
RESEARCH Open Access

Speech steganography using wavelet and Fourier
transforms
Siwar Rekik1,2*, Driss Guerchi2, Sid-Ahmed Selouani3 and Habib Hamam4

Abstract

A new method to secure speech communication using the discrete wavelet transforms (DWT) and the fast Fourier

transform is presented in this article. In the first phase of the hiding technique, we separate the speech

high-frequency components from the low-frequency components using the DWT. In a second phase, we exploit

the low-pass spectral proprieties of the speech spectrum to hide another secret speech signal in the low-amplitude

high-frequency regions of the cover speech signal. The proposed method allows hiding a large amount of secret

information while rendering the steganalysis more complex. Experimental results prove the efficiency of the

proposed hiding technique since the stego signals are perceptually indistinguishable from the equivalent cover

signal, while being able to recover the secret speech message with slight degradation in the quality.

Keywords: Audio steganography, Discrete wavelet transform, Fast Fourier transform, Data hiding, Speech

steganography

Introduction
One of the concerns in the field of secure communication

is the concept of information security. Today’s reality is still

showing that communication between two parties over

long distances has always been subject to interception.

Providing secure communication has driven researchers to

develop several cryptography schemes. Cryptography meth-

ods achieve security in order to make the information unin-

telligible to guarantee exclusive access for authenticated

recipients. Cryptography consists of making the signal look

garbled to unauthorized people. Thus, cryptography indi-

cates the existence of a cryptographic communication in

progress, which makes eavesdroppers suspect the existence

of valuable data. They are thus incited to intercept the

transmitted message and to attempt to decipher the secret

information. This may be seen as weakness in cryptography

schemes. In contrast to cryptography, steganography allows

secret communication by camouflaging the secret signal in

another signal (named the cover signal), to avoid suspicion.

This quality motivated the researchers to work on this

burning field to develop schemes ensuring better resistance

to hostile attackers.

The word steganography is derived from two Greek

words: Stego (means cover) and graphy (means writing).

The two combined words constitute steganography,

which means covert writing, it is the art of hiding writ-

ten communications. Several steganography techniques

were used to send message secretly during wars through

the territories of enemies. The use of steganography

dates back to ancient time where it was used by romans

and ancient Egyptians [1]. One technique according to

Greek historian Herodotus was to shave the head of a

slave, tattoo the message on the slave’s scalp, and send

him after his hair grew back. Another technique was to

write the secret message underneath the wax of a writing

tablet. A third one is to use invisible ink to write secret

messages within covert letters [2].

Many techniques have been developed for hiding secret

signals into other cover signals. Sridevi et al. [3] presented

a method for audio steganography. It consists of substitut-

ing the least significant bit (LSB) of each sample of the

cover speech signal with the secret data. While this method

is easy to implement and can be used to hide larger secret

messages, it cannot protect the hidden message from small

modifications that can happen as a result of format conver-

sion or compression. Hiding data in LSBs of audio samples

in the time domain is one of the simplest algorithms enab-

ling a very high data rate of inserted information. However,

* Correspondence: Siwar.Rekik@etudiant.univ-brest.fr
1Université de Bretagne Occidentale, Brest, France
2Canadian University of Dubai, Dubai, UAE

Full list of author information is available at the end of the article

© 2012 Rekik et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.

Rekik et al. EURASIP Journal on Audio, Speech, and Music Processing 2012, 2012:20

http://asmp.eurasipjournals.com/content/2012/1/20

mailto:Siwar.Rekik@etudiant.univ-rest.fr
http://creativecommons.org/licenses/by/2.0


several steganalysis algorithms have been developed to

challenge the robustness of this method. Bender et al. [4]

have presented a technique for data hiding based on phase

coding. This method consists of substituting the phase of

the first part of an audio segment by a reference phase that

represents the data. In order to conserve the relative phase

between segments, an adjustment must be made in the

phase of the succeeding segment. The series of steps of

phase coding is as follows: (i) The original audio signal is

decomposed into smaller segments such that their length

is equal to the size of the message to be encoded; (ii) A

discrete Fourier transform (DFT) is then applied on each

segment leading to a phase matrix; (iii) Compute the differ-

ences between the phase of each pair of the consecutive

segments; (iv) Identify the phase shifts between the con-

secutive segments. Although, the absolute phases of the

segments may change, the relative phase differences be-

tween the consecutive segments must remain unchanged;

(v) Use the new phase of the first segment and the set of

original phase differences to create a new phase matrix; (vi)

Regenerate the audio signal with an inverse DFT and then

connect the audio segments together. This step is based on

the original magnitude matrix and the newly created phase

matrix. The receiver determines the length of the secret

message, then applies a DFT and extract the hidden mes-

sage from the cover signal. A distinctive characteristic of

phase coding is the low data transmission rate due to the

fact that the secret data are encoded only in the first seg-

ment of the audio signal. Controversially, any enhancement

in the length of the segment may result in shifting the

phase relations among the frequency elements of the seg-

ment, leading therefore to an easier detection of the exist-

ence of a secret message. Thus, the phase coding algorithm

is more efficient when hiding small amount of data.

