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Speech Synthesis Based on Hidden Markov Models
Keiichi Tokuda, Member, IEEE, Yoshihiko Nankaku, Member, IEEE, Tomoki Toda, Member, IEEE,

Heiga Zen, Member, IEEE, Junichi Yamagishi, Member, IEEE, and Keiichiro Oura

Abstract—This paper gives a general overview of hidden
Markov model (HMM)-based speech synthesis, which has re-
cently been demonstrated to be very effective in synthesizing
speech. The main advantage of this approach is its flexibility
in changing speaker identities, emotions, and speaking styles.
This paper also discusses the relation between the HMM-based
approach and the more conventional unit-selection approach that
has dominated over the last decades. Finally, advanced techniques
for future developments are described.

Index Terms—text-to-speech synthesis, hidden Markov model,
HMM-based speech synthesis, statistical parametric speech syn-
thesis, HTS

I. INTRODUCTION

Text-to-speech (TTS) synthesis is a technique for generating

intelligible, natural-sounding artificial speech for a given input

text. It has been used widely in various applications including

in-car navigation systems, e-book readers, voice-over functions

for the visually impaired, and communication aids for the

speech impaired. More recent applications include spoken

dialogue systems, communicative robots, singing speech syn-

thesizers, and speech-to-speech translation systems.

Typical TTS systems have two main components, text anal-

ysis and speech waveform generation, which are sometimes

called front-end and back-end, respectively. In the text analysis

component, given input text is converted into a linguistic

specification consisting of elements such as phonemes. In the

speech waveform generation component, speech waveforms

are generated from the produced linguistic specification. The

main focus of this paper is the speech waveform generation

component and we omit details of the text analysis module

[1].

Approaches for speech waveform generation from given

text have progressed from knowledge- and rule-based ones

to data-driven ones. In the early 1970s, the speech waveform

generation component used very low dimensional acoustic pa-

rameters for each phoneme, such as formants, corresponding to
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vocal tract resonances [2]. In the 1980s, the speech waveform

generation component used a small database of phoneme units

called “diphones” (the second half of one phone plus the first

half of the following) and concatenated them according to the

given phoneme sequence by applying signal processing, such

as linear predictive (LP) analysis, to the units [3].

In the 1990s, with the increase in the power and resources

of computer technology and also the increase in speech and

linguistics resources, larger speech databases were collected

and used to select more appropriate speech units that match

both phonemes and other linguistic contexts such as lexical

stress, pitch accent, and part-of-speech information in order to

generate high-quality natural sounding synthetic speech with

appropriate prosody. This approach is generally called “unit

selection,” and various systems including commercial systems

were developed resulting in a higher level of reading-style

synthetic speech [4]–[8].

For applications, such as screen reader and newspaper read-

out functions, reading-style synthetic speech may be sufficient.

However, there are other potential applications where TTS

systems are required to read out texts with expressivity. The

unit selection method, however, restricts the output speech to

the same style as that in the original recordings as no (or

few) modifications to the selected pieces of recorded speech

are normally done. If we need to generate synthetic speech

with various speaking styles and emotions with this method,

larger speech databases containing different speaking styles

are always required. IBM’s stylistic synthesis [9] is a good

example; however, the size of the speech database becomes

exponentially larger and further recording of a large quantity of

speech with various speaking styles and emotions is obviously

cost-inefficient and time consuming [10].

With such a need for more control over speech “variations,”

another data-driven approach called “statistical parametric

speech synthesis” emerged in the late 1990s and has grown in

popularity in recent years [11]–[14]. In this approach, several

acoustic parameters are modeled using a time-series stochas-

tic generative model. Statistical parametric speech synthesis

which uses a hidden Markov model (HMM) as its generative

model is typically called HMM-based speech synthesis. HMMs

represent not only the phoneme sequences but also various

contexts of the linguistic specification in a similar way to

the unit selection approach, and acoustic parameters generated

from HMMs selected according to the linguistic specification

are used to drive a vocoder, which is a simplified speech

production model, in which speech is represented by vocal

tract parameters and excitation parameters, in order to generate

a speech waveform.

Thanks to efficient and well-established machine learning

algorithms, which mostly originated in the automatic speech

v1anico3
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Fig. 1. Overview of human speech production.

recognition (ASR) field, such as Baum-Welch, Viterbi, and

clustering algorithms [15] and various open-source toolkits

that cover text analysis, signal processing, and HMMs [16]–

[19], HMM-based speech synthesis has been a major topic

in speech synthesis research and used worldwide by both

academic and commercial organizations. About 76% of speech

synthesis papers published in INTERSPEECH 2012, which

is a major international conference on speech information

processing, have used HMM-based approaches, and this trend

strongly confirms the need for and potential of this new

approach.

The quality of HMM-based synthetic speech has been

improving, e.g., [20]–[23], and many techniques for control-

ling speech variations, e.g., [1], [24]–[35] have also been

proposed. Commercial products based on the HMM-based

speech synthesis approach, e.g., [36]–[39], have been available

in the market.

The aim of this paper is to give a general overview of

popular techniques used in HMM-based speech synthesis.

Although many research groups have contributed to the recent

progress in HMM-based speech synthesis, please note that the

description given here is somewhat biased toward implemen-

tation of the HMM-based speech synthesis system called HTS

[11], [40].

The rest of this paper is organized as follows. Section

II introduces the fundamentals of the HMM-based speech

synthesis system. Section III describes the flexibility of HMM-

based speech synthesis, and open source software tools are

introduced in Section IV. The relation between the HMM-

based and unit selection speech synthesis approaches is dis-

cussed in Section VI, and the recent development is described

in Section VII. Future directions are described in Section VIII.

Concluding remarks are presented in the final section.

II. HMM-BASED SPEECH SYNTHESIS

A. Speech production and vocoder

It is well known that the speech production process (Fig. 1)

may be approximated using a digital filter shown in Fig. 2.

