this compression rate (more than 1000:1).  

In order to improve its efficiency, a recognizer must use as much a priori 

knowledge as possible. It is important to understand that there are different levels of a 

priori knowledge. The topmost level is constituted by a priori knowledge that holds true 

at any instant of time. The lowermost extreme is formed by a priori knowledge that only 

holds valid within specific contexts. In the specific case of a speech recognizer, the 

physical properties of the human vocal tract remain the same no matter the utterance, and 

a priori knowledge derived from these properties is always valid. On the other extreme, 

all the a priori knowledge collected about the manner in which a specific person utters 

words is only valid when analyzing the utterances of that person. Based on this fact,  

speech recognizers are normally divided into two stages, as shown by the schematic 

diagram in Figure 1-3. The Feature Extractor (FE) block shown in this figure generates a 

sequence of feature vectors, a trajectory in some feature space, that represents the input 

speech signal. The FE block is the one designed to use the human vocal tract knowledge 

to compress the information contained by the utterance. Since it is based on a priori 

knowledge that is always true, it does not change with time. The next stage, the 

Recognizer, performs the trajectory recognition and generates the correct output word. 

Since this stage uses information about the specific ways a user produce utterances, it 

must adapt to the user.  
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Figure 1-3. Basic building blocks of a Speech Recognizer. 

The FE block can be modeled after the stages evidenced in the human biology and 

development. This is a block that transforms the incoming sound into an internal 

representation such that it is possible to reconstruct the original signal from it. This stage 

can be modeled after the hearing organs, which first transduces the incoming air pressure 

waves into a fluid pressure wave and then converts them into a specific neuronal firing 

pattern. After the first stage, comes the one that analyzes the incoming information and 

classifies it into the phonemes of the corresponding language. This Recognizer block is 

modeled after the functionality acquired by a child during his first six months of 

existence, where he adapts his hearing organs to specially recognize the voice of his 

parents. 

Once the FE block completes its work, its output is classified by the Recognizer 

module. It integrates the sequences of phonemes into words. This module sees the world 

as if it where only composed of words and classifies each of the incoming trajectories into 

one word of a specific vocabulary.  
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The process of correlating utterances to their symbolic expressions, translating 

spoken language into written language, is called speech recognition. It is important to 

understand that it is not the same problem as speech understanding, a much broader and 

powerful concept that involves giving meaning to the received information. 

 

1.2.2  A Brief History of Speech Recognition Research 

 The next paragraphs present a brief summary of the efforts done in the speech 

recognition field. This summary is based on [2]. 

Researchers have worked in automatic speech recognition for almost four 

decades. The earliest attempts were made in the 50’s. In 1952, at Bell Laboratories, 

Davis, Biddulph and Balashek built a system for isolated digit recognition for a single 

speaker. In 1956, at RCA Laboratories, Olson and Belar developed a system designed to 

recognize 10 distinct syllables of a single speaker. In 1959, at University College in 

England, Fried and Dener demostrated a system designed to recognize four vowels and 

nine consonants. The same year, at MIT’s Lincoln Laboratories, Forgie and Forgie built a 

system to recognize 10 vowels in a speaker independent manner. All of these systems 

used spectral information to extract voice features. 

 In the 60’s, Japanese laboratories appeared in the arena. Suzuki and Nakata, from 

the Radio Research Laboratories in Tokyo, developed a hardware vowel recognizer in 

1961. Sakai and Doshita, from Kyoto University, presented a phoneme recognizer in 

1962. Nagata and coworkers, from NEC Laboratories, presented a digit recognizer in 

1963. Meanwhile, in the late 60’s, at RCA Laboratories, Martin and his colleagues 



 27

worked on the non-uniformity of time scales in speech events. In the Soviet Union, 

Vintsyuk proposed dynamic programming methods for time aligning a pair of speech 

utterances. This work remained unknown in the West until the early 80’s. A final 

achievement of the 60’s was the pioneering research of Reddy in continuous speech 

recognition by dynamic tracking of phonemes. This research spawned the speech 

recognition program at Carnegie Mellon University, which, to this day remains a world 

leader in continuous speech recognition systems. 

 In the 70’s, researchers achieved a number of significant milestones, mainly 

focusing on isolated word recognition. This effort made isolated word recognition a 

viable and usable technology. Itakura’s research in USA showed how to use linear 

predictive coding in speech recognition tasks. Sakoe and Chiba in Japan showed how to 

apply dynamic programming. Velichko and Zagoruyko in Russia helped in the use of 

pattern recognition techniques in speech understanding. Important also were IBM 

contributions to the area of large vocabulary recognition. Also, researchers at ATT Bell 

Labs began a series of experiments aimed at making speech recognition systems truly 

speaker independent. 

 In the 80’s, the topic was connected word recognition. Speech recognition 

research was characterized by a shift in technology from template-based approaches to 

statistical modeling methods, especially Hidden Markov Models (HMM). Thanks to the 

widespread publication of the theory and methods of this technique in the mid 80’s, the 

approach of employing HMMs has now become widely applied in virtually every speech 

recognition laboratory of the world. Another idea that appeared in the arena was the use 
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of neural nets in speech recognition problems. The impetus given by DARPA to solve the 

large vocabulary, continuous speech recognition problem for defense applications was 

decisive in terms of increasing the research in the area. 

 Today’s research focuses on a broader definition of speech recognition. It is not 

only concerned with recognizing the word content but also prosody and personal 

signature. It also recognizes that other languages are used together with speech, taking a 

multimodal approach that also tries to extract information from gestures and facial 

expressions. 

 Despite all of the advances in the speech recognition area, the problem is far from 

being completely solved. A number of excellent commercial products, which are getting 

closer and closer to the final goal, are currently sold in the commercial market. Products 

that recognize the voice of a person within the scope of a credit card phone system, 

command recognizers that permit voice control of different types of machines, “electronic 

typewriters” that can recognize continuous voice and manage several tens of thousands 

word vocabularies, and so on. However, although these applications may seem 

impressive, they are still computationally intensive, and in order to make their usage 

widespread more efficient algorithms must be developed. Summing up, there is still room 

for a lot of improvement and of course, research. 

 

1.2.3  State of the Art 

 An overview of some of the popular methods for speech recognition is presented 

in this section following the schematic diagram that outlines the constituent blocks as in 
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Figure 1-3. The functionality of the individual blocks is also described in order to 

precisely state the contributions that stem from the work outlined in this thesis.  

 

1.2.3.1 Feature Extractors 

 The objective of the FE block is to use a priori knowledge to transform an input 

in the signal space to an output in a feature space to achieve some desired criteria. 

Because a priori knowledge is used, the FE block is usually a static module that once  

designed will not appreciably change. The criteria to be used depend on the problem to be 

solved. For example, if a noisy signal is received, the objective is to produce a signal with 

less noise; if image segmentation is required, the objective is to produce the original 

image plus border maps and texture zones; if lots of clusters in a high dimensional space 

must be classified, the objective is to transform that space such that classifying becomes 

easier, etc. 

The FE block used in speech recognition should aim towards reducing the 

complexity of the problem before later stages start to work with the data. Furthermore, 

existing relevant relationships between sequences of points in the input space have to be 

preserved in the sequence of points in the output space. The rate at which points in the 

signal space are processed by the FE block does not have to be the same rate at which 

points in the feature space are produced. This implies that time in the output  feature 

space could occur at a different rate than time in the input signal space.  
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 A priori knowledge concerning which are the relevant features that should be used 

in a speech recognition problem comes from very different sources. Results from 

biological facts, such as the EIH model (which is based on the inner workings of the 

human hearing system [2]), descriptive methods (like banks of pass band filters [2]), data 

reduction techniques (such as PCA [5]), speech coding techniques (such as LPC 

Cepstrum [7]), and neural networks (such as SOM [8]),  have been combined and utilized 

in the design of speech recognition feature extractors. An important result obtained by 

Jankowski et al [5], which summarizes all of the above mentioned a priori knowledge, 

suggests that under relatively low noise conditions all systems behave in similar ways 

when tested with the same classifier. This explains why the speech recognition 

community has adopted the LPC Cepstrum, which is very efficient in terms of 

computational requirements, as the method of choice. 

  

1.2.3.2 Recognizers 

 Recognizers deal with speech variability and account for learning the relationship 

between specific utterances and the corresponding word or words. There are several types 

of classifiers but only two are mentioned: the Template approach and the approach that 

employs Hidden Markov Models.  

