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Abstract

Using a proper distribution function for speech signal or for its representations is of crucial importance in statistical-

based speech processing algorithms. Although the most commonly used probability density function (pdf) for speech

signals is Gaussian, recent studies have shown the superiority of super-Gaussian pdfs. A large research effort has

focused on the investigation of a univariate case of speech signal distribution; however, in this paper, we study the

multivariate distributions of speech signal and its representations using the conventional distribution functions, e.g.,

multivariate Gaussian and multivariate Laplace, and the copula-based multivariate distributions as candidates. The

copula-based technique is a powerful method in modeling non-Gaussian multivariate distributions with non-linear

inter-dimensional dependency. The level of similarity between the candidate pdfs and the real speech pdf in different

domains is evaluated using the energy goodness-of-fit test.

In our evaluations, the best-fitted distributions for speech signal vectors with different lengths in various domains

are determined. A similar experiment is performed for different classes of English phonemes (fricatives, nasals, stops,

vowels, and semivowel/glides). The evaluation results demonstrate that the multivariate distribution of speech signals

in different domains is mostly super-Gaussian, except for Mel-frequency cepstral coefficient. Also, the results confirm

that the distribution of the different phoneme classes is better statistically modeled by a mixture of Gaussian and

Laplace pdfs. The copula-based distributions provide better statistical modeling of vectors representing discrete Fourier

transform (DFT) amplitude of speech vectors with a length shorter than 500 ms.

Keywords: Multivariate distribution of speech signal, Copula-based multivariate distribution, Mel-frequency cepstral

coefficient (MFCC), Discrete cosine transform (DCT), Discrete Fourier transform (DFT), Linear predictive coefficient (LPC),

Goodness-of-fit (GOF) test

1 Introduction

Statistical-based speech processing algorithms have

attracted wide interests during the last three decades in

numerous applications, e.g., speech coding [1], speech

recognition [2, 3], speech synthesis [4], and speech

enhancement [5]. In all statistical-based speech process-

ing algorithms, a probability density function (pdf) is

assumed for the signal or its representation. Therefore,

it is not surprising that proper selection of the pdf has

been one of the challenges persistently addressed in this

area [6–8].

Most of the statistical-based speech processing algo-

rithms assume Gaussian probability distribution density

for speech signals [2, 9–13]. The simplicity of the formu-

lations and the semi-support of the central limit

theorem are the main motivations for using Gaussian

pdf [14]. Recently, a number of researchers have studied

the distribution of speech signal more precisely using

goodness-of-fit (GOF) test [15, 16] in time domain and

transformed domains, e.g., discrete cosine transform

(DCT) and discrete Fourier transform (DFT). In this

regard, Gazor et al. [14], Martin [6], Shin et al. [7], Chen

and Loizou [17], and Erkelens et al. [18] have shown that

speech signals in various domains are modeled more

accurately by super-Gaussian pdfs than by Gaussian pdf.

Their evaluation results have demonstrated that the pdf

of speech signals for time and DCT features are closer

to Laplace [14], for jointly amplitude and phase of DFT

features are closer to complex Laplace [17], for ampli-

tude of DFT features are closer to Rayleigh [18], and for
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real or imaginary parts of DFT features are individually

closer to either Laplace or Gamma [6]. In addition, Shin

et al. [7] have reported that generalized Gamma pdf

models the distribution of real parts of DFT features

more accurately compared to the Gaussian pdf. Table 1

summarizes the results of the published evaluations in

this field.

All aforementioned publications have aimed to address

the issue of modeling univariate pdf of speech signals for

algorithms using univariate pdf. However, there are

many statistical-based algorithms that take advantage of

multivariate distribution of speech signals, and therefore,

studying the multivariate distribution of speech to ex-

ploit a more proper pdf is a key issue for those speech

processing algorithms too. There are typically several

challenges in the studying and modeling of speech

signals in the multivariate distribution case, e.g., the

non-linear or linear inter-dimensional dependency, and

the sparsity and complexity of the multidimensional

space. These issues may have caused to mostly focus on

the investigation of univariate distribution during the

last two decades, and a small progress has been made in

the multivariate distribution study of speech signal. The

earlier studies on multivariate distribution of speech

signal, performed by Brehm et al. [19] and LeBlancin et

al. [20], suggested the multivariate Gaussian pdf for

speech frames with a length of 5 ms. As the frame length

and the process domain may vary the distribution [14],

the multivariate Gaussian pdf may not be an appropriate

choice for the algorithms using frame length other than

5 ms, e.g., 10 to 35 ms or exploiting process domain

other than the time domain, e.g., DFT or DCT. In re-

cent studies, Gazor et al. [14] and Jensen et al. [21]

have used the moment test and have shown that

Laplace multivariate distribution models speech signal or

its representations are better than the Gaussian multi-

variate distribution. However, in these studies, the

moment test as a GOF test was applied to each

dimension individually and the possible contribution

of inter-dimensional dependency to the multivariate

distribution was not considered.

In this paper, we investigate multivariate distribution

of speech signal in the time and transformed domains.

We consider new plausible distribution candidates to

tackle the multivariate distribution modeling challenges.

Among the candidates, copula-based distributions are

also proposed which are able to model the high-

dimensional non-Gaussian distribution with non-linear

inter-dimensional dependency [22]. The copula-based

distributions have been popular over the last decade in

the statistical fields, e.g., climate research, econometrics,

risk management [22, 23], and finance [24, 25]. The

other possible pdf candidates of speech including multi-

variate Gaussian, multivariate Laplace, the mixture of

Gaussian, and the mixture of Laplace distributions are

investigated in this paper too. We employ the goodness-

of-fit test [15, 16, 26] to evaluate the degree of similarity

between the candidate distribution and the real speech

signal distribution. The GOF test is a tractable three-

step approach to investigate distribution of data. In the

first step, a number of candidates are assumed as the pdf

of the real data. Next, an estimator, e.g., maximum likeli-

hood (ML) is exploited to fit the candidates to the real

data, and finally, the GOF test is performed to quantify

the level of similarity between the fitted candidates and

the real data. It is noted that although a wide number of

GOF tests have been proposed, the most appropriate

GOF test is the one that can highly cover underlying

problem conditions, e.g., in our case study is high

dimensionality of spaces. We briefly present a number of

GOF tests, a summary of their strengths and deficien-

cies, and finally choose the one that has been reported

as the most appropriate for high-dimensional space.