This implementation is based on the source filter theory of

voice production [41] and is therefore called the source filter

Source excitation part Resonance part

Fig. 2. Source-filter model that simulates human speech production shown
in Fig. 1.

Spectrum part

Excitation part

Spectral parameters

(e.g., mel-cepstrum, LSPs)

log F0 with V/UV

Dynamic features

Dynamic features

Fig. 3. Example of an observation vector at each frame.

model. The most straightforward such model uses a white

excitation (pulse train or noise) filtered with a single resonance

filter to model the acoustic speech pressure wave, where

spectral envelopes of the glottal flow, vocal tract resonance,

and lip radiation effect are modeled all together by the

single resonance filter. This model comprises: 1) voicing

information, 2) fundamental frequency (F0), and 3) spectral

envelope represented by, e.g., mel-cepstral coefficients [42],

and speech waveforms can be reasonably reconstructed from

the sequence of these acoustic parameters. In HMM-based

speech synthesis, HMMs predict these vocoder parameters

from the given text. By concatenating spectral and excitation

parameter vectors at each frame, we can form an observation

vector at each frame. A typical form of the observation vector,

which includes not only static but also dynamic features, will

be mentioned in detail in Section II-C and is shown in Fig. 3.

In addition to the mel-cepstral coefficients, various spectral

representations, such as line spectral pairs (LSPs) [43], mel-

generalized cepstral coefficients [44], and various excitation

parameters (e.g., aperiodicities [45]) can also be used.

B. Hidden Markov model

Fig. 4 shows an example of a 3-state left-to-right HMM. An

N -state HMM λ (e.g., corresponding to an utterance) is char-

acterized by sets of initial-state probabilities {πi}
N
i=1, state-

transition probabilities {aij}
N
i,j=1, and state-output probability

distributions {bi (·)}
N
i=1. The {bi (·)} are typically assumed to
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Fig. 4. Example of a 3-state, left-to-right hidden Markov model.

be single multivariate Gaussian distributions for simplicity;

bi(ot) = N (ot;µi,Σi) (1)

=
1

√

(2π)d|Σi|
exp

{

−
1

2
(ot − µi)

⊤
Σ

−1

i (ot − µi)

}

(2)

where µi and Σi are a d-by-1 mean vector and a d-by-

d covariance matrix, respectively, d is the dimension of the

acoustic parameters, and ot is an observation vector, which

consists of the vocoder parameters at frame t.

Since the HMM is a generative model, the basic concept

of HMM-based speech synthesis is straightforward. Let O =
[O⊤

1 ,O
⊤

2 , . . . ,O
⊤

T ]
⊤, and W be a set of speech parameters

and corresponding linguistic specifications (such as phoneme

labels) to be used for the training of HMMs, respectively, and

o = [o⊤
1 ,o

⊤
2 , . . . ,o

⊤

T ′ ]⊤ and w be speech parameters and cor-

responding linguistic specifications that we want to generate

at synthesis time. The training of HMMs and synthesis from

HMMs are simply written as follows:

Training: λmax = argmax
λ

p(O | λ,W) (3)

p(O | λ,W) =
∑

∀q

πq0

T
∏

t=1

aqt−1qtbqt(Ot) (4)

Synthesis: omax = argmax
o

p(o | λmax, w) (5)

where q = {q1, q2, . . . , qT } is a state sequence.

C. Speech Parameter Generation from HMM

Problem of Parameter Generation: The basic idea of the

speech parameter generation algorithm is simple. The most

probable speech parameter vector sequence given a set of

HMMs and a text to be synthesized is determined as

omax = argmax
o

p(o | λmax, w) (6)

= argmax
o

∑

∀q

p(o, q | λmax, w) (7)

≈ argmax
o,q

p(o, q | λmax, w) (8)

= argmax
o,q

p(o | q, λmax)P (q | λmax, w) (9)

≈ argmax
o

p(o | qmax, λmax) (10)

= argmax
o

T ′

∏

t=1

N (ot;µqmax,t
,Σqmax,t

) (11)

where

qmax = argmax
q

P (q | λmax, w). (12)

The maximization problem of Eq. (12) can easily be solved

by state-duration probability distributions. The maximization

problem of Eq. (10) is maximizing p(o | q, λ) with respect to

o given the pre-determined state sequence qmax.

Incorporating Dynamic Feature Constraints: From

Eq. (2), p(o | qmax, λ) is maximized if ot = µqt
, t =

1, 2, . . . , T ′, that is, the speech parameter vector sequence

becomes a sequence of the mean vectors. Because of the

conditional independence of state-output probabilities assumed

in the HMM, the mean vector sequence results in a step-wise

sequence. This is unrealistic as speech parameters extracted

from the natural speech vary smoothly. We can perceive

discontinuities at state boundaries in a speech waveform that is

resynthesized from the step-wise speech parameter sequence.

To avoid this problem, the speech parameter generation

algorithm introduces the relationship between static and dy-

namic features as constraints of the maximization problem

[46]. The use of the dynamic features (first and second-

order time derivatives of speech parameters) as a part of

the observation vector as shown in Fig. 3 is a simple but

powerful mechanism for capturing time dependencies within

the HMM framework. It greatly improves the performance of

HMM-based automatic speech recognizers. It is assumed that

the speech parameter vector ot consists of the static feature1

ct and its dynamic feature2 ∆ct as

ot = [ct,∆ct]
⊤
. (13)

For simplicity, the dynamic feature ∆2ct in Fig. 3 is omitted

from this equation. The dynamic features are often calculated

as regression coefficients from their neighboring static fea-

tures, i.e.,

∆ct =

L
∑

τ=−L

w(τ)ct+τ , (14)

where {w(τ)}Lτ=−L are window coefficients to calculate dy-

namic features. Usually, the maximum window length L is

1For notation simplicity, the static feature ct is assumed to be a scalar
value. Extension to vectors is straightforward. Usually the vector size of ct
is about 20 ∼ 50 depending on the sampling frequency.