The first one, the Template Approach, is described by the following steps: 

1. First, templates for each class to be recognized are defined. There are several methods 

for forming the templates. One of these consists in randomly collecting a fixed amount 
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of examples for each class in order to capture the acoustic variability of that specific 

class. The template of a class is defined as the set of collected examples for that class.  

2. Select a method to deal with utterance time warpings. A commonly used technique is a 

procedure called Dynamic Time Warping [14]. It consists of an adaptation of dynamic 

programming optimization procedures for time warped utterances. 

3. Select some distance measure for comparing an unknown example against the template 

of each class after time warping correction. This distance measure can be based on 

geometrical measures, like Euclidean distance, or perceptual ones, like Mel or Bark 

scales [2]. 

4. Compare unknown patterns against the collected templates using the selected time 

warping correction and the chosen distance measurement. The unknown pattern is 

classified according to the values obtained from the distance measurements. 

One drawback of the template procedure is that nothing guarantees that the chosen 

examples would really capture the class variability. The main problem with this method is 

that several utterances must be collected in order to capture the word’s variability. For 

small vocabularies this may not be a problem, but for large ones it is something 

unthinkable: no user would willingly utter thousands and thousands of examples. 

 Another approach is based on HMM, and solves the temporal and acoustic 

problems at once using statistical considerations. It is described by the following steps 

[9]: 

1. Like the Template Approach, something that stores the knowledge about the possible 

variations of a class must be defined. The difference is that in this case it is an HMM 
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instead of a template. Consider a system that may be described at any time by means 

of a set of M  distinct states, such as a word which can be represented by a collection 

of phonemes. At regularly spaced, discrete times, the system undergoes a change of 

state according to a set of probabilities associated with each state. Let us assume that 

each time the system moves to another state, an output selected from a set of N  

distinct outputs is produced. The outputs are selected according to a probability mass 

function. The states are hidden from the outside world, which only observes the 

outputs. In other words, a HMM is an embedded stochastic process with an 

underlying stochastic process that is not directly observable but can be observed only 

through another set of stochastic processes that produces the sequence of 

observations. In order to obtain the HMM that represents a class, the number of 

hidden states, state transition probabilities, and output generation probabilities must 

be defined. Usually, the number of states is defined by trial and error. The 

probabilities are instead obtained through iterative methods that work with sets of 

training examples. An example of an HMM is shown in Figure 1-4, where the solid 

circles represent the possible states, and the arrows represent the transitions between 

states as an utterance progresses. In the most basic level, a HMM is used to model a 

word and each state represents a phoneme. The number of states used to model a 

word depends on the number of phonemes needed to describe that word. 
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 Figure 1-4. Hidden Markov Model example. 

2. Once the HMMs have been determined, whenever an unknown utterance is presented 

to the system, each model evaluates the probability of producing the output sequence 

associated to that utterance. The word associated to the model with the highest 

probability is then assigned to the unknown utterance. 

The HMM method does not have some of the drawbacks exhibited by the 

Template Approach. Because it models the utterances as stochastic processes, it can 

capture the variability within a class of words. In terms of scalability, it offers much more 

flexibility. Instead of defining one HMM for each word, a hierarchy of HMMs is built, 

where the bottommost layer of HMMs models phonemes, a second layer which models 

short sequences of connected phonemes and uses the output of the first layer as input, and 

a final layer which models each word and uses the output of the second layer as input. 

This hierarchical approach constitutes the most successful approach ever devised for 

speech recognition. 

The limitations of the HMMs are that they rely on certain a priori assumptions 

that do not necessarily hold in a speech recognition problem [6] [15]: 
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•  The First Order Assumption, that all probabilities depend solely on the current state, is 

false for speech applications. This is the reason why HMMs have strong problems 

modeling coarticulations, where utterances are in fact strongly affected by recent state 

history. 

•  The Independence Assumption, that there is no correlation between adjacent time 

frames, is also false. At a certain instant of time, both words can be described by the 

same state but the only thing that differentiates them is their behavior before that state, 

which is something completely ignored by the HMM model.  

A characteristic common to all speech recognizers is that they are composed of 

layered hierarchies of sub-recognizers. Normally, the first layer is composed of a set of 

sub-recognizers whose output is integrated by the following layer of sub-recognizers, and 

so on, until the desired output is obtained. An example is the architecture used in a HMM 

based recognizer: the first layer is composed of a set of HMMs, each of them specialized 

in recognizing phonemes. The second layer, again composed of a set of HMMs, uses as 

input the output of the first layer and specializes in recognizing collections of phonemes. 

The third layer, based on HMMs too, uses the output of the second layer to recognize 

words. Finally, the fourth layer integrates the words into sentences using built-in 

knowledge about the grammar of the target language. 

 

1.3  Contributions of this Thesis 

 The main contributions of this thesis are the following:  
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•  The speech recognition problem is transformed into a simplified trajectory recognition 

problem. The trajectories generated by the FE block are simplified while preserving 

most of the useful information by means of a SOM. Then, word recognition turns into 

a problem of trajectory recognition in a smaller dimensional feature space. 

•  Another contribution is that the comparison between the different recognizers 

conducted here sheds new light on future directions of research in the field. 

•  Finally, a new paradigm that simplifies the training of a learning system is presented. 

The procedure allows a better usage of the training examples and reduces the 

computational costs normally associated with the design of a learning system. 

It is important to understand that it is not the purpose of this work to develop a full-scale 

speech recognizer but only to test new techniques and explore their usefulness in 

providing more efficient solutions.  

 

1.4  Organization of this Thesis 

 The major results of this research are presented following the conceptual division 

stated in Figure 1-3. The architecture used for the implementation of the FE block is 

detailed first. Then, a comparison between the different recognizers is presented. The 

thesis concludes by commenting on the results and proposing future steps for continuing 

this type of research. 
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1.5  Computational Resources 

 All the software used in this thesis to obtain the results was coded by the author in 

C++ and run in a Pentium class machine. All the plots were produced with the Matlab 

package. 
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2. NEURAL NETWORKS AND SPEECH RECOGNITION 

2.1  Biological Neural Networks 

 The central idea behind most of the developments in neural sciences is that a great 

deal of all intelligent behavior is a consequence of the brain activity [16]. Even more, the 

different brain functions emerge as a result from the dynamic operation of millions and 

millions of interconnected cells called neurons. Roughly speaking, a typical neuron 

receives its inputs through thousands of dendrites, processes them in its soma, transmit 

the obtained output through its axon, and uses synaptic connections to carry the signal of 

the axon to thousands of other dendrites that belong to other neurons.  

It is the manner in which this massively interconnected network is structured and 

the mechanisms by which neurons produce their individual outputs that determine most 

of the intelligent behavior. These two aspects are determined in living beings by 

evolutionary mechanisms and learning processes.  

 

2.2  Artificial Neural Networks 

During the last 30 years, a new computational paradigm based on the ideas from 

neural sciences has risen [17]. Its name, neural networks, comes from the fact that these 

techniques are based upon analogies drawn from the inner workings of the human 

nervous system. The main idea behind the neural network paradigm is to simulate the 

behavior of the brain using  interconnected abstractions of the real neurons (see Figure 2-

1), to obtain systems that  exhibit complex behaviors, and hopefully intelligent ones. 
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Figure 2-1. Artificial neuron. 

 In an artificial neuron, numerical values are used as inputs to the “dendrites.” 

Each input is multiplied by a value called weight, which simulates the response of a real 

dendrite. All the results from the “dendrites” are added and thresholded in the “soma.” 

Finally, the thresholded result is sent to the “dendrites” of other neurons through an 

“axon.” This sequence of events can be expressed in mathematical terms as: 

 y f w xi i
i

n

=










=
∑

1
         (2.1) 

where xi  is the input received by a dendrite, wi  the weight associated to the i th  

“dendrite,” ( )f  a threshold function, y  the output of the neuron. 

Although the model suggested by Figure 2-1 is a simplistic reduction of a real 

neuron, its usefulness is not based on the individual capacities that each individual neuron 

exhibits but on the emergent behavior that arises when these simple neurons are 

interconnected to form a neural network. As in biological neurons, the interconnection 
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architecture of the neurons and the manner in which neurons process their inputs 

determines the behavior exhibited by the neural network. 

 In contrast with biological neural networks, the architecture of a neural network is 

set by a design process, and the parameters that define the way its neurons process their 

respective inputs are obtained through a learning process. The learning process involves  

a search in a parameter space for determining the best parameter values according to 

some optimality criteria. 