Kirovski and Malvar [5] have proposed a new stegano-

graphic scheme, called Spread Spectrum (SS) coding

method. This method randomly spreads the bits of the se-

cret data message across the frequency spectrum of the

audio signal. However, in contrast to LSB coding, the SS

coding scheme spreads the secret message using a code in-

dependent from the concrete cover signal. The SS coding

technique may outperform the LSB coding and phase cod-

ing techniques by offering a good quality for medium data

transmission rates while ensuring a high level of robustness

against steganalysis. However, similarly to the LSB coding

technique, the SS method may introduce noise to the audio

file. This is presenting a weakness since it facilitates detec-

tion by steganalysis systems.

Huang and Yeo [6] have presented an information hiding

method based on echo hiding. An echo is introduced into

the discrete audio signal in order to embed secret informa-

tion. Similar to the SS coding method, echo hiding is used

to provide a better data transmission rate and higher ro-

bustness comparing to the noise-inducing techniques. To

accomplish successfully the hiding process, three funda-

mental parameters need to be changed from the original

signal: decay rate, offset (time delay), and amplitude. These

three parameters are easily defined since they are located

below the human audible threshold limit which is different

from the echo. Also, the offset is altered to characterize the

binary message to be hidden. The first and the second off-

sets represent a one (binary) and a zero (binary), respect-

ively. Shirali and Shahreza [7] present an approach for

hiding information in a speech signal. This method con-

sists of detecting the silence intervals of a speech and the

corresponding length of these intervals (number of sam-

ples) and changing them with the secret information. Hid-

ing data in silent interval of the audio samples is one of the

simplest algorithms enabling a very high data rate of

inserted information. However, this method is already well

known and several steganalysis algorithms have been

developed to defeat the robustness of this method.

Speech steganography takes advantage of the recent

advancements in speech compression and data hiding.

Speech is a low-pass signal; its intelligibility is retained

when preserving at least the first three formants of the

magnitude spectrum. In this article, we will take advan-

tage of these speech characteristics to propose an effi-

cient speech-in-speech hiding method. Our speech

steganography system consists of embedding the secret

speech parameters in the high-frequency regions of the

magnitude spectrum of the cover speech. Our aim is to

ensure that the stego signal obtained from combining

the original phase spectrum and the modified magnitude

spectrum shows similar subjective quality to the cover sig-

nal. Theoretically, the resultant stego speech is expected to

be perceptually indistinguishable from the cover speech

since the pertinent low-frequency components will remain

intact.

Potential applications of our speech hiding scheme are

reduction of speech storage and transmission overhead

in electronic voice mail applications and audio stream-

ing, speech translation, data communication secrecy,

and many other web-based applications.

Objectives

Our objective is to develop a high performance speech

steganography system. The design of such system con-

sists principally of the optimization of the following

attributes:

� The hiding capacity, defined by the amount of the

secret information (speech, text, or image) to be

hidden in the cover speech signal.

� The impact of the hiding process on the cover

speech quality. We hope to produce a stego signal

that is perceptually indistinguishable from the cover

signal.
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� The complexity of the steganography system. Our

aim is to render the steganalysis (the attempt to

discover the existence of the secret message from

the stego signal) by the opponent more complex.

� The accuracy with which the hidden message can be

recovered at the receiver. Efficient techniques are to

be developed to minimize the impact of the

compression on the stego signal.

We choose a speech signal as secret information to be

hidden in the cover speech. Since our objective in discrete

wavelet transform-fast Fourier transform (DWT-FFT)-

based hiding approach is secrecy, we propose to hide the

secret information within the high-frequency of the wavelet

components.

The rest of the article is organized as follows: in the

following section, we introduce our DWT-FFT-based ap-

proach dedicated for the steganography task. Section

“Secret speech parameterization” will describe the secret

speech analysis including the linear predictive coding

(LPC) analysis and the line spectral frequencies (LSF)

extraction procedure. In Section “Speech hiding algo-

rithm”, we proceed with the description of the used

speech hiding algorithm. The general step to retrieve the

secret speech signal is also included in this section. Then

a description of the speech signals database used for our

simulations, the parameters of our experiments, the

evaluation and discussion of the results of our proposed

DWT-FFT hiding approach are presented in Section

“Evaluation”. Finally, we conclude and suggest directions

for further research in Section “Conclusions”.

DWT-FFT-based approach
Speech DWT

The wavelet transform can be considered as transform-

ing the signal from the time domain to the wavelet do-

main. This new domain contains more complicated

basis functions called wavelets, mother wavelets, or ana-

lyzing wavelets [8]. The fundamental idea behind wave-

lets is to analyze according to scale. Any signal can then

be represented by translated and scaled versions of the

mother wavelet. Wavelet analysis is capable of enlighten-

ing aspects of data that other signal analysis techniques

are unable to perform, aspects like trends, and discon-

tinuities in higher derivatives, breakdown points, and

self-similarity.

The basic idea of DWT for one-dimensional signals is

shortly described. The wavelet analysis allows the split of

a signal into two parts, usually the high- and the low-

frequency parts. This process is called decomposition.

The edge components of the signal are largely limited to

the high-frequency part. The signal is passed through a

series of high-pass filters to analyze the high frequencies,

and it is passed through a series of low-pass filters to

analyze the low frequencies. Filters of different cutoff

frequencies are used to analyze the signal at different

resolutions [9,10].