2 Using higher-order dynamic features is straightforward.
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set to 1–4. To simplify the following discussion, the most

straightforward case of ∆ct is considered;

∆ct = ct − ct−1. (15)

The relationship between the observation vector sequence o =
[

o⊤
1 , . . . ,o

⊤

T ′

]⊤
and static feature sequence c = [c1, . . . , cT ′ ]

⊤

can be arranged in a matrix form as

o W c

··· t−2 t−1 t t+1 ···































...

ct−1

∆ct−1
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∆ct
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.

(16)

Under this deterministic relationship, maximizing the output

probability with respect to o is equivalent to maximizing the

output probability with respect to c as

cmax = argmax
c

N (Wc;µ
q
max

,Σq
max

). (17)

By equating the partial derivative of the logarithm of Eq. (17)

with respect to c to 0, a set of linear equations to determine

the most probable static feature vector sequence is derived as

W⊤
Σ

−1

q
Wc = W⊤

Σ
−1

q
µ

q
(18)

where

µ
q
=

[

µ⊤

q1
, . . . ,µ⊤

qT ′

]⊤

(19)

Σq = diag
[

Σq1 , . . . ,ΣqT ′

]

. (20)

The set of linear equations can be solved efficiently with the

Cholesky decomposition with O(T ′) operations.

Example of Generated Parameters: Fig. 5 shows an

example of statistics and generated speech parameters from

a sentence-level HMM composed by concatenating two

phoneme-level HMMs. The trajectory of the zero-th mel-

cepstral coefficient c(0) in the generated speech parameters

and its dynamic features are shown. Each vertical dotted

line represents a state output. Since the covariance matrix is

assumed to be diagonal, each state has its mean and variance:

each horizontal dashed line and the shaded area represent the

state mean and the standard deviation of the state, respec-

tively. The three trajectories, static, delta, and delta-delta, are

constrained by Eq. (16),3 and determined by maximizing their

output probabilities. As a result, the trajectory is constrained

to be realistic as determined from the statistics of both static

and dynamic features.

3 Please note that Eqs. (13)–(16) do not include delta-delta whereas Fig. 3
does.

D. Training part

Fig. 6 is a block diagram of a basic HMM-based speech

synthesis system. It consists of training and synthesis parts as

we mentioned earlier. The training part performs the maximum

likelihood estimation of the HMM parameters by using the

Baum-Welch algorithm. This process is similar to the one used

for speech recognition: however, there are several differences

that are worth mentioning.

Feature vectors and state output probabilities: Since we

need to drive a source filter vocoder, HMMs need to model

both spectral parameters, such as mel-cepstral coefficients, and

excitation parameters, such as F0, at the same time, whereas

HMMs used in automatic speech recognition (ASR) typically

use only spectral parameters, which are modeled by continuous

distributions.

However, we cannot directly apply both the conventional

discrete and continuous HMMs to F0 pattern modeling since

F0 values are not defined in the unvoiced region, i.e., the

observation sequence of an F0 pattern is composed of one-

dimensional continuous values and discrete symbols that rep-

resent “unvoiced” as shown in Fig. 7. Although sev-

eral methods have been investigated for modeling F0 se-

quences [47]–[49], the HMM-based speech synthesis system

uses multi-space probability distributions [50] for modeling

them. A typical multi-space probability distribution for

F0 modeling consists of a continuous distribution for voiced

frames and a discrete distribution for unvoiced frames. By

switching the continuous and discrete space according to the

space label associated with each observation, it can model

variable dimensional observation vector sequences, such as

F0 sequences, without heuristic assumptions. To keep syn-

chronization between spectral parameters and F0 parameters,

they are modeled simultaneously by separate streams in a

multi-stream HMM [51], which uses different state output

probability distributions for modeling individual parts of the

observation vector, i.e., the continuous distributions are used as

stream-output probability distributions for modeling the spec-

tral parameters and the multi-space probability distributions

are used as those for modeling the F0 parameters.

Explicit duration modeling: Each HMM also has its

explicit state-duration probability distribution to model the

temporal structure of speech [52] instead of transition prob-

abilities. In the standard HMM case, the state duration

probability exponentially decreases with increase of duration.

However, it is too simple to control the temporal structure of

the speech parameter sequence. Instead, HMM-based speech

synthesis typically uses a semi-Markov structure in which the

temporal structure is approximated by a Gaussian distribution

[53].

Context dependency: Another difference is that linguis-

tic specifications have been taken into account. In addition

to phoneme information, HMM-based speech synthesis uses

various linguistic contexts such as lexical stress, pitch accent,

tone, and part-of-speech information for the context-dependent



PROCEEDINGS OF IEEE, VOL. 1, NO. 1, JANUARY 2013 5

/a/ /i//sil/ /sil/

1.0

11.0

c
(
0
)

0

-0.8

1.8

∆
c
(
0
)

1 20 40 60 80

0

-1.0

0.6

Frame mumber

∆
 
c
(
0
)

2

Fig. 5. Example of statistics and generated parameters from a sentence-level HMM composed of phoneme-level HMMs for /a/ and /i/. The dashed line and
shading show the mean and standard deviation, respectively, of a Gaussian pdf at each state.

modeling of HMMs [54]. Although spectral parameters are

mainly affected by phoneme information, prosodic and dura-

tion parameters may be affected by supra-segmental linguistic

information. For example, the contexts used in the HTS

English recipes [18] include the following contexts:

• Phoneme:

- current phoneme

- preceding and succeeding two phonemes

- position of current phoneme within current syllable

• Syllable:

- numbers of phonemes within preceding, current, and

succeeding syllables

- stress4 and accent5 of preceding, current, and succeed-

ing syllables

- positions of current syllable within current word and

phrase

- numbers of preceding and succeeding stressed syllables

within current phrase

- numbers of preceding and succeeding accented sylla-

bles within current phrase

- number of syllables from previous stressed syllable

- number of syllables to next stressed syllable

- number of syllables from previous accented syllable

- number of syllables to next accented syllable

- vowel identity within current syllable

• Word:

4 The lexical stress of the syllable as specified from the lexicon entry
corresponding to the word related to this syllable.