  

2.2.1  Self Organizing Map 

The Self Organizing Map (SOM) is a neural network that acts like a transform 

which maps an m -dimensional input vector into a discretized n -dimensional space while 

locally preserving the topology of the input data [18]. The expression “locally preserving 

the topology” means that for certain volume size in the input space, points that are close 

together in the input space correspond to neurons that are close in the output space. This 

is the reason that explains why a SOM is called a feature map [19]: relevant features are 

extracted from the input space and presented in the output space in an ordered manner. It 

is always possible to reverse the mapping and restore the original set of data to the 

original m -dimensional space with a bounded error. The bound on this error is 

determined by the architecture of the network and the number of neurons. The SOM 

considers the data set as a collection of independent points and does not deal with the 

temporal characteristics of the data. It is a very special transform in the sense that it re-
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expresses the data in a space with a different number of dimensions while preserving 

some of the topology.  

 A useful training procedure for a SOM is as follows [20]: 

1. The neurons are arranged in a n -dimensional lattice. Each neuron stores a point in an 

m -dimensional space. 

2. A randomly chosen input vector is presented to the SOM. The neurons start to 

compete until the one that stores the closest point to the input vector prevails. Once the 

dynamics of the network converges, all the neurons but the prevailing one will be 

inactive. The output of the SOM is defined as the coordinates of the prevailing neuron 

in the lattice. 

3. A neighborhood function is centered around the prevailing neuron of the lattice. The 

value of this function is one at the position of the active neuron, and decreases with the 

distance measured from the position of the winning neuron.  

4. The points stored by all the neurons are moved towards the input vector in an amount 

proportional to the neighborhood function evaluated in the position of the lattice where 

the neuron being modified stands. 

5. Return to 2, and repeat steps 2, 3, and 4 until the average error between the input 

vectors and the winning neurons reduces to a small value. 

 After the SOM is trained, the coordinates of the active neuron in the lattice are 

used as its outputs.  
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 Figure 2-2 shows a mapping from the unitary square in a 2-dimensional space 

onto a lattice of neurons in a 1-dimensional space. The resulting mapping resembles a 

Peano space-filling curve [21]. 
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Figure 2-2. Unit Square mapped onto a 1-D SOM lattice. 

 

2.2.2  Multi-Layer Perceptron 

The functionality of the Multi-Layer Perceptron (MLP) can be best defined by the 

result proven by Kolmogorov, then rediscovered by Cybenko [22], Funahashi [23], and 

others. They proved that an MLP with one hidden layer with enough neurons is able to 

approximate any given continuous function. The MLP is a universal function 

approximator. As in the case of the SOM, the MLP does not deal with temporal behavior. 

An MLP is comprised of several neurons arranged in different layers (see Figure 

2-3). The layer that consists of the neurons which receive the external inputs is called the 

input layer. The layer that produces the outputs is called the output layer. All the layers  

between the input and the output layers are called hidden layers. Any input vector fed into 
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the network is propagated from the input layer, passing through the hidden layers, 

towards the output layer. This behavior originated the other name for this class of neural 

networks, viz. feed-forward neural networks.  

 

Figure 2-3. MLP with 1 hidden layer. 

 The parameters of the MLP are set in a training stage during which the data pairs 

formed by the input vectors and the corresponding output vectors are used to guide a 

parameter search algorithm. One approach consists in minimizing the errors caused by the 

training examples by means of a gradient descent algorithm. This procedure is called 

Error backpropagation method [17]. It is important to note that this is only one approach 

and many more are available, like reinforced learning, simulated annealing, genetic 

algorithms, etc. 
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2.2.3  Recurrent Neural Networks 

 A Recurrent Neural Network (RNN) is similar to a MLP but differs in that it also 

has feedback connections. Experimental results show that like a MLP, these networks 

also perform as universal function approximators. Experimental results also show that 

RNNs are able to approximate simple functions between temporal trajectories in the input 

space and temporal trajectories in the output space. Although they constitute a 

generalization of the MLP, nobody has yet proven that they are universal function 

approximators. So far, the only proof comes from Funahashi, who proved that a RNN, 

provided that is has enough neurons, can generate any finite time trajectory [24].  An 

example of a RNN architecture is shown in Figure 2-4. The main difference with the 

MLP consists of the existence of feedback connections between the neurons. This allows 

these type of neural networks to display all type of dynamical behaviors. 

 

Figure 2-4. RNN architecture. 
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2.3  Neural Networks and Speech Recognition 

Since the early eighties, researchers have been using neural networks in the speech 

recognition problem. One of the first attempts was Kohonen’s electronic typewriter [25]. 

It uses the clustering and classification characteristics of the SOM to obtain an ordered 

map from a sequence of feature vectors. The training was divided into two stages, where 

the first of these was used to obtain the SOM. Speech feature vectors were fed into the 

SOM until it converged. The second training stage consisted in labeling the SOM, i.e. 

each neuron of the feature map was assigned a phoneme label. Once the labeling process 

was completed, the training process ended. Then, unclassified speech was fed into the 

system, which was then translated it into a sequence of labels. This way, the feature 

extractor plus the SOM behaved like a transducer, transforming a sequence of speech 

samples into a sequence of labels. Then, the sequence of labels was processed by some AI 

scheme in order to obtain words from it. 

 Another approach is Waibel’s Time Delay Neural Network (TDNN) [26]. It used 

a modified MLP to capture the space deviations and time warpings in a sequence of 

features. One input layer, two hidden layers and, one output layer were used to classify 

the different phonemes produced by English native speakers. The weights that defined the 

TDNN were defined such that the system was somewhat invariant to time warpings in the 

speech signal. It only recognized speech at a phoneme level and it was not used to make 

decisions in longer time spans, i.e., it was not directly used for word recognition. 

 As larger segments of speech are considered, approaches like the Electronic 

Typewriter or the TDNN become less useful. It is difficult for these approaches to deal 
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with the time warpings, a problem which so far has impeded the neural networks to be 

successfully employed in the speech recognition problem. To integrate large time spans 

has become a critical problem and no technique using neural networks has yet been 

devised to solve this problem in a satisfactory manner. 

 In order to address the problem stated above, hybrid solutions have been used 

instead. Usually, after the phoneme recognition block, either HMM models [27] or Time 

Delay Warping (TDW) [28] measure procedures are used to manipulate the sequences of 

features produced by the feature extractors. In this thesis, alternate approaches, solely 

based on neural networks are developed. 
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3. DESIGN OF A FEATURE EXTRACTOR 

As stated before, in a speech recognition problem the FE block has to process the 

incoming information, viz. the speech signal, such that its output eases the work of the 

classification stage. The approach used in this work to design the FE block divides it into 

two consecutive sub-blocks: the first is based on speech coding techniques, and the 

second uses a SOM for further optimization. 

 

3.1  Speech Coding 

Why do we employ speech coding techniques to design the FE block? Because it 

has been extensively proven that speech coding techniques produce compact 

representations of speech which can be used to obtain high quality reconstructions of the 

original signal. These techniques can provide a compression of the incoming data while 

preserving its content. Digital telephony is a field that heavily relies on these techniques 

and its results prove that these methods are quite effective.  

 

3.1.1  Speech Samples 

 The context of the present work is speech recognition in a small vocabulary, 

segmented speech, and a single speaker. For developing experimental results, the set of 

English digits, recorded with a pause between them, and uttered by the author, was used. 
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All the examples were uttered in a relatively quiet room. No special efforts were 

made in order to diminish whatever noises were being produced at the moment of 

recording.  

 

3.1.2  Speech Sampling 

 The speech was recorded and sampled using an off-the-shelf relatively 

inexpensive dynamic microphone and a standard PC sound card. The incoming signal 

was sampled at 11,025 Hertz with 8 bits of precision.  

It might be argued that a higher sampling frequency, or more sampling precision, 

is needed for achieving a high recognition accuracy. However, if a normal digital phone, 

which samples speech at 8,000 Hertz with an 8 bit precision is able to preserve most of 

the information carried by the signal [2], it does not seem necessary to increase the 

sampling rate beyond 11,025 Hertz, or the sampling precision to something higher than 8 

bits. Another reason behind these settings is that commercial speech recognizers typically 

use comparable parameter values and achieve impressive results.    
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Figure 3-1. Speech signal for the word ‘ZERO’, sampled at 11,025 Hertz with a precision 

of 8 bits. 