In general, speech processing algorithms using multi-

variate distribution exploit different feature types to

process speech signals. For instance, traditional hidden

Markov model (HMM)-based speech recognition and

synthesis algorithms [3, 27] exploit Mel-frequency cepstral

coefficients (MFCC); HMM-based speaker recognition

[13] systems exploit either linear predictive coding (LPC)

or MFCC; HMM-based speech enhancement algorithms

use LPC, time, DCT, MFCC, or DFT [7, 9, 10]; and

codebook-driven-based speech enhancement algorithms

[28] employ LPC. However, all these algorithms assume

the multivariate Gaussian pdf for extracted features of

speech signals. As the feature type may influence the

distribution [14], the multivariate distribution of the

different feature types including DFT, DCT, time, LPC,

and MFCC is studied in this paper. It is noted that a

number of speech processing algorithms, e.g., proposed by

Martin [6], Shin et al. [7], model the real and imaginary

parts of DFT separately. Thus, we study the real and

imaginary parts of DFT features separately. The whole

study of multivariate distribution in this paper is concen-

trated on clean speech signals.

Table 1 Proposed super-Gaussian univariate distribution of

speech signal in different domains

Domain Fitted distribution

Time Laplace [14]

Jointly amplitude and phase
of DFT

Complex Laplace [17]

Amplitude of DFT Rayleigh [18]

Real and imaginary parts of
DFT

Laplace, Gamma [6], or generalized
Gamma [7]

DCT Laplace [14]

Aroudi et al. EURASIP Journal on Audio, Speech, and Music Processing  (2015) 2015:35 Page 2 of 14



The remainder of this paper is structured as follows.

In Section 2, the copula-based distributions are pre-

sented including their formulations and parameter esti-

mation. In Section 3, the GOF tests are briefly reviewed

and among them, the energy test is selected as the most

appropriate one for the multivariate distribution study of

high-dimensional space. Section 4 elaborates candidates’

formulations, their parameter estimation, and an algo-

rithm for exploring the best-fitted candidate. Section 5

presents the evaluation setup and experimental results.

Finally, Section 6 concludes the work.

2 Copula-based distribution
A copula is defined as a multivariate probability distribu-

tion where the marginal probability distribution of each

variable is uniform and is used to describe the depend-

ency between random variables [22, 29–33]. As all the

multivariate joint distributions can be written in terms

of a copula and univariate marginal pdfs [29], copulas

are used as a popular statistical tool for modeling multi-

variate distributions. In this regard, copulas allow to

easily model the distribution of multivariate random

variables by estimating only marginal pdfs and copulas.

A copula-based distribution can capture important char-

acteristics of a vector, e.g., the appropriate pdf for mar-

gins and the appropriate correlation structure with a

possibly simple form.

The purpose of this section is to briefly review the

basic definition of the copula and a number of the most

commonly used estimation methods for fitting the

copula to the real data.

2.1 Copula model

The mathematical basis of the copula was proposed by

Sklar [29] and Hoeffding [33]. To define a copula model, let

x be a d-dimensional random vector x = {x1,…, xj,…, xd}.

Sklar [29] showed that the joint cumulative distribution

function (CDF) of x, FX(x), can be expressed as a function

of marginal CDFs uj ¼ FX j
xj
� �

; j ¼ 1:d , as shown in Eq.

(1), where CX : [0, 1]
d
→ [0, 1] denotes copula function.

Based on Sklar’s theorem [29], any arbitrary multivariate

pdf fX (x) can be expressed as the product of two terms: the

marginal pdf of dimensions f Xj
xj
� �

; j ¼ 1:d and the

copula density function cX(.) as shown in Eq. (2). The cop-

ula density function cX(.) can be derived from the copula

function as given in Eq. (3). As the copula density function

characterizes the inter-dimensional dependencies, it is also

called correlation structure in literature [22].

FX xð Þ ¼ CX u1;…; uj;…; ud
� �

ð1Þ

f X xð Þ ¼
Yd

j¼1

f X j
xj
� �

 !
: cX u1;…; uj;…; ud
� �

ð2Þ

cX u1;…; uj;…; ud
� �

¼
Yd

j¼1

∂

∂uj

 !
: CX u1;…; uj;…; ud

� �

ð3Þ

The two most used parametric forms for cX(.) are ellip-

tical and Archimedean [22, 30]. The Archimedean-based

copulas are mostly used in the bivariate form and they

are not practically usable for high-dimensional spaces

due to its high-computational cost [22, 34]. In contrast

to the Archimedean, the elliptical-based copulas, includ-

ing Gaussian and Student-t copula, can be used for

spaces with any number of dimensions [22]. We there-

fore briefly review the Gaussian and Student-t copulas in

the following sections.

2.2 Gaussian copulas

Let us assume the marginal CDFs, uj, are known. Each

uj can be transformed to a standard distributed random

variable yj, by using the inverse of univariate Gaussian

CDF F−1
N 0;1ð Þ :ð Þ as shown in the following equation,

yj ¼ F−1
N 0;1ð Þ uj

� �
¼ F−1

N 0;1ð Þ

�
FX j

xj
� ��

eN 0; 1ð Þ: ð4Þ

As a consequence, the set y = {y1,…, yj,…, yd} has a

multivariate Gaussian distribution N(0, ΣCopula), where

ΣCopula denotes a symmetric, diagonal, positive definite

matrix with unit diagonal elements. The joint CDF of y

can therefore be expressed by Eq. (5), which can be

interpreted as the copula function of x using terminology

of Eq. (1). By using Eqs. (3) and (5), the copula density can

be derived as shown in Eq. (6), where I denotes an identity

matrix and Tr denotes transpose operator. For further

details on this topic, see [22] and [31].