5 An intonational accent of the syllable predicted by a CART [55] (0 or
1).

- estimate of the part of speech of preceding, current,

and succeeding words

- numbers of syllables within preceding, current, and

succeeding words

- position of current word within current phrase

- numbers of preceding and succeeding content words

within current phrase

- number of words from previous content word

- number of words to next content word

• Phrase:

- numbers of syllables within preceding, current, and

succeeding phrases

- position of current phrase in major phrases

- ToBI endtone of current phrase

• Utterance:

- numbers of syllables, words, and phrases in utterance

Parameter tying: In practice, there are too many contex-

tual factors in relation to the amount of speech data avail-

able. As the number of contextual factors we want to con-

sider increases, their combinations also increase exponentially.

Therefore, the context-dependent HMM parameters cannot be

estimated accurately and robustly with a limited amount of

training data. To overcome this problem, we always apply

state tying techniques [56] to cluster similar states and to tie

model parameters among several context-dependent HMMs so

that we can estimate the model parameters more robustly. The

state tying process is conducted in a hierarchical tree structure

manner and the tree size is automatically determined based on

an information criterion called minimum description length
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Fig. 7. Example of an observation sequence of an F0 pattern.

(MDL) [57]. As the spectral, excitation, and duration pa-

rameters have different context dependency, they are clustered

separately by using stream-dependent decision trees [11].

E. Synthesis part

The synthesis part of the system is shown in the lower part

of Fig. 6. It first converts a given text to be synthesized into a

sequence of context-dependent labels. According to the label

sequence, a sentence-level HMM is constructed by concate-

nating context-dependent HMMs. The duration of each state

is determined to maximize its probability based on its state

duration probability distribution (Eq. (12)). Then a sequence of

speech parameters including spectral and excitation parameters

is determined so as to maximize its output probability using the

speech parameter generation algorithm [46] (II-C). Finally, a

speech waveform is re-synthesized directly from the generated

spectral and excitation parameters by using a speech synthe-

sis filter, such as the mel-log spectral approximation filter

[42] for mel-cepstral coefficients and all-pole filter for linear

prediction-based spectral parameter coefficients, as explained

in II-A.

III. FLEXIBILITY OF HMM-BASED SPEECH SYNTHESIS

The main advantage of HMM-based speech synthesis over

concatenative speech synthesis is its flexibility in changing

voice characteristics, speaking styles, and emotions. Many

techniques for controlling variation in speech have been

proposed, and this section overviews major techniques to ac-

complish this, including adaptation, interpolation, eigenvoice,

and multiple regression.

Target Speaker’s Model

Average Voice Model 
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3 
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Fig. 8. Speaker adaptation techniques of an HMM-based speech synthesis
system.

A. Speaker characteristics

Model adaptation (mimicking voices): Speaker adaptation

is a technique for transforming existing speaker-independent

acoustic models to match a target speaker using a very small

amount of speech data [24]. This method starts with an

“average voice model” and uses model adaptation techniques

drawn from speech recognition such as maximum likelihood

linear regression (MLLR) [58], [59], to adapt the speaker

independent HMMs to a new speaker or to a new speaking

style, as shown in Fig. 8.

The average voice model is a “canonical” speaker-

independent HMM where inter-speaker acoustic variation is

normalized using a technique called on speaker-adaptive train-

ing (SAT) [60], [61]. MLLR is one of the most important

recent developments in speech recognition because this can

effectively reduce acoustic mismatch between training data

and test data. MLLR adaptation estimates a set of linear

transforms to map Gaussian pdfs of the existing average voice

model into a new adapted model so that the adapted model

approximates given adaptation data better. Since the amount of

adaptation data is limited, a regression class tree is normally

used to cluster the Gaussian components based on acoustic

similarity and to share the same MLLR transform [62]. In

Fig. 8, there are three regression classes where the same

transformation functions are shared.

Speaker adaptation is also a very exciting development in

HMM-based speech synthesis. This adaptation allows text-to-

speech synthesizers for a target voice to be built using much

smaller amounts of training data than previously required.

Prior to this, the development of a new voice required many

hours of carefully annotated speech recordings from a single

speaker. Speaker adaptive HMM-based synthesis requires as

little as 5–7 minutes of recorded speech from a target speaker

to generate a personalized synthetic voice [24]; hence, the

average voice model can be easily transformed into a synthetic

voice for any number of speakers [25]. The major adaptation

techniques used for HMM-based speech synthesis are similar

to those of ASR and include maximum a posteriori (MAP)
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estimation [63], [64] and MLLR [26], [58].

MLLR performs linear transforms of mean vectors of the

state output probability distributions of Eq (2)

bi(ot) = N (ot; ζkµi + ǫk,Σi) (21)

where ζk and ǫk are a d-by-d matrix and a d-dimensional

vector, respectively, and k denotes the k-th regression class.

If we transform covariance matrices as well as the mean

vectors of the state output probability distributions using the

same matrices, this is called the constrained MLLR (CMLLR)

[65] and the state output probability distribution is affine-

transformed as follows:

bi(ot) = N (ot; ζkµi + ǫk, ζkΣiζ
⊤

k ). (22)

These transforms may be estimated using the standard max-

imum likelihood or MAP [24] criteria, and may be combined

with other speaker adaptation techniques such as vocal tract

length normalization [66].

Model interpolation (mixing voices): The model interpola-

tion technique enables us to generate synthetic speech having

intermediate voice characteristics among two or more than

two representative pre-trained voice characteristics. The basic

idea of interpolation was first proposed in the field of voice

conversion, where pre-stored spectral patterns were interpo-

lated among multiple speakers [67]. The same concept can

also be applied to HMM-based speech synthesis, where HMM

parameters are interpolated among some representative HMM

sets [68] as shown in Fig. 9. The main difference between

Iwahashi and Sagisaka’s technique [67] and Yoshimura et

al.’s one [68] was that as each speech unit was modeled

by an HMM, mathematically well-defined statistical measures

such as the Kullback-Leibler divergence could be used to

interpolate the HMMs. Using the interpolation technique, we

can synthesize speech with various voice characteristics [68],

speaking styles [69], and dialects [70] that are not included in

the training speech data.