 

3.1.3  Word Isolation 

Despite the fact that the sampled signal had pauses between the utterances, it was 

still needed to determine the starting and ending points of the word utterances in order to 

know exactly the signal that characterized each word [2]. To accomplish this, a moving 

average of the sampled values was used. After the end of a word was found, whenever the 

moving average exceeded a threshold, a word start point was defined, and whenever the 

moving average fell below the same threshold, a word stop point was defined. Both the 

temporal width of the moving average and the threshold were determined experimentally 

using randomly chosen utterances. Once those values were set, they were not changed. It 

must be noted that no correction for mouth pops, lip smacks or heavy breathing, which 

can change the starting and ending points of an utterance, was done. 
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3.1.4  Pre-emphasis Filter 

As is common in speech recognizers, a pre-emphasis filter [2] was applied to the 

digitized speech to spectrally flatten the signal and diminish the effects of finite numeric 

precision in further calculations.  

The transfer function of the pre-emphasis filter corresponds to a first order FIR 

filter defined by: 

H w ae jw( ) = − −1          (3.1) 

 A value of a = 0 95. , which leads to a commonly used filter [2], was used. This 

type of filter boosts the magnitude of the high frequency components, leaving relatively 

untouched the lower ones.  

 

3.1.5  Speech Coding 

After the signal was sampled, the utterances were isolated, and the spectrum was 

flattened, each signal was divided into a sequence of data blocks, each block spanning 30 

ms, or 330 samples, and separated by 10 ms, or 110 samples [2]. Next, each block was 

multiplied by a Hamming window, which had the same width as that of the block, to 

lessen the leakage effects [2][28]. The Hamming window is defined by: 
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Then, a vector of 12 Linear Predicting Coding (LPC) Cepstrum coefficients was obtained 

from each data block using Durbin’s method [2] and the recursive expressions developed 

by Furui [7]. The procedure is briefly outlined in the following: 

1. First, the auto-correlation coefficients were obtained using: 

 ( ) ( ) ( )r m x n x n m m and N
n

N m
= + = =

=

− −
∑ 0

1
12 330,    (3.3) 

 where ( )x i  corresponds to the speech sample located at the i th  position of the frame. 

2. Then, the LPC values were obtained using the following recursion: 
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 where [ ]m l∈ 1, , [ ]∀ ∈l p1, , and a an n
p=  is the nth  LPC coefficient. A value of 

p = 12  was used in this feature extractor [2]. 

3. Finally, the LPC Cepstrum coefficients were obtained using: 
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 where a value of m = 12  was used in the feature extractor, resulting in 12 LPC 

Cepstrum values per frame. 
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As a result of the LPC Cepstrum extraction procedure, each utterance was 

translated into a sequence of points, each belonging to the LPC Cepstrum feature space of 

dimension 12, and each 10 ms apart. In other words, this procedure translates an air 

pressure wave into a discretized trajectory in the LPC Cepstrum feature space.  

Figure 3-2 and Figure 3-3 contain one example of the evolution of the LPC 

Cepstrum components for each of the digits. It is interesting to note in these plots that the 

length in time of the different utterances differs by important amounts. The shortest 

utterance lasts approximately 30 [ms], while the longest around 80 [ms]. It can also be 

appreciated that the values of the parameters also differ by important amounts. These 

differences between the utterances will be of great importance for the task of the 

Recognizer. Ideally speaking, the FE block should process the sampled speech such that 

the output clearly differs between different classes while the within class variance is kept 

as low as possible.  
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Figure 3-2. Examples of LPC Cepstrum evolution for all the digits. 
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Figure 3-3. Examples of LPC Cepstrum evolution for all the digits. (continuation) 
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3.2  Dimensionality Reduction 

Once the utterance is translated into a trajectory in some feature space, several 

options exist: 

•  The most common approach is to use the obtained trajectory to generate a sequence of 

labels, normally by means of a vector quantization (VQ) scheme [29]. This sequence is 

then used for recognition. As an example, Carnegie mellon’s SPHINX speech 

recognition system [9] fed the output of the speech coding scheme into a VQ system 

which translated the incoming data into a sequence of phonemes. The SPHINX system 

then used an HMM approach to process the sequences of labels and recognize the 

words. Although it cannot be said that this approach is inferior because it has been 

successfully used in practical speech recognition systems, it is still throwing away 

information. It does not keep information about the topological relationships between 

the output labels. In other words, for any sequence of labels there is no indication 

concerning the closeness in the feature space of the vectors that generated these labels.  

•  Another approach that may be found in the literature is to directly use the obtained 

trajectory for recognition. This route was taken by Hasegawa et al [10], who 

recognized trajectories in a feature space with 20 dimensions. The problem with this 

approach is that processing trajectories in spaces with as many dimensions as 20 

normally demands an excessive amount of computational resources.  

One of the objectives of the present work is to convert the word recognition 

problem into a trajectory recognition problem, similar to the approach taken by Hasegawa 

et al [10], but with a modification, i.e. the dimensionality of the trajectories is reduced 
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before feeding them into the recognizer block. In this manner, the trajectory classification 

is highly simplified.  

 Desire for achieving dimensionality reduction pervades several applications and 

several methods have been devised to accomplish it. This is specially true in the field of 

Automatic Control, where the characterization of highly nonlinear high order dynamic 

systems poses some major challenges for designing efficient control policies. Some 

examples [11] of the approaches used in this field to reduce the order of the system to be 

controlled are: Modal Aggregation, Continued Fraction Reduction, Moment Matching, 

and Pade Approximations. All of these methods require a previous identification of the 

system to be controlled. Once the system to be controlled is identified, the mathematical 

expression that relates the states of the system to its inputs and outputs is manipulated 

according to one of the procedures stated above in order to obtain a simplified version 

whose behavior resembles that of the original system. From the perspective of the speech 

recognition problem, the limitation of these approaches is that they simplify the model 

that generates the trajectories, not the trajectories themselves. The speech recognition 

problem is not a system identification problem, but a trajectory recognition one.  

Even more, despite the fact that the utterances are produced by a biological 

system, a system that necessarily produces continuous outputs, different utterances can 

represent the same word. It is important to note that each of these alternate utterances is 

valid and none of them can be regarded as a deviation from some ideal way to enunciate 

that word or as an incorrect output. In other words, there is no one-to-one relationship 

between the set of possible utterances and the class to which they belong: one utterance 



 56

necessarily implies only one class, but a class does not necessarily imply only one 

utterance. This aspect makes any analytical representation of the problem more complex 

than it could be expected. 

Using the fact that the SOM is a VQ scheme that preserves some of the topology 

in the original space [8], the basic idea behind the approach employed in this work is to 

use the output of a SOM trained with the output of the LPC Cepstrum block to obtain 

reduced state space trajectories that preserve some of the behavior of the original 

trajectory. The problem is now reduced to find the correct number of neurons for 

constituting the SOM and their geometrical arrangement. 

The SPHINX speech recognition system quantized the trajectories, which 

belonged to a space of 12 dimensions, using a VQ scheme with 256 vectors to generate a 

sequence of labels [9]. The SPHINX system achieved a high recognition accuracy in a 

much more difficult problem than the one being investigated in this work. It consisted of 

recognizing words from a 1000 word vocabulary, under continuous speech conditions, 

and in the presence of multiple speakers. Based on these results, since a SOM is a VQ 

scheme that preserves some of the topology of the original space, a SOM with as many 

neurons as vectors the SPHINX system had in its codebook set should be capable of an 

efficient quantization of the input space. In other words, it should be capable of at least 

retaining the amount of information needed to achieve the recognition accuracy reached 

by the SPHINX system.  

Based on the ideas stated above, it was decided that a SOM with 256 neurons was 

enough to reduce the dimensionality of the trajectories while keeping enough information 
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to achieve a high recognition accuracy. The SOM was arranged in a 2-D lattice. The 

coordinates of the lattice were used as the coordinates of the reduced space trajectory. The 

fact that the outcome is a 2-D trajectory which can be graphically represented for visual 

display was not particularly important for our decision about the number of dimensions of 

the output space. 

Figure 3-4, Figure 3-5 and Figure 3-6 show the temporal evolution of the two 

components of the trajectories for each of the digits. It also depicts the same trajectory 

projected onto the reduced feature space, i.e. the trajectory was projected along the time 

axis onto the reduced feature space such that all of its temporal characteristics are not 

shown. 

 What remains to be demonstrated is whether the SOM mapped similar utterances 

onto similar trajectories. In other words, did the SOM preserve some of the original 

topology of the trajectories? The answer to this question will be given in the following 

chapter of this thesis. 