The DWT involves choosing scales and positions

based on powers of two, the so-called dyadic scales and

positions. The mother wavelet is rescaled by powers of

two and transformed by integers. Specifically, a function

f(t)2 L2(R) (defines space of square integrable functions)

can be represented as:

f tð Þ ¼
X

L

j¼1

X

1

k¼�1
d j; kð Þψð2�jt � kÞ

þ
X

1

k¼�1
a L; kð Þϕð2�Lt � kÞ

ð1Þ

The function ψ(t) is known as the mother wavelet, while

ϕ(t) is known as the scaling function. The set of function
�

ffiffiffiffiffiffiffiffi

2�L
p

ϕ 2�Lt � k
� �

;
ffiffiffiffiffiffiffi

2�j
p

ψ 2�jt � k
� �

j≤ L; j; k; L 2 Z

�

;

�

�

�

�

where Z is the set of integers in an orthonormal basis for

L2(R). The numbers a(L, k) are known as the approxima-

tion coefficients at scale L, while d(j, k) are identified as the

detail coefficients at scale j. The approximation and detail

coefficients can be expressed consecutively as:

a L; kð Þ ¼ 1
ffiffiffiffiffi

2L
p

Z

1

�1

f tð Þϕ 2�Lt � k
� �

dt ð2Þ

d j; kð Þ ¼ 1
ffiffiffiffi

2j
p

Z 1

�1
f tð Þψ 2�jt � k

� �

dt ð3Þ

For a better understanding of the above coefficients,

let’s consider a projection fl(t) of the function f(t) that

provides the best approximation (in the sense of mini-

mum error energy) to f(t) at a scale l. This projection

can be constructed from the coefficients a(L, k), using

the equation:

fl tð Þ ¼
X

1

k¼�1
a l; kð Þϕ 2�lt � k

� �

ð4Þ

As the scale l decreases, the approximation becomes

finer, converging to f(t) as l! 0. The difference between

the approximation at scale l + 1 and that at l, fl+1(t) −

fl(t), is totally defined by the coefficients d(j, k) using

the equation of decomposition and can mathematic-

ally be expressed as follows:

flþ1 tð Þ � fl tð Þ ¼
X

1

k¼�1
d l; kð Þψð2�lt � kÞ ð5Þ

These given relations, a(L, k) and {d(j, k)|j ≤ L}, are use-

ful for building the approximation at any scale. Hence,
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the wavelet transform breaks the signal up into a

coarse approximation fL(t) (given a(L, k)) and a num-

ber of layers of detail coefficients {fj+1− fj(t)|j < L}

(given by {d(j, k)|j ≤ L}). As each layer of detail is

added, the approximation at the next higher scale is

achieved. The original signal can be reconstructed

using the Inverse DWT (IDWT), following the above

procedures in the reverse order. The synthesis starts

with the approximation and detail coefficients cAj and

cDj, and then reconstructs cAj−1 by up sampling and

filtering with the reconstruction filters [11,12].

Speech Fourier transform

Since speech is processed on a time-frame basis, the

speech spectrum is evaluated using the DFT. The DFT

of a signal s(n) defined for 0 ≤ n ≤M− 1 is given by

S kð Þ ¼
X

M�1

n¼0

s nð Þe�j2πkn=M; 0 ≤ k ≤ M � 1 ð6Þ

In general, S(k) is a complex function of the variable k

and can be expressed in polar coordinates as:

S kð Þ ¼ S kð Þj jejφ kð Þ ð7Þ

The sequence S(k) has the same number of elements

as s(n). However, the last M/2 elements of the DFT are

conjugates of the first M/2 elements, in inverse order.

Consequently, the magnitude spectrum |S(k)| could be

defined uniquely by the first M/2 frequency components

since it satisfies the following symmetry:

S kð Þj j ¼ S M � kð Þj j ð8Þ

This equation represents one of the DFT properties

that must be maintained when hiding a message in the

magnitudes. This feature is used in the fast Fourier

transform (FFT) algorithm to reduce the DFT computa-

tional complexity [13]. For simplicity, we will adopt in

the subsequent sections the following notations:

S ¼ fft sð Þ ð9Þ

and

s ¼ ifft Sð Þ ð10Þ

where ifft, the inverse FFT, calculates the inverse DFT.

Speech spectrum characteristics

Speech is a baseband signal with most of the pertinent

intelligibility-preserving frequency components confined to

a bandwidth of 4 and 7 kHz for narrowband and wideband

speech, respectively [14]. The distribution of the first three

speech formants represents the primary cues to the English

vowels. Most of the vowel energy is condensed below 1

kHz and decays at about −6 db/oct with frequency [15].

Figure 1 shows the wideband speech spectrum for both a li-

quid frame and an unvoiced fricative frame. In all vowels

and most of the voiced consonants, the magnitude

spectrum shows very week components at high frequencies.

Figure 1 Magnitude spectrum of (a) a voiced frame, (b) unvoiced frame.
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Even though few unvoiced fricative consonants, such as /s/,

present large magnitudes at high frequencies, the intelligi-

bility of the speech signal is negligibly affected if we do not

model accurately these frequency components [14]. On the

other hand, even for wideband unvoiced fricative conso-

nants, frequencies above 7 kHz do not contribute consider-

ably to the speech spectrum content. These two facts have

motivated us to embed a separate signal in the low ampli-

tude high-frequencies of the cover signal.