FX xð Þ ¼ CX u1;…; :uj; ::; ud
� �

¼ F
N 0;ΣCopulað Þðy1;…; yj;…; ydÞ ð5Þ

cX u1;…; udð Þ ¼ 1

ΣCopula

�� ��0:5 exp −
1

2
y Σ−1

Copula−I
� �

yTr
� �

ð6Þ

2.3 Student-t copulas

The Student-t copula is defined analogously to the

Gaussian copula; however, the transformed variables yj
are obtained using univariate Student-t CDF inverse

F−1
t vð Þ uj
� �

, where t(v) is a univariate Student-t distribution

with v degrees of freedom. Consequently, y = {y1,…, yj,

…, yd} follows a multivariate Student-t distribution t(v,

ΣCopula) where ΣCopula denotes a positive definite matrix

with unit diagonal elements. Similar to the Gaussian

copula function, the Student-t copula function, i.e., joint

CDF of y, is shown by Eq. (7). By using Eqs. (3) and (7),
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the Student-t copula density then is computed as shown

in Eq. (8). For further details, see [22] and [31].

CX u1;…; udð Þ ¼ F
t v;ΣCopulað Þ F−1

t vð Þ u1ð Þ;…; F−1
t vð Þ udð Þ

� �

ð7Þ

cX u1;…; udð Þ ¼ ΣCopula

�� ��−0:5 Γ v þ d
2

� �
Γ v

2

� �	 
d

Γ v þ 1
2

� �	 
d
Γ v

2

� �

�
1þ 1

v
yΣ−1

Copula y
t

� �−vþd
2

Yd

j¼1

1þy2

v

� �−vþ1
2

ð8Þ

2.4 Fit a copula model

There are several estimation methods proposed for

copula parameters [22, 35–37]. Among them, maximum

likelihood (ML), inference functions for margins (IFM),

and canonical maximum likelihood (CML) techniques

are used more frequently than others [22]. Generally,

these estimators maximize the log-likelihood function of

Eq. (2) with respect to Θ ¼ θ; αf g in different ways, where

α denotes a set of parameters concerning the copula

density function, e.g., ΣCopula, and θ = {θ1,…, θj,…, θd} de-

notes a set of parameters concerning the marginal pdfs,

f Xj
xj
� �

. The log-likelihood function is derived as shown in

Eq. (9) [31] where xNn¼1 ¼ x1; …; xn; …; xNf g denotes a

set of N observation vectors of real data and xnj represents

jth component of vector xn.

l Θð Þ ¼∑
n ¼ 1

N
Xd

j¼1

ln f Xj
xnj ; θj

� �

þ
XN

n¼1

ln c FX1
xn1; θ1
� �

;…; FXj
xnj ; θj

� �
;…; FXd

xnd; θd
� �

;α

h i

ð9Þ

The ML approach estimates the parameters of mar-

ginal pdfs and copula density function jointly using

numerical optimization [22]. This is the only way to

estimate all the parameters consistently [22].

The IFM method is the most used method. It esti-

mates by maximizing Eq. (9) in two steps. First, the

parameters of the margins θ are individually estimated

as shown in Eq. (10). It is noted that the type of

marginal distributions, e.g., Laplace or Gamma, are

assumed to be determined in advance. The copula

parameters α are then derived as shown in Eq. (11) by

using the estimated θ̂ .

θ̂ j ¼ arg max
XN

n¼1

ln f X j
xnj ; θj

� �
ð10Þ

α̂ ¼ arg max
XN

n¼1

ln c FX1
xn1; θ̂ 1

� �
;…; FXj

xnj ; θ̂ j

� �
;…; FXd

xnd; θ̂ d

� �
;α

� �" #

ð11Þ

The CML method first empirically estimates f Xj
xnj

� �

and FXj
xnj

� �
, denoted as f̂ Xj

xnj

� �
and F̂ Xj

xnj

� �
, using

non-parametric methods, e.g., kernel smoothing density

estimator [38]. Thus, it is not needed to determine the

type of marginal distributions in advance, in contrast to

the IFM method. The parameters of copula are then

estimated using Eq. (12).

α̂ ¼ arg max
XN

n¼1

ln c F̂ X1
xn1
� �

;…; F̂ Xj
xnj

� �
;…; F̂ Xd

xnd
� �

;α

� �" #

ð12Þ

In order to estimate the parameters of the copula-

based distribution using one of the discussed methods,

the following issues should be considered:

– The ML method is used for spaces with a small

number of dimensions due to the numerical

complexity issue.

– The IFM method ends up a sub-optimal solution for

parameter estimation since the log-likelihood function

is maximized in two individual steps [31].

– The IFM and CML methods result in closed-form

formulas only for Gaussian copula case [31].

– When one of the values of off-diagonal compo-

nents of the covariance matrix ΣCopula of either

the Student-t or Gaussian copulas takes 1 or −1,

the estimation procedure of the copula parame-

ters using CML method may fail [39]. It is due to

Cholesky decomposition performed in CML

methods.

In this paper, the parameters of copula-based dis-

tributions are estimated using IFM method and

Gaussian copula density function that result in

closed-form formulas and avoid failing in the esti-

mation procedure. To estimate α = ΣCopula of Gauss-

ian given a vector sequence yNn¼1 ¼ y1; …; yn; …; yNf g
, the Eq. (6) is plugged into Eq. (11) resulting in Eq.

(13). Regarding the estimation of θ, as the type of

marginal pdfs of copula density function should be

given in advance, it will be discussed in Section 4.
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Σ̂ Copula ¼
1

N

XN

n¼1

ynð ÞTryn ð13Þ

3 Goodness-of-fit test

A wide number of goodness-of-fit (GOF) tests depend-

ing on underlying conditions of the case study have been

proposed. In our study, high dimensionality and possible

non-linear inter-dimensional dependency are the most

crucial issues. Although various GOF tests are proposed

for one-dimensional space, only some of them are

extendable for high-dimensional space. As the number

of space dimensions increases, the tests become ineffi-

cient [26]. For instance, the extension of χ2 test [15] to

higher dimensions suffers from the curse of dimension-

ality [40] caused by the space sparsity unless the sample

sizes are large enough.

There are several GOF tests particularly proposed for

the multivariate case, e.g., the nearest neighbor test which

exploits the nearest neighbors [41], Mardia test which

exploits the skewness and kurtosis [42] and Freidman–

Rafsky test which exploits the minimum spanning tree

[43]. In this regard, the energy test has also recently been

proposed by Zach and Aslan [44]. The performance

superiority of the energy test has been demonstrated

compared to Mardia, nearest neighbor, χ2, and Friedman–

Rafsky tests. Accordingly, the energy test is selected as a

more appropriate GOF for underlying conditions of the

study in this paper to evaluate candidates. In the follow-

ing, the energy test is discussed.