Eigenvoices (producing voices): The use of the interpolation

technique enables us to obtain various new voices by changing

the interpolation ratio between representative HMM sets even

if no data for the target voice are available. However, if we

increase the number of representative HMM sets to enhance

speech variations, it is not straightforward to determine the

interpolation ratio to obtain the required voice. To address

this problem, Shichiri et al. applied the “eigenvoice” technique

based on principal component analysis (PCA) [71] to HMM-

based speech synthesis [27]. The framework of probabilistic

PCA can similarly be applied to HMM-based speech synthesis

systems [28] to improve acoustic modeling.

The advantage of the eigenvoice approach is that it reduces

the number of parameters to be controlled, which enables us

to manually control the voice characteristics of synthesized

speech by setting the weights (Fig. 10).

B. Expressive speech synthesis

Similar to the naturalness of synthesized speech, expression

of emotion is one of the important issues which should be

Fig. 9. Model interpolation techniques of an HMM-based speech synthesis
system.

O

Model parameter space

Speaker dependent

supervector

Mean supervector

New supervectorEigenvector

Mean vector

Fig. 10. Eigenvoice techniques of an HMM-based speech synthesis system.
“Supervector” is a vector that consists of all HMM parameters, e.g., means
of state Gaussians.

considered [72]. Various types of emotional/affective speech

synthesis approaches have been proposed in the HMM-based

speech synthesis framework.

For intuitively controlling the characteristics, Miyanaga et

al. applied a multiple-regression approach to HMM-based

speech synthesis to control voice characteristics intuitively

[29], [30] in which mean vectors of state-output distributions

were directly controlled with small-dimensional auxiliary fea-

tures. The multiple-regression HMM was initially proposed

to improve the accuracy of acoustic modeling for ASR by

using auxiliary features that are correlated with the acoustic

features [73]. Auxiliary features that have been used in ASR

include fundamental frequency [73]; the auxiliary features that
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Fig. 11. Examples of articulatory features that can be integrated into HMM-
based speech synthesis using regression approaches.

are often used in TTS, on the other hand, are more meta-level

descriptions of speech such as specific voice characteristics,

speaking styles, and emotions. This allows us to directly ma-

nipulate such expressivity, brightness, and emotions of specific

words or phrases straightforwardly at the synthesis stage.

In [29], [30], these auxiliary features for TTS are manually

annotated through subjective listening tests prior to HMM

training. A trial for estimating such voice characteristics,

speaking styles, and emotions of speech data based on the

same model has also been reported [31].

Another type of auxiliary feature that can be integrated into

HMM-based speech synthesis is articulatory features, that is,

the continuous movements of a group of speech articulators,

for example the tongue, jaw, lips and velum shown in Fig. 11,

recorded using human articulography techniques such as

electromagnetic articulography [74]. An HMM-based speech

synthesis system having such articulatory features as optional

configurable inputs allows users to manipulate HMM-based

synthetic speech via articulation [32], [33], which becomes a

good link and contrast to conventional articulatory synthesis

[1].

Furthermore, it is possible to combine the model adapta-

tion approach mentioned earlier and the regression approach.

By combining these techniques, we can synthesize speech

with various voice characteristics, speaking styles, and emo-

tions without having larger speech databases. For example,

Tachibana et al. and Nose et al. proposed the combination

of multiple-regression and adaptation techniques to achieve a

multiple-regression technique with a small amount of speech

data [34], [35].

For emphasis modeling, Badino et al. showed that HMM-

based speech synthesis can produce recognizable variation

when modeling emphasis of contrastive words [75]. On the

other hand, Yu et al. proposed a two-pass decision tree and

a factorized decision tree approach for word-level emphasis

modeling instead of directly using emphasis context features

[76].

C. Multilingual speech synthesis

Supporting multiple languages can easily be accomplished

in HMM-based speech synthesis because the only language-

dependent element is the set of contextual factors to be used.

Average voice model
    (Input language)

 Adapted model
(Input language)

Transforms

Adaptation data
(Input language)

Average voice model
   (Output language)

   Adapted model
(Output language)

Transforms

   State 
mapping

V 1

V 2

V R

V 1

V 2

V R

Fig. 12. Cross-lingual speaker adaptation techniques of HMM-based speech
synthesis system using state mapping.

In other words, once we analyze and acquire the contextual

factors required for the target languages, HMMs can be learned

in a completely automatic manner, without the need for skilled

human intervention because these technologies are primarily

data-driven. This property is a key factor for efficiently devel-

oping speech synthesizers in new and/or multiple languages.

Identical model training methods/recipes can be used across

languages and any improvements made to the training recipes

will be automatically reflected in voices for all languages.

To our knowledge, more than 40 different language systems

have been or are being built by both various academic and

commercial organizations.

As in the speech recognition field, multilingual/polyglot and

cross-lingual acoustic modeling are also active research topics

in the speech synthesis field, and we list a few interesting

attempts in this subsection. Latorre et al. and Qian et al.

proposed several techniques for building multilingual mixed-

language speech synthesizers, where speech data in multiple

languages are used simultaneously and HMM states are shared

across these languages [77], [78]. Cross-lingual acoustic mod-

eling for TTS in which a target speaker’s voice in a new

language is constructed from target speaker’s speech data in

a different language has also been proposed and developed.

For example, Qian et al. and Wu et al. proposed cross-lingual

speaker adaptation techniques using state mapping and tree

structures learned from bilingual speakers and average voice

models [78]–[80], respectively, shown in Fig. 12.

Zen et al. proposed a framework for estimating HMMs on
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data containing both multiple speakers and multiple languages,

which attempts to factorize speaker-/language-specific charac-

teristics in the data and then model them using separate trans-

forms. Language-specific factors in the data are represented by

transforms based on cluster mean interpolation with cluster-

dependent decision trees, and acoustic variations caused by

speaker characteristics are handled by transforms based on

constrained MLLR [81].