It must be noted that a similar approach was used by Kohonen [8], but instead of 

reducing the dimensionality of the trajectory, he used the SOM to generate a sequence of 

labels, which was then used by a word classifier. Thus the present use of the SOM for 

order reduction in trajectory representations is a novel one, and this application can find 

appropriate use in other problems besides speech recognition where similar trajectories 

arise. 
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3.3  Optional Signal Scaling 

The output of the SOM is defined by the coordinates of the neuron that was 

activated by the input. The output values may need to be scaled before they are fed into 

the Recognizer. All the approaches used in this work to design a recognizer, with the 

exception of the one that employed a RNN, did not require scaling of the outputs. 
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Figure 3-4. Reduced feature space trajectories, all digits. 
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Figure 3-5. Reduced feature space trajectories, all digits. (Continuation) 
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Figure 3-6. Reduced feature space trajectories, all digits. (Continuation) 
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3.4  Comments 

 As it was defined before, the Feature Extractor block works as a transducer that 

translates the information contained by an air pressure wave into a trajectory in some 

feature space.  

Figure 3-7 sums up the processing done by the FE block. The different steps 

follow one another according to the following sequence:  

1. The incoming pressure wave is reduced to a signal through a sampling process. 

2. The starting and the ending points of the utterance embedded into the signal are 

obtained using the energy of the signal. 

3. The spectrum of the extracted utterance is enhanced by means of a preemphasis filter 

which boosts the high frequency components. 

4. Several data blocks are extracted from the enhanced signal. 

5. The extracted data blocks are windowed to reduce leakage effects. 

6. LPC components are extracted from the filtered blocks. 

7. LPC Cepstrum components are then extracted from the LPC vectors. 

8. The dimensionality of the LPC Cepstrum vectors is reduced using a SOM. 

9. The resulting vectors are scaled if the Recognizer that is being used requires it.   

 Nothing can still be said about the overall effectiveness of the FE block, since it 

depends on the recognition accuracy of the overall system. As an example, if the 

complete system achieves low recognition percentages, that can be caused by the FE 

block or the Recognizer, but, if it achieves higher percentages that means that the FE 

block was at least able to produce data that allowed these recognition accuracies. In other 
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words, in order to know the usefulness of the FE block, the Recognizer outputs must be 

obtained first.  
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Figure 3-7. FE block schematic. 
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4. DESIGN OF A RECOGNIZER 

 The output of the FE block is “blind,” i.e. it does not care about the word that is 

being represented by that trajectory. The FE block only transduces an incoming pressure 

wave into a trajectory in some feature space. It is the Recognizer block that discovers the 

relationships between the trajectories and the classes to which they belong, and adds the 

notion of class of utterance, i.e. type of word, into the system.  

 The Recognizer behaves like an observer. It fuses all the pieces of information 

provided by the FE block and produces an estimate. If this estimate belongs to a metric 

space, the Recognizer is called an estimator. On the other hand, if the estimate belongs to 

a set where the metric is ignored, or without a metric at all, the Recognizer is called a 

classifier. Since the output of a speech recognizer must belong to a vocabulary, a set of 

labels which does not have a metric associated to it, the speech recognizer must act like a 

classifier. 

As mentioned before, it is not the purpose of this work to develop a full scale 

speech recognizer, but to test new techniques. Considering this goal, all the approaches 

developed in this chapter were tested on a simple problem: recognizing only one digit 

among the others. 

 All the experiments reported in this chapter used a training set comprised of 200 

utterances, 20 for each digit, and a testing set composed of 100 utterances, 10 for each 

digit, different from the ones included in the training set. All the digits were uttered by 

the author. 
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The following sections describe two distinct treatments of the trajectories prior to 

feeding them into the Recognizer. The first translates each trajectory into a point that 

belongs to a higher dimensionality feature space. In this way, the trajectory recognition 

problem is converted into a Fixed Point recognition one, which explains why it is called 

the Fixed Point approach. The other treatment, which is called the Trajectory approach, 

directly works with the trajectories in time and analyzes them as they evolve. 

 

4.1  Fixed Point Approach 

 This approach translates the time varying trajectory into a point in a space, 

reducing the trajectory classification problem into a point classification one. 

Since the utterances exhibited a great deal of variation, not only in the feature 

space but also across time, they were normalized such that all time warping was canceled. 

All the trajectories in the training and the testing sets were normalized into trajectories of 

100 points such that the Euclidean distance between adjacent points in the reduced 

feature space was always one hundredth of the length of the trajectory projected into the 

reduced feature space. This way, all possible time warpings were neutralized, leaving 

only the reduced feature space distortions [30] (see Figure 4-1, Figure 4-2, and Figure 4-

3).  

It is important to note that time warpings are not something that necessarily 

requires to be corrected. On the contrary, time warpings can convey important 

information which can be used to improve the accuracy of the recognition process. 
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Nevertheless, in order to simplify the task, the normalization approach was preferred to 

directly working with time warped trajectories. 
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Figure 4-1. Normalized reduced feature space trajectories, 20 examples for each digit. 
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Figure 4-2. Normalized reduced feature space trajectories, 20 examples for each digit. 

(continuation) 
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Figure 4-3. Normalized reduced feature space trajectories, 20 examples for each digit. 

(continuation) 
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Then, each normalized trajectory was transformed into a Fixed Point in a higher 

dimensionality space. This was done by interpreting all the components of the vectors that 

defined a normalized trajectory, viz. 100 points, each of which belonged to a space of two 

dimensions, as a component of a point in a space of 200 dimensions. The components of 

the 100 vectors were stacked one after the other according to a lexicographic ordering 

until one vector with 200 components was obtained.  

 

4.1.1  Template Approach 

This approach divided the recognizer into two modules: the Template, a set that 

contained reference utterances of each of the digits, and a Comparator that compared an 

incoming trajectory against those stored in the Template. 

The training set was divided into two subsets, each with an equal number of 

examples for each digit. The first of these subsets was used to build the Template, and the 

second to calibrate the Comparator. 

The Template stored all the trajectories that belonged to a certain digit class, from 

now on let us say the digit ‘ZERO’,  which were contained by the first of the smaller 

training subsets. Being all of them valid instances of that utterance, they were simply 

copied into the Template. This way, the intrinsic variability of the class was captured 

without the need for further data processing or system refinements.  

The other module, the Comparator, worked as follows: 

1. The mean Euclidean distance between the incoming trajectory and each of the 

trajectories stored in the Template, in this case 10 trajectories belonging to the class 
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‘ZERO’, was calculated. The expression that measures the mean Euclidean distance 

between the unknown trajectory and the i th  trajectory contained by the Template was 

defined by: 

( ) ( )( )D t k t ki i unknownk
= −

=∑
1

100 1

100 2
      (4.1) 

2. Then, if D Dimin min= , [ ]∀ ∈i 110, , was below the TZERO  threshold, it was said that the 

unknown trajectory belonged to the class ‘ZERO.’ If not, it was said that the unknown 

trajectory did not belong to the class ‘ZERO’. 

To calculate TZERO , each of the ‘ZERO’ utterances contained in the second smaller 

subset obtained from the training set was compared against those stored in the Template. 

The ‘ZERO’ threshold for the digit ‘ZERO’ was defined as T DZERO i= max , [ ]∀ ∈i 110, . 

This value of the ZERO’ threshold assured that at least all the ‘ZERO’ utterances 

contained in the training set were correctly identified. 

 

4.1.1.1 Template Experiment 

The procedure specified above was applied to all the digits. As expected, all the 

trajectories belonging to the training set were correctly classified. The results for the 

trajectories contained by the testing set are presented in Table 4-1. 



 71

Digit # of Errors Recognition Accuracy 

0 11 89% 

1 33 67% 

2 22 78% 

3 60 40% 

4 15 85% 

5 81 19% 

6 22 78% 

7 52 48% 

8 11 89% 

9 76 24% 

Table 4-1. Testing set results for Template approach. 

 From Table 4-1 it can be appreciated that there are important variations between 

the results. While the recognizers for the digits ‘ZERO’ and ‘EIGHT’ achieved an 89% of 

accuracy, the recognizer for digit ‘FIVE’ only achieved 19%. This behavior can be 

explained by the fact that the recognition accuracy depends on the training examples 

stored in the template. If they do not capture the true variability of the utterance, the 

results will be poor. This could explain the poor results obtained for the ‘FIVE’ digit.  
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4.1.2  The Multi Layer Perceptron 

In contrast with the previous approach, this approach employs a Recognizer 

composed of a MLP which simultaneously obtained the template and elaborated a way to 

compare the incoming points against the template. In an MLP, the final template and 

comparison method are encoded in distributed manner across the entire set of weights of 

the network. 