3.1 Energy test

Given a candidate pdf f X0
xð Þ and a sequence of obser-

vation vectors xNn¼1 ¼ x1; …; xi; …; xNf g which follow

an unknown pdf fX(x), the energy statistic for the

hypothesis H0: fX xð Þ ¼ fX0 xð Þ against H1: fX xð Þ≠fX0 xð Þ is

computed by

ϕNM ¼ 1

N N−1ð Þ
X

t>i

R xi− xt
�� ��� �

þ 1

M M−1ð Þ
X

j>n

R qn− qj
�� ��� �

−
1

NM

XN

i¼1

XM

j¼1

R xi− qj
�� ��� �

ð14Þ

where qMj¼1 ¼ q1; …; qj; …; qMf g denotes a sequence of

M observation vectors following f X0
xð Þ and generated by

Monte–Carlo simulation [45] and R denotes a continu-

ous, monotonically decreasing function, i.e., R(r) = − ln(r).

In the limit N→∞ and M→∞, the statistic ϕNM ap-

proaches minimized value, near zero, if xNi¼1 and qM
j¼1 are

from the same distribution [44]. For further details, see

the Appendix.

The required steps for performing the energy test are

summarized:

1. The real dataset is segmented, resulting in N vectors

each of length d, xNi¼1 ¼ x1; …; xi; …; xNf g.
Depending on the process domain, xi represents the

segmented real data in that process domain, e.g.,

time, DFT, and DCT.

2. A possible candidate pdf f X0
xð Þ, e.g., either copula-

based or conventional distributions, is hypothesized

and fitted to the real data vectors xNi¼1.

3. The number M of simulated data vectors following

fitted pdf f X0
xð Þ is generated using Monte–Carlo.

4. The energy test statistic is computed using Eq. (14)

to determine the level of similarity between the

distributions of real data vectors xNi¼1 and simulated

data vectors qMj¼1.

4 Multivariate distribution candidates

To study the multivariate distribution of speech features,

two classes of pdfs are considered as the candidates in

this paper: (1) copula-based distributions and (2) con-

ventional distributions. The first pdf class includes five

distributions:

1. Copula-based Laplace distribution (CLD)

2. Copula-based Laplace distribution with mutually

independent dimensions (CLID), i.e., cX(.) = 1

3. Copula-based generalized extreme value distribution

(CGevD)

4. Copula-based Rayleigh distribution (CRD)

5. Copula-based Gamma distribution (CGD).

As formerly mentioned, the IFM method is used to fit

the copula-based distributions to real data. In this re-

gard, marginal distributions of each candidate should be

first determined. The following univariate pdfs are used

as the marginal distributions for each candidate: univari-

ate Laplace pdf as shown in Eq. (15) [14] for CLD and

CLID, univariate generalized extreme value pdf as shown

in Eq. (16) [46] for CGevD, univariate Rayleigh pdf as

shown in Eq. (17) for CRD, and univariate Gamma pdf

as shown in Eq. (18) [21] for CGD. In these equations,

μj and αj denote the location parameters, bj, ξj, and σj
denote the scale parameters, and kj and γjrepresent the

shape parameters. As a consequence, CLD is a copula-

based distribution with marginal distributions of Laplace

and its parameters ΘCLD = {θLaplace, αCopula} are estimated

using the IFM method given an observation set of vectors

xNn¼1 ¼ x1; …; xi; …; xNf g , where θLaplace denotes a par-

ameter set {bj, μj} concerning marginal distribution
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f X j;Laplace
xj
� �

; j ¼ 1:d and is estimated using Eqs. (19)

and (20). The parameter of Gaussian copula density

αCopula is estimated using Eq. (13). Similarly, θRayleigh
= {νj} is estimated using Eq. (21) and θGamma = {γj, ξj}

is estimated using Eqs. (22) and (23) [47], where

s ¼ ln 1
N

XN

n¼1

xnj

 !
− 1

N
:

XN

n¼1

ln xnj

� �
. It is noted that CGD and

CRD both model one-side distributions and are

therefore proposed as candidates for modeling one-

side distributed random vector, e.g., the amplitude of

DFT feature. For estimation of CGevD parameters

θGEV = {σj, αj, kj} using the IFM, as it results in no

closed-form solution [48], the MATLAB function

“fminsearch”, which employs numerical method of

Lagarias [49], is employed.

fX j;Laplace
xj
� �

¼ 1

2bj
:exp −

xj−μj

���
���

bj

0
@

1
A ð15Þ

fX j;GEV
xj
� �

¼ 1

σ j

� �
:exp − 1þ k j

xj−αj

σ j

� �− 1
kj

 !
: 1þ k j

xj−μj

� �

σ j

0
@

1
A

−1− 1
kj

ð16Þ

fX j;Rayleigh
xj
� �

¼ x

ν2j
:exp −

x2

2ν2j

 !
ð17Þ

fX j;Gamma xj
� �

¼ xj
� �γ j−1

ξ j
� �γ jΓ γ j

� � :exp −xj

ξ j

� �
ð18Þ

μ̂ j ¼ median xnj

� �
ð19Þ

b̂ j ¼
1

N
:

XN

n¼1

xnj −μj

���
��� ð20Þ

ν̂ j ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2N
:

XN

n¼1

xnj

� �2
vuut ð21Þ

γ̂ j ≈
3−sþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s − 3ð Þ2 þ 24s

q

12s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2N
:

XN

n¼1

xnj

� �2
vuut ð22Þ

ξ̂ j ¼
1

γ jN
:

XN

n¼1

xnj ð23Þ

The following steps summarize the estimation proced-

ure of Gaussian copula.

1. A marginal distribution, e.g., one of Eqs. (15)–(18),

is accounted for fX j xj
� �

; j ¼ 1:d and parameter set is

accordingly estimated.

2. The corresponding CDF of f Xj
xj
� �

is derived to

compute uj ¼ FX j
xj
� �

; j ¼ 1:d and yj ¼ F−1N 0;1ð Þ uj
� �

as shown in Eq. (4).

3. The parameter of Gaussian copula density

αCopula = ΣCopula is estimated using Eq. (13).