D. Singing voice

As we mentioned earlier in the multilingual section, HMM-

based text-to-speech synthesis has only limited language de-

pendency. Singing voice synthesis can be regarded as synthesis

in a special language in which linguistic specifications and

resulting contexts are derived from musical notes and lyrics

[82], [83]. To construct a basic system, the speech database

of the HMM-based text-to-speech synthesis system has to be

replaced with a database of singing voices and the correspond-

ing musical notes. The singing voice synthesis system can be

constructed in almost the same manner as that of the HMM-

based text-to-speech synthesis system. We just need to add

several contextual factors specific for singing voices. For

example, the contexts used for the singing voice synthesis

system include the following:

• Phoneme:

- current phoneme

- preceding and succeeding two phonemes

- position of current phoneme within current syllable

• Syllable:

- numbers of phonemes within preceding, current, and

succeeding syllables

- positions of current syllable within current musical

note and phrase

• Musical Note:

- musical tone, key, beat, tempo, length, and dynamics

of preceding, current, and succeeding musical notes

- position of current musical note within current phrase

- tied and slurred flags

- distance between current musical note and preced-

ing/succeeding accent and staccato

- position of current musical note within current

crescendo and decrescendo

• Phrase:

- numbers of syllables within preceding, current, and

succeeding phrases

• Song:

- numbers of syllables, musical notes, and phrases in

song

One of HMM-based singing speech synthesizers called

“Sinsy” is available online [84]. In the online system, users

can upload musical scores (MusicXML format) that specify

measure, musical note, pitch, duration, lyrics, etc., and Sinsy

automatically generates singing voices corresponding to the

musical scores.

E. Small footprint

The footprints (required memory and disk storage size)

of HMM-based speech synthesizers are usually significantly

smaller than that of typical unit-selection synthesizers because

only parameters of the HMMs are stored, instead of the speech

waveforms. For example, the footprint of a standard system

built using the publicly available toolkit HTS is normally less

than 2 MBytes without the use of any compression techniques

[14]. Thanks to this feature, statistical parametric speech

synthesis systems are highly valued on embedded devices [85],

and various commercial products have recently been released

[36]–[39].

For some applications, such as server-client type speech

services, the storage size of the TTS system is not usually

an issue. For such cases, we can adaptively control the size

of decision trees at synthesis time by storing larger decision

trees and all corresponding HMM parameters [86].

For some applications, on the other hand, the footprint may

also be further reduced without significant degradation in qual-

ity by eliminating redundant information. It was demonstrated

that HMM-based speech synthesis systems whose footprints

were about 100 KBytes could synthesize intelligible speech

by using vector quantization, fixed-point numbers instead of

floating-point numbers, and pruned decision trees. In addition,

several techniques that suit embedded devices have been

proposed, e.g., memory-efficient, low-delay speech parameter

generation algorithms [87], [88] and tying model parameters

[89].

IV. OPEN SOURCE SOFTWARE TOOLS

Open source software tools have greatly facilitated research

in the speech technology community as in many other fields.

In particular, the HMM Toolkit (HTK) [16] and the Festival

Speech Synthesis System [17] are the standard toolkits for

speech recognition and synthesis research, respectively.

For HMM-based speech synthesis research, a toolkit called

HTS [18] has been developed and is widely used. The number

of downloads of HTS exceeds 10,000. This toolkit is released

as a patch code to HTK under the 3-clause BSD license.6

As its interface and functionality are very similar to those of

HTK, researchers who are familiar with HTK can easily start

using HTS. An application programming interface (API) for

implementing run-time HMM-based speech synthesis called

hts engine API [90] has also been released. This toolkit

is highly portable as it is written in C and uses only the

standard C library. Based on this API, a Japanese TTS system

called Open JTalk [91] and an English TTS system called

Flite+hts engine [90] have been released. The Festival Speech

Synthesis System also uses this API to support HMM-based

speech synthesis. A toolkit for performing reactive speech

synthesis called pHTS is built upon hts engine API [92].

The feature extraction part of HMM-based speech synthesis

requires components for signal processing. The Speech Signal

Processing Toolkit (SPTK) [19] provides most of the required

6Once the patch code is applied, users must obey the license of the HTK.
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signal processing functionality including linear predictive anal-

ysis, mel-cepstral analysis, and fundamental frequency ex-

traction. The Edinburgh Speech Tools [93], the Snack Sound

Tookit [94], and the ESPS Toolkit [95] are also often used for

the feature-extraction part for HMM-based speech synthesis.

V. PERFORMANCE AND EVALUATION

The Blizzard Challenge is an annual evaluation of corpus-

based speech synthesis systems, in which participating teams

build a synthetic voice from a common speech database then

synthesize a set of test sentences. Listening tests are used

to evaluate the systems in term of naturalness, similarity to

original speakers, and intelligibility [96]–[100]. HMM-based

speech synthesis systems have been evaluated since the 2005

challenge. We summarize the results of the challenges in the

context of HMM-based approaches.

A. Intelligibility

It is often mentioned that text-to-speech has lower intelligi-

bility than natural speech [101].

According to the Blizzard Challenge 2008 and the following

challenges, however, synthetic speech generated from some

HMM-based speech synthesis systems are occasionally found

to be as intelligible as natural human speech in noiseless

conditions [99].

In the latest 2011 Blizzard Challenge, even a benchmark

HMM-based speech synthesis system that only uses the pub-

licly released HTS toolkit was found to be as intelligible

as natural human speech. To our knowledge, this landmark

achievement is a first for speech synthesis research (see the

2008 and 2011 Blizzard Challenge for more details).

B. Naturalness and speaker similarity

According to the Blizzard Challenge evaluations, no text-

to-speech synthesizer has yet been found to be as good as

natural human speech in terms of both naturalness and speaker

similarity.