The MLP had 200 input nodes, 5 hidden neurons, and 1 output neuron. The output 

of the neurons was inside the interval [-1,+1]. The hyperbolic tangent was used as the 

threshold function. Each neuron had an extra connection, whose input was kept constant 

and equal to one (the literature usually refers to this connection as bias or threshold). The 

weights were initialized with random values selected within the interval [-0.1,+0.1]. 

The MLP was trained using an approach that optimizes the usage of the training 

patterns and the Error backpropagation method. Details of this procedure are detailed in 

the following sections.  

 

4.1.2.1 A New Learning Approach 

 Since the procedure outlined here is applicable to any general learning problem, 

the discussion in this section will be in a more general context than what is required for 

the specific problem of speech recognition. 

 A learning problem can be defined by the following assertions: 

•  The problem of interest is described by a set of infinite events. 
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•  The events are indexed with the letter k . 

•  Each event is described by a pair of vectors, ( )� �x yk k, , where �xk  and �yk  may belong to 

different metric spaces. 

•  All �xk  and �yk  are confined within limited regions of their respective metric spaces. 

•  All the data pairs are independent, i.e. ( )� �x yk k,  is independent of ( )� �x yl l,  for every 

k l≠ . 

•  All the data pairs are identically distributed. 

•  There is a system, dubbed the Learning Block (LB), which observes the events one at a 

time according to the order established by the indexing. 

•  The LB is a system composed of an arrangement of basic systems. The architecture of 

LB defines the way in which the basic systems are connected. Each of the basic 

systems is defined by an algorithm. This basic system is uniquely defined by an 

algorithm and a set of parameters. Summing up, an LB is completely described by an 

architecture, a set of algorithms, and a set of parameters. It will be assumed that the 

correct architecture and necessary basic algorithms has already been discovered 

through an evolutive process or set by design decisions. The only thing that is not 

defined about the LB is its set of parameters. 

•  One objective of the LB is to self configure its parameters using the observed data 

pairs such that when observing the k th
*  one for the first time, for every �xk , ∀ ≥k k* , it 
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is able to generate an estimate �>yk  of  �yk  such that ( )d y yy k k
� �, > < ε . ( )d y yy k k

� �, >  is a 

distance measure defined for the space that contains the �y  vectors. 

•  Another objective of the LB is to achieve the previous goal using as few observed data 

pairs as possible. 

•  Another objective of the LB is to achieve the previous goals with the smallest possible 

index k* . 

•  After the LB observes an event ( )� �x yk k, , before observing another event, it undergoes 

a training stage in which the parameters are adjusted in order to achieve the previously 

stated goals. Execution of training stage k  is instantaneous but it incurs a cost Ck . 

The fourth objective of the LB is to achieve the previous goals while minimizing the 

total cost C Ckk

k
=

=∑ 0
* . 

 The traditional solution for this type of learning problems is defined by the 

following procedure: 

1. LB does nothing until ks  events are observed. 

2. At that moment, a training set Straining  is formed using m  past event pairs. The function 

of Straining  is to store those data pairs selected to train the LB. Also, n  past event pairs 

are selected to form a testing set Stesting . The function of Stesting  is to store those data 

pairs selected to test the LB. The selections are done such that  S Straining testing∩ = ∅  

and ( )m n ks+ ≤ . 

3. The parameters of the LB are randomly initialized.  
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4. Before the event ks +1 is observed,  the LB does its best to adapt its parameters using 

all the data pairs stored in Straining  in order to achieve its goals. The degree of 

fulfillment of the function approximation goal is measured using Stesting . After this 

training stage, the LB is never modified again. 

 The problem with this approach is that it is based on a chain of arbitrary decisions 

that are not optimized towards achieving the goals of LB. First, on what basis is the index 

ks  determined? The answer is none. The same applies to m  and n . Furthermore, even if 

these numbers are optimal, who assures that the selected event pairs contain the desired 

information? In other words, there are no defined criteria referring to when the training 

has to start, or how many events, or which ones, should be included in the training and 

the testing sets. 

This approach is equivalent to a teacher who has to teach calculus to a student,  

and whose teaching procedure consists of spending an undetermined amount of time to 

randomly gather information about the subject without ever opening the books that 

describe the topic. Once he arbitrarily decides that enough material has been collected, he 

hands all the gathered information over to the student. To make things worse, once the 

student receives the books, he studies them all, going through all the material, even if the 

material is repeated. It is easy to realize that there is a great inefficiency in this common 

training procedure. There must be a different approach that allows one to achieve the 

same goals in a more efficient manner. The next paragraphs will outline a new solution 

that seems to be better. 
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 The new approach is based on the following fundamental assumption: 

•  If the LB, for every �xk , k l< , produces an output ��yk  such that ( )d y yy k k
� �, � < ε , then, 

for some pairs ( )� �x ym m, , m l≥ , such that ( )d x xx k m
� �, < δ , the relation ( )d y yy m m

� �, � < ε  

will be true. In other words, each time the LB learns the correct relation between a pair 

of vectors, it is learning to react to other vectors too. ( )d x xx k m
� �,  and ( )d y yy k k

� �, <  are 

distance measures defined for the spaces that contain the x  and y  vectors 

respectively. 

The new learning procedure, based on an idea presented by the author in [12] is as 

follows: 

1. The Controller is defined as a system that regulates the order in which the data pairs 

are observed by the LB.  

2. Before training starts, the parameters of the LB are randomly initialized. Also, an 

empty training set Straining  is assigned to the LB. The function of Straining  is to store 

those data pairs selected to train the LB. 

3. The Controller starts showing data pairs to the LB commencing k = 0  event pair. 

4. When the LB observes the k th  pair, [ ]k ∈ ∞0, , if ( )d y yy k k
� �, � < ε , the system ignores 

that pair, does not undergo a training stage, and waits until the Controller shows the 

next data pair. On the contrary, if ( )d y yy k k
� �, � ≥ ε , the pair is added to Straining  and the 

LB undergoes a training stage which uses the parameters found in the previous training 

stage as a starting point and Straining . If the system underwent a training stage, the 
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learning procedure returns to the previous state, where the Controller starts showing 

data pairs to the LB from index k = 0 . 

This approach is like a teacher that teaches the material lesson by lesson, such that 

when he realizes that the student already knows a new lesson, the teacher moves on to 

teach another.  

According to the Fundamental Assumption, each learned pair implies that the 

system has learned to correctly react to a neighborhood of examples close to that pair. 

Hence, it becomes unnecessary to use all the observed data pairs. Only those data pairs 

outside those neighborhoods, which contain information unknown to the LB, should be 

used. With the selection of training examples in this manner, the training set is kept quite 

small throughout the training process. 

 Furthermore, after a pair is learned, the probability of finding a pair with new 

information reduces because the unlearned region diminishes. The expected number of 

redundant examples before finding a useful one is the expected number of trials 

[ ] ( )
E k

p
p

=
−1

 in a geometric distribution [31], where p  is the probability of finding a 

useful example. In other words, as the system learns more and more, the probability of 

finding a pair that contains information unknown for the LB decreases. 

 In the parameter space, the search for the correct parameters is also affected by the 

new scheme. The relationship implied in each data pair can be satisfied by any parameter 

vector from a specific set in the parameter space. Each data pair implies a different 

specific set. The global solution, the solution that satisfies all the data pairs, is any of the 
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parameter vectors located at the intersection of the different specific sets defined by all 

the data pairs. The traditional approach tries to find any of the global solutions located 

inside this overall intersection directly. The new approach produces a different strategy. 

Since the training set is grown incrementally, and at the end of each training stage the LB 

has a parameter vector located at the intersection of the various specific sets defined by 

the data pairs contained by the training set at that instant, the search for the correct 

parameters is guided and gradually converges to one of the global solutions. Each time 

the LB starts a training stage it uses the previously found parameters, which are 

guaranteed to be closer to the solution than most of the randomly chosen points. The 

overall effect of this procedure is that the big parameter corrections are likely to be 

executed when the training set is small, while the small ones are done when the training 

set is bigger, keeping the computational load of the training process small. 

Nothing is said about a stopping rule for the algorithm because as the LB learns 

more, there are fewer training stages. Under the assumption that the LB can achieve zero 

recognition error, it will eventually learn to respond adequately to all the possible cases 

and it will never need to undergo a training stage again. In other words, the training 

process automatically shuts off when it learns to correctly react to all the cases.  