The second class of candidate distributions, i.e., con-

ventional distributions, includes five conventional pdfs:

multivariate Laplace (MLD), multivariate Gaussian

(MGD), and three multivariate Gaussian–Laplace mix-

tures (MGLD). The MGD is considered as shown in Eq.

(24) where the full covariance matrix Σ and mean vector

μ are estimated using the maximum likelihood method

[16]. Regarding MLD, as the ultimate purpose is to

compute the energy test statistic using simulated vectors

following MLD, the required vectors siLaplace are generated

using Eq. (25) [50] where xi
Gaussian

and wi denote simulated

vector following MGD of Eq. (24) and simulated sample

following univariate exponential distribution of Eq. (26),

Table 2 Multivariate distribution candidates considered for experimental setup

PDF class Candidates Description

Copula-based PDF CLD Copula-based distribution with marginal Laplace distribution.

CLID Copula-based distribution with mutually independent marginal
Laplace distribution.

CGevD Copula-based distribution with marginal GEV distribution.

CRD Copula-based distribution with marginal Rayleigh distribution.

CGD Copula-based distribution with marginal Gamma distribution.

Conventional PDF MGD Multivariate Gaussian distribution.

MLD Multivariate Laplace distribution.

MGLD, p = 0.25 Multivariate Gaussian–Laplace distribution.

MGLD, p = 0.50 Multivariate Gaussian–Laplace distribution.

MGLD, p = 0.75 Multivariate Gaussian–Laplace distribution.
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respectively. For MGLD observations, the simulated

vectors are generated using Eq. (27) where siLaplace and

xi
Gaussian

denote the simulated vectors following distribu-

tions of Eqs. (25) and (24), respectively. In this equation,

variable p shows the amount of contribution of Laplace

distribution compared with Gaussian distribution in

generating z
i. Three multivariate Gaussian–Laplace

mixtures are considered with corresponding values of

p ∈ {0.25, 0.50, 0.75}, denoted as MGLD with p = 0.25,

MGLD with p = 0.50, and MGLD with p = 0.75, for the

experimental evaluations.

fX;Gaussian xð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Σj j 2πð Þd

q :exp −
1

2
x−μð ÞΣ−1 x − μð Þt

� �
ð24Þ

siLaplace ¼
ffiffiffiffiffi
wi

p
xi
Gaussian

ð25Þ

f Exponential wið Þ ¼ 1

λ
exp

−wi

λ

� �
ð26Þ

zi ¼ psiLaplace þ 1 − pð Þxi
Gaussian

ð27Þ

Consequently, eight candidates are considered for

multivariate distribution study of speech features, ex-

cept for amplitude of DFT feature. For the amplitude of

DFT feature, two additional candidates CGD and CRD

resulting in total ten candidates are considered. Table 2

summarizes the candidates.

5 Evaluation results

In this section, the experimental evaluation results of the

multivariate speech distribution study are presented. To

perform the evaluations, 100 sentences, uttered by 11

male and female native English speakers (with New York

City dialect region), with sampling rate of 16 kHz from

TIMIT database [51] were randomly selected (see Additional

file 1). Two experimental setups were considered for eval-

uations. For the first experimental setup, all speech infor-

mation of 100 sentences was exploited for computing the

statistic of the energy test. For the second experimental

setup, phoneme-based evaluations were performed, i.e.,

five classes of English phonemes were used (fricatives, na-

sals, stops, vowels, and semivowel/glides). For each phon-

eme class, the relevant information was first extracted

from the 100 sentences used in the first experimental

setup and then concatenated to produce one file. As a re-

sult, five output files for five phoneme classes were pro-

duced. Table 3 shows the content and the number of

extracted phonemes of each of the five files. The evalu-

ation results of the second experimental setup benefit the

statistical-based speech recognition and synthesis algo-

rithms statistically modeling phoneme classes. As non-

speech information (silence interval) may influence the

distribution [14], it was removed for both experimental

setups. The total duration of the first setup data after

excluding silence intervals was 337.84 s. For the second

setup, the duration of each file is represented in Table 3.

Fig. 1 Values of the energy test for different multivariate distributions (candidates) resulted from ADFT features with frame lengths of 20, 30, 100,

and 500 ms

Table 3 The data set of the second setup of evaluations

File Phoneme class # of phonemes Duration (s) # of frames for each phoneme class (N)

20 ms 30 ms 100 ms 500 ms

1 Semivowel/glide 460 29.77 1489 993 298 60

2 Vowel 1240 125.39 6270 4180 1254 251

3 Nasal 298 18.57 929 620 186 38

4 Fricative 482 46.16 2309 1539 462 93

5 Stop 1109 56.13 2870 1872 562 113
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a

b

c

d

e

f

Fig. 2 Values of the energy test for different multivariate distributions (candidates) resulted from a LPC, b T, c MFCC, d RDFT, e IDFT, and f DCT

features with frame lengths of 20, 30, 100, and 500 ms
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Prior to performing evaluation, the datasets of both

setups were segmented in frames with lengths of 20, 30,

100, and 500 ms. For the first setup, the number of

frames, N, corresponding to the segment lengths of 20,

30, 100, and 500 ms were 13936, 9291, 2788, and 558,

respectively. For the second setup, the number of

frames, N, corresponding to the segment lengths for

each phoneme class is shown in Table 3.

The experimental evaluations were performed for time

features (T), amplitude of DFT (ADFT), real parts of

DFT (RDFT), imaginary parts of DFT (IDFT), DCT,

LPC, and MFCC features. Regarding the LPC and

MFCC, 10 and 12 coefficients were extracted from

frames, respectively. The MFCC vectors were extracted

from 23 Mel-frequency filter banks. To set up the energy

test, the value of M was taken equal to N. All the

reported energy test values were computed at a signifi-

cant level of 0.01 using a bootstrap method [44, 52].

Figure 1 represents the experimental results of the

energy test for ADFT features, concerning the first

setup. Fig. 2 illustrates the experimental results of the

energy test for other features including LPC, T, MFCC,

RDFT, IDFT, and DCT features. Regarding Fig. 2, as the

energy test values of some cases were much lower in

comparison with the others, they were scaled up ten

times to be illustrated better and punctuated by * on the

right side of frame length of horizontal axis, e.g., 500

ms *. Moreover, as the energy test values of CGevD for

all features were far greater than the others, they were

schematically removed from Fig. 2 to have a more com-

parative demonstration for the small energy test values.