Secret speech parameterization

Many factors require the parameterization of the secret

speech message before the hiding process. Among these fac-

tors, we cite the restricted number of the hiding locations in

the narrowband cover speech. Speech parameterization

termed as speech analysis is generally used in different re-

search areas, such as automatic speech recognition and

speech coding. In speech coding, the original signal is sub-

ject to a speech analysis algorithm to extract the pertinent

speech parameters. In order to recreate a copy of the ori-

ginal signal, an inverse algorithm known as speech synthe-

sis is used. Most of the speech analysis schemes are based

on the human speech production model [15]. In this

speech production model, a sequential excitation of two fil-

ters is used to produce a speech signal, a linear prediction

(LP) filter is used to model the vocal tract, produces a

short-term correlation present in all types of speech and a

pitch filter to represent the periodicity created to the vibra-

tion of the vocal cords in voiced segments. A basic diagram

of the speech production model is shown in Figure 2. The

LPC is based on this diagram. The LPC schemes are usu-

ally used in the field of speech coding. For example in

transmission, the speech frames are represented with a

restricted number of parameters. These parameters in the

receiver side are used to reconstruct a synthetic-quality

speech signal. The speech analysis algorithm is based on

two phases: an LP analysis to obtain p LP coefficients,

ai(i = 1, . . ., p) and a pitch analysis to extract the pitch

gain g and the pitch delay d. The LP filter and the pitch fil-

ter are constructed using the LP parameters and the pitch,

respectively. In the LPC model, for the unvoiced speech

signal, an LP filter is used since there is no periodicity in

this class of speech. The pitch filter is used for the voiced

frames. Details about the speech analysis procedure are

given in [16]. The LP coefficients (LPC) must be trans-

formed to a more improved representation before any

processing, since the LPC are very susceptible to errors

and their direct quantization might generate an unba-

lanced LP filter. One of the most used representations is

the LSF [17]. In this study, we adopted this representation,

in the hiding process p magnitude locations are replaced

by p LSF coefficients of the secret speech.

Secret speech analysis

To perform the secret speech analysis, we will use the LP

speech production model. In this model, the speech signal

is subject to an LP analysis followed by pitch analysis.

LP analysis

The LP analysis is performed every L-ms (for M=L × Fs

samples), for a sampling frequency of Fs kHz, to extract

p LP coefficients. These coefficients represent the vocal-

track poles (or formants). To smooth the inter-frame

variation of the spectral parameters, the analysis window

contains more samples than the analysis frame. In

addition to the current speech frame, the analysis win-

dow contains 5 ms from past speech and 5 ms from fu-

ture speech. In the LP analysis, we adopt a tapered

rectangular window with three parts [18]. The first part

is the first half of a hamming window, the second part is

a rectangular window, and the third part is the second

half of a Hamming window. This window produces a

narrower main lobe than the asymmetric window used

in G.729 and G722.2 codec standards.

w nð Þ ¼

54� :46 cos
2πn

M � 1

� 	

; n ¼ 0; . . . ;
M

2
� 1

1; n ¼ M

2
; . . . ;

3M

2
� 1

:54� :46 cos

2π n�M

2

� 	

M � 1

0

B

B

@

1

C

C

A

; n ¼ 3M

2
; . . . ; 2M

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

ð11Þ

The existence of a short-term correlation in speech sig-

nals motivates us to adopt the LP analysis. This correlation

Figure 2 LP model of speech production.

Rekik et al. EURASIP Journal on Audio, Speech, and Music Processing 2012, 2012:20 Page 5 of 14

http://asmp.eurasipjournals.com/content/2012/1/20



is helpful to predict a speech sample s2(n) at time n from

its previous p samples s2(n− i). For each speech frame, a

10-order predictor (p=10) is employed on the windowed

speech, s2(n), to estimate the spectral envelope. The pre-

dicted signal ŝ(n) is given by

ŝ nð Þ ¼
X

p

i¼1

ais n� ið Þ ð12Þ

The LP coefficients ai(i= 1, . . ., p) are predicted from

the minimization (by autocorrelation method) of the

error between the windowed sample s2(n) and the pre-

dicted sample ŝ2(n). Since the pitch and excitation ana-

lysis phases are completed in a closed-loop manner, the

LP synthesis filter is required in order to reduce the

error between the original speech and the synthesized

speech candidates. The LP synthesis filter in the Z-domain,

H(z), is connected to the LPC vector by

H zð Þ ¼ 1

X

p

i¼1

aiz
�1

ð13Þ

The filter H(z) is represented in the time domain by

the impulse response function h(n).

Pitch analysis

Due to the vocal cords vibration, the voice speech seg-

ments show some long-term correlation. The vibration

frequency, named pitch, is reflected in the quasi-

periodicity behavior of the time domain speech wave-

form. An autocorrelation scheme is used to calculate the

pitch lag (the inverse of the pitch frequency). Since the

LP analysis frame may contain more than one pitch

period, the pitch analysis is performed on sub-frame

basis to extract one pitch gain and one pitch delay. One

pitch gain and one pitch lag are used to represent conse-

quently the periodicity in each speech frame [19]. In the

pitch analysis algorithm, an open-loop analysis is first

applied to each speech frame to estimate the pitch

period. Open-loop pitch estimation is based on the

weighted speech signal sw(n) which is obtained by

filtering the input speech signal through the perceptual

weighting filter, sw is given by:

W zð Þ ¼ A Z=y1ð Þ
A Z=y2ð Þ ¼

1þ
X

10

i¼1

yi1aiz
�1

1þ
X

10

i¼1

yi2aiz
�1

ð14Þ

That is, in a frame of size L, the weighted speech is

given by:

Sw nð Þ ¼ s nð Þ þ
X

10

i¼1

aiy
i
1s n� ið Þ

�
X

10

i¼1

aiy
i
2sw n� ið Þ; n ¼ 0; . . . ; L� 1

ð15Þ

Residual excitation

The signal e(n) after removing the long-term and short

term redundancies has a noise-like shape with a flat

spectrum. Figure 3 shows the residual signal after re-

moving the long and short correlations. This signal

could be modulated by a random signal. Since the ran-

dom signal has no correlation, this residual will be gen-

erated at the receiver side using a random signal

generator. By this, we reduce the amount of information

to be hidden in the cover signal. As mentioned below,

the speech analysis algorithm is based on two phases: an

LP analysis to obtain p LP coefficients, ai(i= 1, . . ., p) and

a pitch analysis phase to extract the pitch gain g and the

pitch delay d. Table 1 shows the used parameters of the

LP-model for narrowband speech.

LP-model parameters adjustment

The spectral amplitudes must always be positive due to

the absolute value applied to the speech spectrum. Dir-

ect embedding of the LP coefficients C in the magnitude

spectrum will drastically destroy the cover signal since

the LP parameters could have negative values. To ac-

commodate this problem, we propose to convert the LP

coefficients C to one of their frequency representations,

such as LSF. As shown in the following equation, the

LSF parameters wi are ordered and are all positive.

Figure 3 Residual signal after removing the long and short correlations.
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0 ≤ w 1 ≤ w2 ≤ ⋯ ≤ wp ≤ π ð16Þ

Since the pitch delay varies from 20 to 147 samples, direct

embedding of the pitch delay in the cover speech spectrum

will affect the high-frequencies small-amplitudes cover

spectrum components. Hence, the need to normalize the

pitch delay is by 147, the maximum pitch delay, before the

hiding process. The normalized pitch delay will have a value

ranging from 0 to 1. For this reason, the best location to hide

these parameters is the last cover speech spectrum location

since the amplitude of this last component is very small.

LSF cues

Itakura [20] has proposed the LSF to represent the LPC.

They have been demonstrated to acquire different advanta-

geous proprieties like bounded range, sequential ordering,

and ability of constancy verification [21]. Moreover, the LSFs

coefficients facilitate the integration of human observation

system proprieties in the frequency domain representation.

According to the ITU-T Recommendation G.723.1, the ex-

traction of the LSFs parameters is recommended in case of

need to convert the LPC parameters to LSFs [22]. In LPC,

the mean squared error between the original and the

predicted speech is minimized over a short time interval to

produce distinctive set of LP coefficients. The transfer

function of the LPC filter is given by

H zð Þ ¼ G

1þ
X

P

k¼1

akz
�k

ð17Þ

where P the prediction order, G is the gain, and ak is the

LPC filter coefficients. The poles of this transfer function

contain the poles of the vocal tract as well as those of the

voice source. Solving for roots of the denominator of the

transfer function gives both the formant frequencies and

the poles corresponding to the voice source. Two transfer

functions Qp+1(z) and Pp+1(z), respectively, called difference

and sum polynomials can be resulting from H(z). The dif-

ference polynomial is given by:

and the sum polynomial is given by:

Ppþ1 ¼ Ap zð Þ þ z� pþ1ð ÞAp z�1
� �

ð19Þ

where Ap(z) is the denominator of H(z). The polynomials

contain trivial zeros for even values of p at z =− 1 and at

z=1. These roots can be removed in order to obtain the

following quantities:

Q̂ zð Þ ¼ Qpþ1 zð Þ
1þ zð Þ ¼ β0z

p þ β1z
p�1 þ⋯þ βp; ð20Þ

and

P̂ zð Þ ¼ Ppþ1 zð Þ
1þ zð Þ ¼ α0z

p þ α1z
p�1 þ⋯þ αp: ð21Þ

The LSFs are the roots of Q̂ zð Þ and P̂ zð Þ and alternate

with each other on the unit circle. Note that Qp+1(z) is

an antisymmetric polynomial and Pp+1(z) is a symmetric

polynomial. The polynomials Q̂ zð Þ and P̂ zð Þ derived

from Qp+1(z) and Pp+1(z) are symmetrical. Therefore, for

even values of p we can derive the following property:

αi ¼ α p� ið Þ; 0 ≤ i ≤
p

2
ð22Þ

Consequently (20) and (21) can be written as follows:

Q̂ zð Þ ¼ zp=2



β0 zp=2 þ z�p=2
� �

þβ1 zp=2�1 þ z� p=2�1ð Þ
� �

þ⋯þ βp=2




;

ð23Þ

and

P̂ zð Þ ¼ zp=2



α0 zp=2 þ z�p=2
� �

þα1 zp=2�1 þ z� p=2�1ð Þ
� �

þ⋯þ αp=2




ð24Þ

By putting z= ejw and then z+ z−1= 2 cos (w), we ob-

tain the equations to be solved in order to find the LSFs

according to the real root scheme ITU-T Recommenda-

tion G.723.1:

Q̂ e jw
� �

¼ 2e jpw=2




β0 cos
p

2
w

� �

þ β1 cos
p� 2

2
w

� 	

þ⋯þ 1

2
βp=2




ð25Þ

Table 1 The LP model parameters

Model parameters Symbol Number of parameters per frame

Pitch lag d 1

Pitch gain g 1

LP coefficients a1, a2, . . ., ap p

Voice/unvoiced
decision

V/UV 1

Total p+ 3

Qpþ1 ¼ Ap zð Þ � z� pþ1ð ÞÞAp z �1ð Þ
� �

ð18Þ
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and

P̂ ejw
� �

¼ 2e jpw=2




α0 cos
p

2
w

� �

þα1 cos
p� 2

2
w

� 	

þ⋯þ 1

2
αp=2




ð26Þ

Input speech is segmented to different frames. Additionally,

each frame is subdivided into four sub-frames. On these

sub-frames, the LPC analysis is performed. The conversion

of the p LPC coefficients into their p corresponding LSFs

is performed in the last sub-frame. For the three of the

sub-frames, the LSFs are obtained by executing linear

interpolation between the LSFs of the current and the pre-

vious frame.

To achieve this purpose, the unit circle is then divided

into 512 equal intervals, each of length π/256. The roots

(LSFs) of Q(z) and P(z) polynomials are searched along

the unit circle from 0 to π. A linear interpolation is per-

formed on intervals where a sign change is observed in

order to find the zeros of the polynomials. According to

[20], if a sign change appears between intervals l and

l− 1, a first-order interpolation is executed as follows:

l̂ ¼ l � 1þ P zð Þl�1

�

�

�

�

P zð Þl�1

�

�

�

�þ P zð Þl
ð27Þ

where l̂ is the interpolated solution index, |P(z)l| is the

absolute magnitude of the result of sum polynomial

evaluation at interval l (similarly for l− 1). Since the

LSFs are interlacing in the region from 0 to π, only one

zero is evaluated on P(z) at each step. The search for the

next solution is performed by evaluating the different

polynomial Q(z), starting from the current solution

[23,24]. Therefore, two main reasons motivated our

choice to consider the LSFs representation. The first rea-

son is related to the fact that LP coefficients are very

sensitive to errors. The direct quantization of these coef-

ficients might produce an unstable LP filter. The second

reason is related to the fact that LSFs are widely used in

conventional coding schemes. This avoids the incorpor-

ation of new parameters that may require significant and

costly modifications to current devices and codecs.

Speech hiding algorithm

We propose a new method for speech signal steganogra-

phy, the secret speech signal is embedded into the coeffi-

cients in the wavelet domain. The DWT decomposes the

cover speech signal into low- and high-frequency compo-

nents. For speech signals, the low-frequency component is

the most significant part for speech perception. On the

other hand, the high-frequency component impacts flavor

or nuance (noise) to the signals. Let’s consider the human

voice. If we remove the high-frequency components, the

voice sounds different, but we can still tell what’s being

said. However, if we remove sufficient amount of the low-

frequency components, we hear gibberish and we cannot

understand what’s being said. For this reason, we decide to

hide information in the high-frequency in the wavelet do-

main. Furthermore, in wavelet analysis, we can divide the

speech signal in approximations and details. The approxi-

mations are the high-scale, low-frequency components of

the signal. The details are the low-scale, high-frequency

components. As shown in Figure 4 after passing through

two complementary filters, two signals emerge from the

original signal.

A variety of wavelets can be used depending on the

expected results. Each family of wavelets (such as Haar or

Daubechies family) are wavelet subclasses distinguished by

the number of filter coefficients and the level of iteration.

In steganography, whatever the used algorithm for hiding

data, we need to reconstruct the speech signals after em-

bedding the message in the original signal. After that, per-

formance measure can be used to compare the original

speech signal and the stego-speech. In our method, after

using the DWT to decompose the speech signals for hiding

a message speech signals, we use the IDWT to reconstruct

the signal. The speech-in-speech hiding algorithm is illu-

strated in Figure 5. Both of secret and cover speech must

be pre-processed in order to facilitate the hiding process.

The cover speech is partitioned into L-ms frames. The

DFT of each time-frame s1(m) defined for 0≤m≤m− 1 is

computed using the DWT-FFT method. The obtained

speech spectrum is decomposed into magnitude and phase

spectra. Each L-ms of the secret message s2(m) is embed-

ded in the low-amplitude high-frequency region of the

magnitude spectrum of the cover signal.

Secret speech hiding

In order to hide the secret speech, the DWT is applied

to the speech cover speech frame to separate the high-

Figure 4 Level 1 decomposition of DWT coefficients.
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and the low-frequency regions. Then the FFT is applied

to the high-frequency wavelets part producing a

spectrum S1(k)(k = 0, . . .,M − 1). The spectrum is

decomposed into magnitude spectrum |S1(k)| and phase

spectrum φ1(k).

The magnitude spectrum is symmetric. The hiding

process consists of representing the L last elements of

the first half of |S1(k)| by the LP parameters V2 of the se-

cret speechs2(m).