The best quality of HMM-based speech synthesizers was

found to be better than or comparable to the conventional unit

selection systems on relatively smaller corpora consisting of

one hour to a few hours of speech data. It is also found that

combining unit-selection and HMM-based speech synthesis

(which is mentioned in detail in the next section) resulted

in better quality and speaker similarity on relatively larger

corpora.

Fig. 13 shows some of the actual results of the 2010 Blizzard

Challenge. In Blizzard Challenge 2010, two English speech

databases consisting of four hours of speech uttered by a

British male speaker and one hour of speech data uttered by a

different British male speaker were released. To evaluate the

naturalness of synthetic speech, a 5-point mean opinion score

(MOS) was adopted, where 5 meant “completely natural”

and 1 meant “completely unnatural.” The evaluations were

conducted over a six-week period via the Internet and in

controlled sound booths. The figure shows the MOS results

on naturalness corresponding to these provided corpora.

The system “V” marked in orange in the figure represents

an HMM-based speech synthesis system constructed using the

latest version of the HTS toolkit. On the four hours of speech

corpus, “V” was not as good as the top hybrid systems such

as “M.” More importantly, there was no significant difference

between the unit selection benchmark unit selection system

“B” and the HMM-based system “V.” On the one hour of

speech corpus, “V” was evaluated as the second best.

VI. RELATION TO UNIT SELECTION APPROACHES

A. Comparison with unit selection

In HMM-based speech synthesis systems, the distributions

for individual speech components, such as the spectrum, exci-

tation (F0), and duration, are clustered separately to effectively

capture contextual dependencies specific to individual speech

components. Some clustering-based systems for unit selec-

tion using HMM-based state clustering [102] have a similar

structure to that of the HMM-based speech synthesis system.

They often use regression trees (or CART [55]) for predicting

prosodic parameters such as F0 and duration. They are almost

equivalent to the decision trees for F0 and duration in the

HMM-based speech synthesis system. On the other hand, if the

waveform concatenation is used in the unit-selection systems,

the leaves of one tree must have speech waveforms rather than

spectral parameters; other trees are used to calculate target

costs, to prune waveform candidates, or to give features to

build the tree for speech waveforms.

The essential difference between the HMM-based speech

synthesis system and unit-selection systems is that each cluster

in the HMM-based speech synthesis system is represented by

the probability distribution of the cluster instead of the multi-

templates of speech units in the unit-selection systems. The

HMM-based speech synthesis system generates speech param-

eter trajectories from the continuous probability distributions

with the likelihoods of static and dynamic features, while the

unit-selection systems select a sequence of speech units from

multi-templates with target and concatenation costs. It should

be noted that the likelihoods of static and dynamic features

work as the target and concatenation costs, respectively. The

use of continuous distributions enables us to achieve a contin-

uous representation of speech parameter trajectories beyond a

discrete representation by the multi-templates. This also causes

a difference in the search space for the optimal parameter

trajectories; whereas it is discrete for unit selection, it is

continuous for the parameter generation from the continuous

distributions. Thus, the parameter generation in the HMM-

based speech synthesis system can be viewed as an analogue

version of unit selection.

B. Hybrid approaches

There are hybrid approaches between unit-selection synthe-

sis and HMM-based speech synthesis as a natural consequence

of the viewpoints mentioned above. Some of these approaches

use spectrum parameters, F0 values, and durations (or some

of them) generated from HMMs as “targets” for unit-selection

synthesis [103]–[106]. Similarly, HMM likelihoods are used as

“costs” for unit-selection synthesis [107]–[111]. Furthermore,
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Mean opinion scores − naturalness − ( 4 hours of speech data) Mean opinion scores − naturalness − (1 hour of speech data)

Fig. 13. Mean opinion scores on naturalness in the 2010 Blizzard Challenge EH1 task, where 4 hours of speech data were used (left figure) and EH2 task
where 1 hour of speech data were used (right figure). The box-plots in orange represent HMM-based speech synthesis systems that can be constructed using
the latest version of the HTS toolkit.

some approaches use instances of frame samples in the state

to approximate each state-output distribution, e.g., the HMM-

based unit-selection system with frame-sized units [112] uses

a frame-wise dynamic programming (DP) search calculating

the dynamic feature as the difference between neighboring

static features, which results from the ML-based parameter

generation, the discrete HMM-based speech synthesis system

[113] models each state-output distribution with discrete distri-

butions using vector quantization based on a similar idea, and

a frame-wise representation of state-output distribution was

also investigated in an attempt at unifying unit-selection and

HMM-based speech synthesis [114].

These hybrid approaches have several advantages. An over-

smoothing problem, which is described in Section VII-B, is

avoided by using natural acoustic instances as candidates of

samples generated from the probability distributions. The qual-

ity degradation caused by vocoding is also avoided by using

the waveform instances. Moreover, the HMM likelihoods help

us design a complicated cost function sensitively capturing the

context dependencies in each speech component. On the other

hand, the hybrid approaches lose many of the advantages of

the HMM-based speech synthesis system, such as a flexible

control of voice quality and small footprint, as mentioned

above. In the future, we may convert them into an optimal

form of corpus-based speech synthesis by fusing HMM and

unit-selection synthesis.

VII. THE RECENT DEVELOPMENT

A. Excitation models

Speech samples synthesized using the basic HMM-based

speech synthesis system sound somewhat buzzy since it

uses a vocoder with a simple excitation model based on a

periodic pulse-train and white-noise [11]. To mitigate this

problem, high-quality vocoders such as mixed excitation

linear prediction [115], [116], multi-band excitation [117],

pitch synchronous residual codebook [118], the harmonic

plus noise model (HNM) [119], [120], the flexible pitch-

asynchronous harmonic/stochastic model [121], STRAIGHT

[14], the glottal-flow derivative model [122], [123], and the

glottal waveform [124], [125], have been implemented for the

HMM-based speech synthesis system.

Most of these methods are based on the implementation of

an excitation model through the use of additional parameters

modeled by HMMs. However, they do not directly minimize

the distortion between artificial excitation and speech residu-

als. Maia et al. have recently proposed a trainable technique of

excitation modeling for HMM-based speech synthesis [126].