Table 4 summarizes the best-fitted candidate for differ-

ent speech features and frame lengths according to Figs. 1

and 2 evaluation results. According to Figs. 1 and 2 and

Table 4, the following conclusions are conducted:

– The best-fitted candidate in the sense of the

energy test for the T, RDFT, IDFT, and DCT features

with frame length of 20, 30, and 100 ms is MLD,

despite the often used assumption of multivariate

Gaussian distribution in the speech enhancement

algorithms [8–10], but consistent with the univariate

Laplace distribution proposed by Martin [6] and

Gazor et al. [14].

– The univariate Rayleigh distribution has been

proposed for ADFT feature with a short frame length.

Maybe as a consequence, it was expected that

multivariate Rayleigh distribution (CRD) would be

superior in modeling the multivariate distribution of

ADFT; however, the energy test evaluation results

proposed the CLD as the best-fitted candidate for

frame lengths shorter than 500 ms.

– Regarding statistical modeling of ADFT features

with short frame length, although CLD and CLID

are both Laplace-based distribution, CLD was

proposed as the best-fitted candidate. As the copula

density function cX(.), which models inter-dimensional

dependency, is non-unit for CLD and unit for CLID,

the superiority of CLD over CLID shows how the

modeling of inter-dimensional dependency contributes

to the proper multivariate statistical modeling.

– Increasing frame length to 500 ms caused the best-

fitted candidate corresponding to ADFT, RDFT,

IDFT, and DCT features to be shifted from either

CLD or MLD toward MGLD. This finding suggests

that the Gaussian distribution contributed to the

actual multivariate distribution of those domains

when the frame length sufficiently increased, which

is also supported by the central limit theorem.

Similarly, varying the best-fitted distribution for LPC

features from MGLD (with p = 0.25) to MGD

verifies this contribution, too.

– The best-fitted candidate for the MFCC with different

frame lengths is MGD, consistent with the assump-

tion of multivariate Gaussian distribution used in

most speech recognition algorithms [2, 3].

Table 4 Best-fitted multivariate distribution in the sense of energy test for different features and frame lengths of speech signals

Feature (domain) Frame length

20 ms 30 ms 100 ms 500 ms

ADFT CLD CLD CLD MGLD, p = 0.50

LPC MGLD, p = 0.25 MGLD, p = 0.25 MGLD, p = 0.25 MGD

T MLD MLD MLD MLD

MFCC MGD MGD MGD MGD

RDFT MLD MLD MLD MGLD, p = 0.75

IDFT MLD MLD MLD MGLD, p = 0.75

DCT MLD MLD MLD MGLD, p = 0.25

A: First best-candidate B: Second best-candidate

C= Energy test value of A D= Energy test value of B

Fig. 3 Values of cells in each block of Tables 5, 6, 7, 8, 9, 10, and 11
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According to the conclusions, representative frames of

speech signals containing T, RDFT, IDFT, or DCT

features that are often used in statistical model-based

speech enhancement algorithms [9, 10, 28] can be better

statistically modeled by the MLD than MGD distribu-

tion. Furthermore, if the statistical-based algorithm

exploits MFCC and ADFT, the energy test proposes

MGD and ADFT, respectively.

Tables 5, 6, 7, 8, 9, 10, and 11 present the evaluation re-

sults of the energy test for the second experimental setup.

In each table, there are 15 blocks surrounded by bold lines

belonging to each phoneme class with a determined frame

length. Each block in these tables contains four cells,

as shown by Fig. 3. The A and B cells show the first

and the second best-fitted candidates, respectively,

and C and D cells indicate the energy test value cor-

responding to the first and the second best-fitted can-

didates, respectively.

According to Tables 5, 6, 7, 8, 9, 10, and 11, the fol-

lowing conclusions are conducted:

– The univariate Rayleigh distribution has been

proposed for statistical univariate modeling of ADFT

feature. Maybe as a consequence, it was expected

that multivariate Rayleigh distribution (CRD) would

be also superior in modeling multivariate

distribution of ADFT; however, the evaluation

results proposed MGLD, CGD, or CGevD as the

best-fitted candidates.

– The best-fitted candidate in the sense of the energy

test for all phoneme classes in T, RDFT, IDFT, and

DCT features with different frame lengths was either

MLD or MGLD (with p∈ {0.25, 0.50, 0.75}). In

particular for frame lengths of 20 and 30 ms, which

are mostly exploited in speech processing, either

MLD or MGLD with p = 0.75 dominated. As a

Table 6 Best-fitted multivariate distribution based on the energy test for LPC coefficients of five phoneme classes in different frame

lengths

Phoneme
class

Frame length

20 ms 30 ms 100 ms 500 ms

Semivowel/
glide

MGLD, p = 0.50 MGLD, p = 0.25 MGLD, p = 0.25 MGD MGLD, p = 0.25 MGLD, p = 0.50 MGD MGLD, p = 0.25

0.07 0.08 0.00 0.00 0.00 0.00 0.02 0.02

Vowel MGLD, p = 0.25 MGLD, p = 0.50 MGLD, p = 0.25 MGLD, p = 0.50 MGLD, p = 0.25 MGD MGLD, p = 0.25 MGD

0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.00

Nasal MGLD, p = 0.25 MGD MGLD, p = 0.25 MGD MGD MGLD, p = 0.25 MGD MGLD, p = 0.25

0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00

Fricative MGLD, p = 0.25 MGD MGLD, p = 0.25 MGD MGLD, p = 0.25 MGLD, p = 0.50 MGD CLD

0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.03

Stop MGLD, p = 0.25 MGLD, p = 0.25 MGLD, p = 0.25 MGLD, p = 0.50 MGLD, p = 0.25 MGD MGD MGLD, p = 0.25

0.02 0.02 0.01 0.01 0.00 0.00 0.00 0.00

Table 5 Best-fitted multivariate distribution based on the energy test for ADFT coefficients of five phoneme classes in different

frame lengths

Phoneme
class

Frame length

20 ms 30 ms 100 ms 500 ms

Semivowel/
glide

MGLD, p = 0.75 MGLD, p = 0.50 MGLD, p = 0.75 MGLD, p = 0.50 MGLD, p = 0.50 MGLD, p = 0.25 CGevD CGD