The resulting magnitude spectrum, denoted by |S3(k)|,

is defined by the following expressions:

S3 kð Þj j ¼

S1 kð Þj j; k ¼ 0; . . . ;
M

2
� p� 3

V2 k �M

2
� p� 2

� 	

; k ¼ M

2
� p� 2; . . . ;

M

2
� 1

V2
M

2
þ pþ 1� k

� 	

; k ¼ M

2
; . . . ;

M

2
þ pþ 1

S1 kð Þj j; k ¼ M

2
þ pþ 2;⋯;M � 1

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

ð28Þ

The third right-hand term in the above equation is

included to preserve the DFT symmetry. These modifi-

cations lead to a new speech signal s3. Its spectrum is a

simple combination of the magnitude spectrum |S3(k)|

and the cover phase spectrum φ1(k),

S3 kð Þ ¼ S3 kð Þj je jφ1 kð Þk ¼ 0; . . . ;M � 1 ð29Þ

The time-frame composite (stego) signal s3(m),m=0, . . .,

M− 1, is obtained by the IDWT,

The stego signal s3(m) is a composite signal since it

contains the L-ms cover speech s1(m) and the L-ms se-

cret signal s2(m).

Energy normalization

In order to improve the speech quality, we preserved the

speech energy by normalizing all the hidden parameters

by the total energy of the original spectrum magnitudes.

However, the energy preservation requires the hiding of

the energy as side information. At the receiver, this en-

ergy will be used to rescale the hidden information to its

original values. The scaling coefficient a is given by

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ec

1þ ELSF secret

r

ð31Þ

where Ec is the energy of the cover speech spectrum and

ELSF is the energy of the LSF vector.

Secret speech reconstruction

The secret speech is reconstructed from the stego speech

by subsequent the hiding algorithm in overturn order.

Figure 6 illustrates the pursued steps to extract the hidden

information and reconstruct the secret speech message.

The first step consists of performing the DWT. Transform-

ing by FFT the high frequencies obtained with the DWT to

its corresponding spectrum. The magnitude spectrum is

then acquired from the speech spectrum. The secret speech

Figure 5 Block diagram showing the general steps to embed a secret speech signal s2 inside another cover speech signal s1 to

produce a stego-speech signal s3.

s3 ¼ IDWT S3ð Þ ð30Þ
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parameters are extracted from the same locations they were

embedded in the spectral magnitude of the stego speech

signal. The LSF vector is converted back to a P-order LPC

vector (a1, . . .,ap) to build the LP synthesis filter H(z).

A random excitation signal e(n) is applied to the series

of the pitch and LP synthesis filters. The signal ŝ(n), at

the output of the LP synthesis filter, is a reproduction of

the original secret message s(n). Since the LPC-model

parameter values that are extracted from the stego

speech have approximately the same exact values as the

embedded parameters, the reconstructed secret speech

signal is not affected by the hiding process. The minor

degradations noticed in this signal, when compared with

the original secret signal, are resulting from the LPC

model and the LSF conversion.

Evaluation
Experimental setup

To evaluate the performance of the proposed hiding tech-

nique, we conducted several simulations using NOIZEUS

database [25,26,27]. This corpus contains 30 sentences

from the IEEE sentence database, recorded in a sound-

proof booth using Tucker Davis Technologies recording

equipment. The sentences are produced by three male and

female speakers. The 30 sentences: 15 male and 15 female

speakers include all phonemes in the American English

language. The sentences were originally sampled at 25 kHz

and down-sampled to 8 kHz. The length of the speech file

varies between 0.02 and 0.03 ms. In the comparative evalu-

ation, we conducted four sets of tests. In the first set of

simulations, we embedded each of the 15 male speech files

in each of the 15 female speech files. In the second set of

tests, we hide each of the 15 female speech files in each of

the 15 male speech files. In the third set of tests, we em-

bedded each of the 15 male speech signals in the remaining

14 male speech files. In the last sets of tests, we hide each

of the 15 female speech segments in the remaining same

gender speech files. Each set is iterated for five different

wavelet families (Haar, Daubechies, Symlets, Coiflets, and

Figure 6 Block diagram showing the general steps to retrieve the secret speech signal S2 from the stego-speech S3.

Table 2 SNR of the DWT-FFT-based hiding approach

Cover signals Secret signals SegSNR (dB)

Female Male 31.86

Male Female 32.70

Male Male 34.45

Female Female 31.13

Average 32.54

Table 3 SNR of FFT-based hiding approach

Cover signals Secret signals SegSNR (dB)

Female Male 51.46

Male Female 52.62

Male Male 54.37

Female Female 51.09

Average 52.39

H zð Þ ¼ 1

1�
X

10

i¼1

a i z�i

ð32Þ
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BiorSplines). In total, we conducted 4,210 computer simu-

lations ((15*15*2+ 14*14*2)*5).

In order to evaluate the impact of the DWT-FFT

technique, we conducted two different comparative experi-

ments using DWT-FFT method and then using FFT only.

Evaluation outcomes

One of the performance measures of any steganographic sys-

tem is the comparison between the cover and the stego sig-

nals. In this study, we used subjective and objective

performance measures. In the subjective measures, we con-

ducted several informal listening comparative tests. In these

simulations, we played in a random order the cover speech

s1(m) and the stego signal s3(m) to several listeners. Each lis-

tener had to identify the better quality speech file among the

cover and the stego signals. The majority of listeners could

not distinguish between the two speech files. As an objective

measure, we used the segmental signal-to-noise ratio

(SegSNR) and the perceptual evaluation of speech quality

(PESQ). PESQ measurement provides an objective and auto-

mated method for speech quality assessment. The SegSNR is

defined by

SegSNR dBð Þ ¼ 10 log10

X

159

m¼0

s1 mð Þ½ �2

X

159

m¼0

s1 mð Þ � s3 mð Þ½ �2

0

B

B

B

B

@

1

C

C

C

C

A

ð33Þ

where s1 and s3 are the cover and the stego speech files, re-

spectively. In this study, we segmented the speech files into

frames of 20 ms (L=20) (or 160 samples (M=160)). In

Table 2, we present the average SegSNR values for each of

the four different sets of tests using DWT-FFT algorithm. In

Table 3, we present the average SegSNR of the same set of

tests using the FFT only. The quality of the stego signal pro-

duced by the FFT is better than the one produced by the

DWT-FFT. However, the DWT-FFT increases the robust-

ness of the hiding algorithm against steganalysis techniques.