Due to the same reasons, there is no need for a testing set. Once the system learns 

to correctly react to all cases, it will achieve a perfect score with any possible Stesting . 

In summary, the new approach uses an optimally small training set and the 

computational load is kept small throughout the complete procedure. Finally, only the 
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best case of the traditional approach can be equivalent to the worst case of the new 

approach, which makes the new approach the preferred one among the two. 

 

4.1.2.2 Multi Layer Perceptron Experiment 

The procedure presented above was applied to the recognition of all the digits. As 

expected, all the trajectories belonging to the training set were correctly classified. The 

results for the trajectories contained within the testing set are presented in Table 4-2. 

Only 200 speech data pairs were available for training the MLP, which forced the 

training to stop once all the training utterances were used. 

An epoch was defined as the period in which the MLP was trained with a fixed 

training set until all the errors produced by the data pairs in the training set were below a 

threshold of 0.5. Every epoch comprised a variable number of backpropagation iterations. 

The number of iterations within an epoch was variable because the system iterated until 

all the errors were below the threshold of 0.5, or until the number of iterations reached 

100,000.  

Once trained, if the output of the MLP was positive, the incoming trajectory  was 

classified, as an example, as a ‘ZERO’. If it was negative, the trajectory was regarded as 

belonging, as an example, to the class ‘NON-ZERO’. 
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Digit # of Errors Recognition Accuracy 

0 2 98% 

1 9 91% 

2 10 90% 

3 4 96% 

4 3 97% 

5 13 87% 

6 9 91% 

7 8 92% 

8 7 93% 

9 12 88% 

Table 4-2. Testing set results for MLP approach. 

As a consequence of the training approach, as the epochs progressed the MLP 

learned. As it learned it was more rare to find a data pair which caused an erroneous 

output. Figure 4-4 shows the evolution in the number of ‘ZERO’ examples examined as 

the training set grew. It is important to note that since each time a new example was 

added to the training set a new epoch started, the size of the training set is the same as the 

epoch number. Figure 4-4 shows that the MLP generated the correct outputs for the entire 

training set after being trained with only 32 training examples. It also shows that in the 

first few epochs the MLP was completely ignorant and used almost all the examined 
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training examples. As the MLP learned, it became more and more difficult to find 

unknown information, which explains the sort of exponential behavior of the curve.    
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Figure 4-4. Training examples use evolution. 

Figure 4-5 shows that the percentage of computational resources is kept small, 

even as the training set grew. The curve shows that some epochs required more iterations 

in order to converge to the desired weight values. This behavior is expected, since for a 

given weight configuration it might be more difficult to find the optimal parameter 

combination given a training set.  
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Figure 4-5. Percentage of computational resources as a function of the actual training set. 

  

4.2  Trajectory Approach 

 This approach, rather than reducing the problem into a point classification one, 

deals directly with the normalized trajectories. The trajectories are directly fed into the 

recognizer, which, at the same time, is continuously producing an output that can be used 

for classification purposes. 

 

4.2.1  Recurrent Neural Network Trained with Back-Propagation Through Time 

 Contrary to the MLP approach, which waits until a trajectory ends in order to 

process it, this approach works with the trajectories as they appear. It does not transform a 

trajectory into a point, but preserves its time characteristics. The only consideration 

though, is that it works with normalized trajectories.  
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As the MLP approach, an RNN constitutes a single, monolithic, block that 

simultaneously stores the template and discovers the proper comparison method, such 

that it is impossible to differentiate one from the other.  

The RNN architecture was defined by a set of fully interconnected neurons, which 

are either input, hidden, or output neurons. The dynamics of the RNN was defined by 

[32]: 

τ i i i ij j i
j

x x w y zD = − + +∑         (4.2) 

where τ i  is a time constant that regulates the speed at which the value of the states 

change, xi  is the state of neuron i , wij  is the weight that goes from neuron j  to neuron 

i , y j  is the output of neuron j , and zi  is the input to the neuron i . The state of a neuron 

and its output are related by the hyperbolic tangent function: 

y
ei xi

=
+

−−

2
1

1         (4.3) 

which is one type of bipolar functions. zi  is zero for every neuron that does not have an 

input. In other words, it is zero for every hidden and output neuron. 

The RNN was trained with the backpropagation Through Time (BTT) algorithm 

[33]. The equations that specify the implementation of this algorithm are obtained by 

minimizing the value of a functional along the normalized trajectory [10]: 

J Ldt
t

t
= ∫

0

1
          (4.4) 
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where t0  marks the starting time of the normalized trajectory, t1  its ending time, and L  

the functional to be minimized. The functional is a Lagrangian defined by the Kullback-

Leibler Divergence cost function and the dynamics of the system: 

L
t t

y
t t

y
x x w y zi i

i

i i

i
i i i i ij j i

ji
=

+ +
+

+
− −

−








 + + − −






















∑∑

1
2

1
1

1
2

1
1

log log Dλ τ  (4.5) 

where, [ ]i N∈ 1,  denotes all the neurons, ti  is the desired output for neuron i , and λi  is 

the i th  Lagrangian coefficient. The desired output of the i th  neuron, ti , is defined as 

follows: 

t
d i
yi

i
th

i
=




;
;

if the  neuron is an output one
otherwise

     (4.6) 

 In all the previous equations, Dxi , xi , yi , zi , ti , and λi  are functions of time. On 

the other hand, τ i  and wij  are not functions of time.  

The training of the network proceeds from minimizing J  using the RNN 

dynamics [3.2] as a constraint. The training method is obtained using the Euler-Lagrange 

equations from variational calculus: 

∂
∂

∂
∂

∂
∂ λ

L
x

d
dt

L
x

L
i i

i

−











=

=

�
0

0

        (4.7) 

along with the border conditions 

∂
∂ λ

L

i t t=

=
1

0          (4.8) 
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The result of this approach is the following set of continuous-time equations: 

( ) ( )τ λ λ λ

λ

k k k k k k l lk
l

k t t

y t y wD = + − + −

=

∑

=

1
2

1
2

1

0

2

1

     (4.9) 

 Using a gradient descent method to obtain the analytical expressions that dictate 

the adjustment of weights and auxiliary variables: 

∆

∆

w
J

w
y dt

J
x dt

ij
ij

i jt

t

j
j

j jt

t

= − =

= − = −

∫

∫

η
∂
∂

η λ

τ η
∂
∂ τ

η λ

0

1

0

1
D

       (4.10) 

 Using the approximation: 

( ) ( ) ( )df t
dt

f t t f t
t

≈
+ −∆

∆
        (4.11) 

to obtain discrete expressions, it follows that the dynamics of the RNN can be rewritten 

as: 

( ) ( ) ( ) ( )x k x k w y k z ki i ij j i
j

+ = + +∑1       (4.12) 

and the dynamics of the backpropagating signal can be rewritten as: 

( )
( ) ( ) ( )( ) ( )( ) ( )

λ

λ λ

i

i i i i j ji
j

k

k y k t k y k k w

1

2

0

1
1
2

1
2

1

=

− = − − − − ∑
    (4.13) 

and the weights modified by: 

( ) ( )∆w k y kij i jk k

k

o
=

=∑η λ1         (4.14) 

where τ i = 1, ∀ i , and ∆t = 1. 
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The RNN that was used in this work had two input neurons, two hidden neurons, 

and 1 output neuron, totaling 5 fully interconnected neurons.  

The value of di , the desired signal, was set to 0.95 if the corresponding input 

trajectory belonged to the class that the RNN had to recognize, or -0.95 if the 

corresponding input trajectory did not belong to the class that the RNN had to recognize. 

Using the training method used for the MLP and the BTT, an RNN was trained to 

recognize the word ‘ZERO’. The RNN only converged when at most 3 training examples, 

1 positive and two negatives, were used. It was not possible to make the weights converge 

when a bigger number of training trajectories was used. When more examples were used, 

the training was so slow, that the method seemed completely impractical when compared 

to the previous ones.  

Although the RNN did not use the complete training set, it was applied to the 

testing set and a recognition accuracy of 78.80% was achieved. Plots of the outputs of the 

RNN for one positive and two negative trajectories are shown in Figure 4-6. The figure 

shows that the positive trajectory’s output settles around 0.95 after some milliseconds, 

while the negative trajectory’s outputs settle around -0.95 after a similar amount of time.  
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Figure 4-6. RNN output for training utterances. 