0.05 0.06 0.03 0.04 0.02 0.02 0.00 0.01

Vowel MGLD, p = 0.75 MGLD, p = 0.50 MGLD, p = 0.75 MGLD, p = 0.50 CGevD MGLD, p = 0.75 MGLD, p = 0.50 MGLD, p = 0.25

0.04 0.05 0.04 0.05 0.03 0.04 0.02 0.02

Nasal MGLD, p = 0.50 CGevD MGLD, p = 0.50 MGLD, p = 0.75 MGLD, p = 0.25 MGD MGLD, p = 0.25 MGLD, p = 0.50

0.04 0.04 0.02 0.02 0.03 0.03 0.00 0.00

Fricative MGLD, p = 0.75 CGD MGLD, p = 0.50 MGLD, p = 0.25 MGLD, p = 0.50 MGLD, p = 0.25 MGD MGLD, p = 0.25

0.04 0.04 0.02 0.02 0.03 0.03 0.00 0.00

Stop CGD CGevD CGD CGevD MGLD, p = 0.50 MGLD, p = 0.75 MGLD, p = 0.25 MGLD, p = 0.50

0.06 0.08 0.07 0.09 0.03 0.03 0.00 0.00

Aroudi et al. EURASIP Journal on Audio, Speech, and Music Processing  (2015) 2015:35 Page 10 of 14



consequence, the Laplace distribution contributes

more compared to the Gaussian distribution in the

statistical multivariate modeling of T, RDFT, IDFT,

and DCT features with short frame lengths.

– The best-fitted candidates for different phoneme

classes with LPC feature was mostly MGD or MGLD

with p = 0.25. As a consequence, the Gaussian

distribution contributed more in the statistical

multivariate modeling of LPC feature compared to

the Laplace distribution.

– As the first or second best-fitted candidates for

different process domains of a phoneme class with a

fixed frame length mostly varied between MLD and

MGLD (with p∈ {0.25, 0.50, 0.75}), the statistical

modeling of phonemes with a mixture of Gaussian

and Laplace distributions is proposed.

– The best-fitted candidate for most phoneme classes

with MFCC features extracted from frames of length

less than 500 ms is MGD, consistent with the

assumption of multivariate Gaussian distribution used

in most speech recognition algorithms [2, 3].

– The only copula-based distribution proposed by

the energy test evaluation results was CGD for

statistical modeling of the stop phoneme class in

ADFT domain with frame lengths of 20 and

30 ms, and CGevD for semivowel/glide with

frame length of 500 ms.

– Based on the evaluation results, in the sense of

the energy test, the copula-based distributions using

IFM method were mostly overcome by conventional

distributions in the second experimental setup. As

only one of parameter estimation methods of

copula-based distribution, IFM method, was taken

into account in the experimental evaluation, and

the IFM method ends up a sub-optimal solution

for parameter estimation, it is difficult to have a

generic conclusion on copula-based distribution’s

benefit in statistical modeling of speech frame.

Table 7 Best-fitted multivariate distribution based on the energy test for time coefficients of five phoneme classes in different frame

lengths

Phoneme
class

Frame length

20 ms 30 ms 100 ms 500 ms

Semivowel/
glide

MLD MGLD, p = 0.75 MLD MGLD, p = 0.75 MLD MGLD, p = 0.75 MGLD, p = 0.25 MGLD, p = 0.50

0.01 0.02 0.01 0.02 0.00 0.01 0.00 0.00

Vowel MLD MGLD, p = 0.75 MLD MGLD, p = 0.75 MLD MGLD, p = 0.75 MGLD, p = 0.75 MGLD, p = 0.50

0.01 0.02 0.00 0.02 0.00 0.01 0.00 0.01

Nasal MGLD, p = 0.75 MGLD, p = 0.50 MGLD, p = 0.75 MGLD, p = 0.50 MGLD, p = 0.50 MGLD, p = 0.50 MLD MGLD, p = 0.25

0.00 0.01 0.01 0.02 0.00 0.00 0.00 0.01

Fricative MLD MGLD, p = 0.75 MLD MGLD, p = 0.75 MLD MGLD, p = 0.75 MGLD, p = 0.25 MGLD, p = 0.50

0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.00

Stop MLD CLD MLD CLD MGLD, p = 0.75 MLD MLD MGLD, p = 0.25

0.08 0.12 0.05 0.08 0.01 0.01 0.00 0.00

Table 8 Best-fitted multivariate distribution based on the energy test for MFCC coefficients of five phoneme classes in different

frame lengths

Phoneme
class

Frame length

20 ms 30 ms 100 ms 500 ms

Semivowel/
glide

MGD MGLD, p = 0.25 MGD MGLD, p = 0.25 MGD MGLD, p = 0.25 MGD MGLD, p = 0.25

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Vowel MGD MGLD, p = 0.25 MGD MGLD, p = 0.25 MGD MGLD, p = 0.25 MGD MGLD, p = 0.25

0.00 0.01 0.00 0.01 0.01 0.01 0.00 0.00

Nasal MGD MGLD, p = 0.25 MGD MGLD, p = 0.25 MGD MGLD, p = 0.25 MGLD, p = 0.75 MGLD, p = 0.50

0.00 0.01 0.01 0.01 0.00 0.00 0.00 0.01

Fricative MGD MGLD, p = 0.25 MGD MGLD, p = 0.25 MGD MGLD, p = 0.25 CLD CLID

0.00 0.01 0.00 0.00 0.00 0.00 0.03 0.03

Stop MGD MGLD, p = 0.25 MGD MGLD, p = 0.25 MGLD, p = 0.25 MGD CLD MGD

0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01
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One of future work perspective might therefore

be to study the power of statistical modeling of

copula-based distribution of speech frame using

optimal parameter estimation methods.

– In some cases, where the energy test values of

the first and second best-fitted candidates are

almost the same, there is almost no superiority in

the sense of energy test between the first or sec-

ond best-fitted distributions, e.g., the case of frica-

tive phoneme in time domain with different frame

lengths in Table 7.