We used some of the existing wavelets to compare the im-

pact of the different wavelet on the speech quality. The de-

composition of all used wavelets is done with one level.

Table 4 shows the result of different wavelets for the four

different sets of tests. As can be noticed, different wavelets

have almost similar results; therefore, this method is not

depending on a particular type of wavelet. The SegSNR

value did not differ a lot for different wavelets. The SegSNR

is just an indicative performance measure. The PESQ is a

more reliable method to assess the performance of our hid-

ing technique. The PESQ measurement provides an object-

ive and automated technique for speech quality evaluation.

The degradation of the speech sample can be predicted

using the PESQ algorithm with subjective opinion score. In

general, the PESQ returns a score from 0.5 to 4.5, with

higher scores signifying better quality [28,29]. The PESQ

method is used in our experiments to evaluate the stego

speech. The reference signal refers to an original (cover)

signal and the degraded signal refers to the stego signal

with the hidden secret message. In Table 5, we present the

average PESQ values for male and female speakers

obtained by the two hiding techniques (using DWT-FFT

and FFT only). Figure 7 shows variations of PESQ for 20

speech signals of the 2 hiding approach. The hiding

method achieves 3.68 and 4.14 PESQ average for DWT-

FFT and FFT algorithms, respectively. Figure 8 shows the

magnitude spectrum of the cover signal and the corre-

sponding of stego speech after hiding the LPC parameters

of the secret signal. The PESQ analysis shows that the stego

and cover speech provide similar subjective quality. This re-

sult is supported by the resemblance between the cover

Table 4 Different wavelets results of DWT-FFT-based steganography systems

Wavelet name Haar Daubechies (db1) Symlets (sym1) Coiflets (coif1) BiorSplines (bior1.1)

Cover signals Secret signals SegSNR (dB) SegSNR (dB) SegSNR (dB) SegSNR (dB) SegSNR (dB)

Female Male 31.53 31.86 31.48 31.41 31.39

Male Female 31.98 32.70 31.86 31.96 31.91

Male Male 34.12 34.35 34.08 34.08 34.04

Female Female 30.79 31.13 30.68 30.76 30.71

Average 32.11 32.51 32.03 32.05 32.01

Table 5 PESQ of DWT-FFT and FFT-based hiding approach

Speaker PESQ

DWT-FFT FFT

Female 3.58 4.12

Male 3.78 4.16

Average 3.68 4.14

Table 6 Impact of the hiding process on the secret

speech in terms of SegSNR

Speaker SegSNR(dB)

DWT-FFT FFT

Female 21.76 24.64

Male 23.89 26.28

Average 22.83 25.46
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and stego speech spectrograms in Figure 9. The objective

and subjective performance measures show that the pro-

posed hiding technique attracts no suspicion about the ex-

istence of a hidden message in the stego speech, while

being able to recover an intelligible copy of the original se-

cret message at the receiver side. The informal listening test

to the original and the reassembled secret speech message

advocate the result of the other objective performance

measurement. The reconstructed secret speech ŝ(n) (from

both DWT-FFT and FFT hiding approaches) still com-

pletely comprehensible, even some perceptual distortions

are simply noticeable. What concerns us is the speech

intelligibility since the objective is to convey the secret mes-

sage to the intended receiver. Table 6 shows the impact of

the hiding algorithms on the secret speech in terms of the

SegSNR.

Conclusions
In this article, we presented a new steganography system

for secrecy applications. The proposed hiding method pro-

duces stego speech files that are indistinguishable from

their equivalent cover speech files. Moreover, the complex-

ity of our hiding technique is so high any eavesdropper can-

not extract the hidden information even after suspecting

Figure 7 Comparison of the PESQ variations between DWT-FFT and FFT-based steganography systems: PESQ scores of cover speech

s1(m) and the stego signal s3(m) utterances using DWT-FFT and FFT hiding approach.

Figure 8 Magnitude spectrum of (a) the cover speech s1(m), (b) the stego speech.
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the existence of a secret message. Since our aim is to render

the steganalysis (the attempt to extract the secret message

from the stego signal) by the opponent more complex. Our

method exploits first the high frequencies using a DWT,

then exploits the low-pass spectral properties of the speech

magnitude spectrum to hide another speech signal in the

low-amplitude high-frequencies region of the cover speech

signal. Experimental simulations on both female and male

speakers showed that our approach is capable of producing

a stego speech that is indistinguishable from the cover

speech. The receiver is still able to recover an intelligible

copy of the secret speech message. In the future work, we

will endeavor to extend our approach to applications in-

volving Voice-over IP speech secrecy, which involves com-

pressing the stego speech before transmission. This opens

up the issue of preserving the secret speech after decoding

the compressed stego speech.
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