In all the tests, the initial RNN states were set to 0, and the RNN initial weight 

values were randomly chosen in the interval [-0.1,0.1]. 

 

4.3  Discussion on the Various Approaches Used for Recognition 

 Before speaking about the different recognition schemes it is important to note the 

variability exhibited by the normalized trajectories in the reduced feature space. This 

might be a natural characteristic of the utterances or a shortcoming of the FE block. If it is 

the former, it is remarkable in the sense that when the associated utterances are heard they 

are regarded as very similar, if not identical, despite their variability in the feature space. 

If it is the latter, it suggests that the FE block must be improved. 

 In general, all the three approaches solved the scalability problem in a trivial way: 

to add a new word is just matter of adding an additional Template, MLP, or RNN. 

The following comments concerning the Template approach are in order: 
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1. The major drawback of the method is its low recognition accuracy. The only way to 

improve its efficiency seems to be to use a higher number of normalized trajectories 

in the Tamplate, which inevitably would increase the memory requirements of the 

implementation.  

2. Another important drawback of the approach was its memory requirements. Since 

each point of a trajectory corresponds to a point in the 16 by 16 neurons lattice of the 

SOM, each point can be stored in one byte, i.e. a 100 points trajectory requires 100 

bytes. Since each digit had a Template defined by 10 trajectories, each digit required 

1,000 bytes of memory, without using any data compression techniques. If we were 

working with a vocabulary of 50,000 words, and if each template had 10 trajectories 

in order to achieve high recognition accuracy, 50,000,000 bytes of memory would be 

required to store all the Templates. This is by no means a light, in terms of memory, 

system. 

3. One advantage of the Template Approach is that it quickly allowed to capture some of 

the variability of a class of trajectories without any special computational 

requirements.  

Some comments concerning the MLP approach can also be made: 

1. Its recognition accuracies were far better than the ones obtained with the Template 

Approach. Even though its performance was better, it is still below the limits required 

for practical applications.  

2. If the problem with the Template Approach was that it was memory thirsty, the MLP 

approach was even worse. The hidden layer was defined by 5 hidden neurons, each 
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with 200 weights and 1 bias, totaling 1005 floating point values. The output layer 

consisted of only 1 neuron, with 5 weights and 1 bias, totaling 6 floating point values. 

In total, each MLP required 1011 floating point values. Hence, in order to build a 

system with a 50,000 words capacity would require 202,200,000 bytes, assuming 4 

bytes per each floating point value. Even though its recognition accuracy was far 

better when compared against the one of the Template approach, its memory 

requirements pose some limitations for practical implementations. 

3. In terms of training, the MLP approach was definitely more complex than the one 

based on the Template approach. Although the incrementally growing training set 

approach considerably eased the training, it still required training times in the order of 

minutes to hours to train the MLP recognizers.  

A few comments concerning the RNN can also be made in the light of the items 

used for comparison above: 

1. It achieved only 80% of recognition accuracy, which sets this method as the worst of 

the three approaches. Nonetheless, this result is only preliminary in the sense that the 

system was only applied for recognizing the digit ‘ZERO’ and trained using only 

three training examples. 

2. In terms of memory requirement, it is the best. The fully connected RNN with 5 

hidden neurons requires only 25 floating point values, which implies that a system 

with a 50,000 words capacity would require 5,000,000 bytes, assuming 4 bytes per 

each floating point value.  
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3. It was by far the most complex system, so complex that it was not possible to train 

better RNNs by means of bigger training sets. This was the reason that caused the 

abandoning of this approach and that explains why only results for the ‘ZERO’ digit 

were obtained. 

Concerning the new approach for training a learning system: 

1. Within the scope of the conducted experiments, the obtained results validate the 

usefulness of the new learning approach. It achieved successful results using only a 

fraction of the training sets. 

2. There is a strong need for more general and conclusive experiments. There is need for 

a thorough comparison between the traditional approach and this new method. 

Experiments with different estimation and classification problems using different data 

sets, different noise conditions, different learning blocks, different data orderings, and 

different initial conditions must be conducted before more general statements can be 

made concerning the new learning procedure. Additionally, all of the assumptions on 

which the new approach rests should be revisited and the method generalized even 

more according to them. This specially refers to the possibility of gradually 

diminishing the function approximation error ε  towards the final desired value as the 

training set is augmented. This may speed up the training of the LB in the new 

approach. 

3. If the method proves to be robust enough, it may be useful to measure how good a the 

LB block is within the context of a problem. So far, learning procedures are only 

compared on the basis of the number of components they are made of, and the 
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computational power that they require to solve a given problem. Another important 

measure would be the amount of training examples required to solve the problem. A 

powerful LB should require less training examples than a less powerful one. Such a 

measure would signify the amount of exposure a LB needs to a problem in order to 

solve it. 

4. It may also be worthwhile to apply this method to learning problems in sequential 

analysis and adaptive control. Both of these fields obtain estimates using the data as it 

is observed in some adaptive manner. It would be interesting to see if the approach 

presented in this work can be used to modify those techniques in some useful manner. 
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5. CONCLUSIONS  

5.1  Summary of Results Reported in This Thesis 

Although none of the approaches proved to be good enough for practical purposes 

with the present extent of development, they were good enough to prove that translating 

speech into trajectories in a feature space works for recognition purposes. The human 

speech is an inherently dynamical process that can be properly described as a trajectory in 

a certain feature space. Even more, the dimensionality reduction scheme proved to reduce 

the dimensionality while preserving some of the original topology of the trajectories, i.e. 

it preserved enough information to allow a good recognition accuracy. 

It is interesting to note that despite the fact that the SOM has been used in the 

speech recognition field for more than a decade, nobody has used it to produce 

trajectories, but only to generate sequences of labels. 

Finally, the new approach developed for training the neural network’s architecture 

proved to be simple and very efficient. It reduced considerably the amount of calculations 

needed for finding the correct set of parameters. If the traditional approach had been used 

instead, the amount of calculations would have been higher. 

  

5.2  Directions for Future Research  

Concerning future work, besides improving the FE block and devising a more 

robust Recognizer, the scope of the problem should be broadened to larger vocabularies, 
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continuous speech, and different speakers. From this perspective, the results presented in 

this thesis are only preliminary. 

As it could be appreciated, the reduced feature space trajectories were very noisy, 

which complicated the recognition process. This can be a natural consequence of the 

speech signal, or an artifact caused by the feature extraction scheme. If the latter were the 

case, it would not be surprising since the LPC Cepstrum coder scheme is not very 

efficient when it comes to represent noise-like sounds as the consonant ‘S’ [7]. It may be 

more appropriate to use feature extractors that do not throw away information before the 

dimensionality reduction scheme is used. As an example, the output of a Fourier or 

Wavelet transform, both of which retain all the information needed to reconstruct the 

original signal, could be directly used as input to the SOM. 

With respect to the dimensionality reduction, as the vocabulary size grows, the 

reduced feature space will start to crowd with trajectories. It is important to study how 

this crowding effect affects the recognition accuracy when reduced space trajectories are 

used. 

 New approaches must be developed in order to avoid using the knowledge of 

starting and ending points, plus the need of trajectory normalization. There is a strong 

need for trajectory recognizers that are able to process highly distorted, both in space and 

time, unknown trajectories in a sequential manner. 

 Even though the Trajectory Approach did not produce encouraging results due to 

the training complexity of the RNN, and that it seems less efficient when compared with 

the Fixed Point approach, it does not have to be discarded because it should be possible to 
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combine the lesser memory requirements of the Trajectory Approach with the simplicity 

of the Fixed Point Approach. In this context, it must also be taken into account that only 

one gradient descent method was used to train the RNN. It might be easier to train the 

RNN with other gradient descent based methods, or radically different techniques like 

reinforced learning [34], simulated annealing [17], or genetic algorithms [35]. 

Furthermore, the architecture of the RNN can be modified such that instead of training 

one RNN for recognising a long and complex trajectory, it may be easier to train  a 

hierarchy of simpler RNNs, each designed to recognize portions of the long and complex 

trajectory. Such an approach will go along the lines of the HMM scheme, which 

organizes the HMMs in hierarchical layers. 

So far, all the approaches that are used in speech recognition require a significant 

amount of examples for each class. In a thousands-of-words vocabulary problem this 

would require that the user of the system uttered hundreds of thousands of examples in 

order to train the system. New approaches must be developed such that the information 

acquired by one module can be used to train other modules, i.e. that use previously 

learned information to deduce the trajectories that correspond to non-uttered words. 
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