6 Conclusions

In this paper, the multivariate distribution of speech

features in various domains, e.g., time, DFT, DCT,

MFCC, and LPC, was studied and a framework was

proposed for exploring the best-fitted distribution

among different candidates. Ten plausible candidates

including five conventional distributions, e.g., the multi-

variate Gaussian, multivariate Laplace, and the mixture

of Gaussian–Laplace distributions (in three forms), and

five copula-based distributions with marginal Laplace,

independent marginal Laplace, Rayleigh, Gamma, and

generalized extreme value (GEV) distributions were con-

sidered to explore the effect of feature type, phoneme

class (for English language), and frame length on the

distribution.

The evaluation results of the test energy showed

that the multivariate Laplace distribution statistically

better models time and DFT features of speech

signals compared to the multivariate Gaussian dis-

tribution. For the amplitude of DFT features, the

copula-based distribution with marginal Laplace dis-

tribution was proposed as the best-fitted candidate.

For the MFCC features, the best-fitted candidate was

MGD, consistent with the assumption of multivariate

Gaussian distribution used in most speech recogni-

tion algorithms. For multivariate statistical modeling

of different phoneme classes, the first or second

best-fitted candidates for different domains (and also

Table 9 Best-fitted multivariate distribution based on the energy test for RDFT coefficients of five phoneme classes in different

frame lengths

Phoneme
class

Frame length

20 ms 30 ms 100 ms 500 ms

Semivowel/
glide

MLD MGLD, p = 0.75 MLD MGLD, p = 0.75 MLD MGLD, p = 0.75 MGLD, p = 0.75 CLD

0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.00

Vowel MLD MGLD, p = 0.75 MLD MGLD, p = 0.75 MLD MGLD, p = 0.75 MGLD, p = 0.75 MLD

0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.00

Nasal MGLD, p = 0.75 MLD MGLD, p = 0.75 MGLD, p = 0.50 MGLD, p = 0.75 MGLD, p = 0.50 MGLD, p = 0.75 CGevD

0.00 0.01 0.00 0.01 0.00 0.00 0.01 0.01

Fricative MGLD, p = 0.75 MLD MGLD, p = 0.75 MLD MGLD, p = 0.75 MGLD, p = 0.50 MGLD, p = 0.50 MGD

0.01 0.01 0.00 0.01 0.00 0.00 0.00 0.00

Stop MLD CLID MLD CLD MGLD, p = 0.75 MLD MGLD, p = 0.25 MLD

0.06 0.10 0.04 0.08 0.01 0.01 0.00 0.00

Table 10 Best-fitted multivariate distribution based on the energy test for IDFT coefficients of five phoneme classes in different

frame lengths

Phoneme class Frame length

20 ms 30 ms 100 ms 500 ms

Semivowel/glide MLD MGLD, p = 0.75 MLD MGLD, p = 0.75 MLD MGLD, p = 0.75 MLD CGevD

0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.00

Vowel MLD MGLD, p = 0.75 MLD MGLD, p = 0.75 MGLD, p = 0.75 MLD MGLD, p = 0.75 CLD

0.00 0.01 0.01 0.01 0.00 0.01 0.01 0.01

Nasal MGLD, p = 0.75 MGLD, p = 0.50 MGLD, p = 0.75 MLD MGLD, p = 0.75 CLD MLD CLD

0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.01

Fricative MGLD, p = 0.75 MLD MLD MGLD, p = 0.75 MGLD, p = 0.50 CLID MGLD, p = 0.75 CLD

0.01 0.01 0.00 0.00 0.00 0.01 0.00 0.00

Stop MLD CLD MLD CLD MGLD, p = 0.75 MLD MGLD, p = 0.50 CLD

0.08 0.12 0.04 0.08 0.01 0.01 0.00 0.01
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for different frame sizes) mostly varied between MLD

and MGLD (with p ∈ {0.25, 0.50, 0.75}), i.e., a mixture

of Gaussian and Laplace distributions. The future

work of this study can lead toward the development

of statistical speech processing algorithms exploiting

Laplace, mixture of Laplace and Gaussian, or copula-

based multivariate distribution, depending on the fea-

ture type, phoneme class, and frame length.

Although the copula-based distribution was pro-

posed as the best-fitted distribution for the modeling

of amplitude of DFT, it is not the case for other

features. It means that the copula-based approach

requires more investigation in numbers of ways.

First, the practical issues, e.g., the computational cost and

the lack of sufficient amount of data for parameter estima-

tion of some phoneme classes, e.g., stops, are needed to be

considered. Second, as the IFM method used for

parameter estimation of copula-based distribution ends

up in a sub-optimal estimate, developing an optimal par-

ameter estimation method for large vector dimensions is

needed to have a fair evaluation of the copula-based distri-

bution power in the statistical modeling of speech signals,

e.g., compared to the optimal parameter estimation

method used for MLD and MGD.

7 Appendix

The quantity ϕ, the energy, is defined as the difference

between two pdfs f X0
xð Þ and fX(x) by

ϕ ¼ 1

2

Z Z
f xð Þ−f

0
xð Þ

	 

f x′
� �

−f
0
x′
� �	 


R x; x′
� �

dxdx′

¼ 1

2

Z Z
f xð Þf x′

� �
þ f

0
xð Þf

0
x′
� �

−2f xð Þf
0
x′
� �

R x; x′
� �	 


dxdx′

ð28Þ

where the weight function R is a monotonically decreas-

ing function of Euclidian distance and the integrals

extend over the full variable space [44]. As the product

of same distribution occurs in the first and second

terms, it is not necessary to draw two different samples

of the same pdf, and thereby, the first two terms can be

neglected. The remaining third term has the form of

expectation value of R and can be computed from the

mean of all combinations xNi¼1 ¼ x1; …; xi; …; xNf g following
an unknown pdf f(x) and simulated Monte–Carlo sam-

ples qNj¼1 ¼ q1; …; qj; …; qMf g following f0(x), thus the

energy statistic can be given by Eq. (29).

ϕNM ¼ 1

N N−1ð Þ
X

t>i

R xi − xt
�� ��� �

þ 1

M M−1ð Þ
X

j>n

R qn − qj
�� ��� �

−
1

NM

XN

i¼1

XM

j¼1

R xi − qj
�� ��� �

ð29Þ

It is noted that since the evaluation of ϕ requires a

summation over integrals, which is typically difficult, f0 is

preferred to be represented by a set of samples generated

through a Monte–Carlo simulation.

8 Additional file

Additional file 1: List of speakers and sentences from TIMIT dataset

used in the evaluations.
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