In this technique, mixed excitation is produced by inputting

periodic pulse trains and white noise into two state-dependent

filters, a voiced filter to model phase components depending on

the glottal waveform and frequency-dependent periodic com-

ponents and an unvoiced filter to model frequency-dependent

aperiodic components. The filters are derived to maximize

the likelihood of residual sequences over corresponding states

through an iterative process. As a result, this technique directly

minimizes the weighted distortion (i.e., Itakura-Saito distance

[127]) between the generated excitation and speech residuals,

which is equivalent to direct modeling of speech waveforms

by using HMMs.

B. Avoiding over-smoothing

In HMM-based speech synthesis systems, the speech pa-

rameter generation algorithm is used to generate spectral and
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excitation parameters from HMMs to maximize their output

probability density values under constraints between static and

dynamic features. The statistical averaging in the modeling

process improves robustness against data sparseness, and the

use of dynamic-feature constraints in the synthesis process

enables the generation of smooth trajectories. However, syn-

thesized speech sounds are evidently muffled compared with

natural speech because the generated speech-parameter tra-

jectories are often over-smoothed, i.e., detailed characteristics

of speech parameters are removed in the modeling part and

cannot be recovered in the synthesis part. Although using the

advanced acoustic models may reduce this over-smoothing

effect, this may still exist because the synthesis algorithm does

not explicitly include a recovery mechanism.

The simplest way of compensating for over-smoothing is to

emphasize the spectral structure by using a post-filter, which

was originally developed for speech coding. The use of post-

filtering techniques can reduce “buzziness” and muffled sounds

[12], [115]. However, too much post-filtering often introduces

artificial sounds and degrades the similarity of synthesized

speech to the natural speech uttered by the original speaker.

Another way of compensating for over-smoothing is inte-

grating multiple-level statistical models to generate speech-

parameter trajectories. One of the most successful methods

in this category is the speech parameter generation algorithm

considering global variance (GV) [20]. A GV is defined as

an intra-utterance variance of a speech-parameter trajectory,

which is a second-order moment calculated over an utterance.

We calculate GVs for all training utterances and approximately

model their probability density by using a single multi-

variate Gaussian distribution. The speech parameter generation

algorithm considering the GV maximizes not only the HMM

likelihood function but also the objective function of the GV,

which can be viewed as a penalty to prevent over-smoothing.

C. Trajectory HMMs

The speech parameter generation algorithm allows us to

generate smoothly varying speech parameter trajectories from

HMMs, while satisfying the statistics of both static and

dynamic features. However, it also introduces an inconsistency

between training and synthesis stages; dynamic feature con-

straints are ignored at the training stage but utilized explicitly

at the synthesis stage, i.e.,

λmax = argmax
λ

p(O | λ,W) (23)

omax = argmax
o

p(o | λmax, w) |o=Wc (24)

To avoid this inconsistency, Zen et al. explicitly introduced

the dynamic feature constraints into the training stage and

reformulated the HMM with dynamic features as a trajectory

model [21]. This model, called a trajectory HMM, could

overcome the assumption of conditional independence and

constant statistics within an HMM state without the need for

any additional parameters. The minimum generation error

(MGE) training, which also uses the relationship between

static and dynamic features at the training stage, can be viewed

as estimating trajectory HMMs by a defined loss function, such

as minimum mean squared error [22] or log spectral distortion

[23]. Recent research showed that eliminating this incon-

sistency resulted in better predictive distribution of speech

parameter trajectories [128]. The relationship between the

trajectory HMM and Markov random field was also discussed

[129].

VIII. FUTURE DIRECTIONS

Thanks to the flexibility and adaptability of HMM-based

speech synthesis, several new applications are emerging such

as a) personalized speech-to-speech translation systems where

a user’s spoken input in one language is used to produce

spoken output in another language, while continuing to sound

like the user’s voice [78]–[80] and b) voice banking and re-

construction; personalized speech synthesizers for individuals

with vocal disabilities [130]. Further new TTS applications

will be seen in the very near future.

There are many future directions that should be examined.

For the quality of the synthesized speech, Kawahara et al. pro-

posed pitch-adaptive spectral analysis combined with a surface

reconstruction method in the time-frequency region and an

excitation method using instantaneous frequency calculation

[45]. For F0 modeling, Kameoka et al. proposed a statistical

model of speech fundamental frequency contours [131] based

on the formulation of the discrete-time stochastic process

version of the Fujisaki model [132], which is known as a well-

founded mathematical model representing the control mecha-

nism of vocal fold vibration. On the other hand, Ni et al.

focus on speech synthesis using “Big data” [133], including e-

book, Internet radio, podcast, etc. In this approach, HMMs are

trained with automatic speech transcription including errors.

Black et al. proposed an approach to building TTS systems

for low-resource languages [134]. This method allows building

models without depending on the availability of part of speech

taggers, or corpora with hand annotated breaks. Bellegarda

proposed a framework for the analysis of emotion in texts

for speech synthesis [135]. This approach translates plain

texts into appropriate speaking styles automatically. Speech

synthesis by physical simulation is also one of important

directions. Kitamura et al. proposed an MRI-based articulatory

speech synthesis system [136].

In the following, research topics that authors are interested

in and working on are described.

A. Intelligibility of synthetic speech in noise

In a quiet listening environment, the intelligibility of state-

of-the-art HMM-generated synthetic speech can be as good as

that of natural speech [137]. However, in noisy environments,

unmodified synthetic speech tends to reduce in intelligibility

to a much greater extent than unmodified natural speech

[138]. By modifying the synthetic speech via the statistical

models, it is possible to control the characteristics of the

generated speech and so generate synthetic speech that is

more intelligible in noise than the natural speech used for

training [138]–[140]. One way to do this is to use adaptation

techniques based on natural speech produced in noise: so-

called Lombard speech [141]–[143] or to enhance articulation

degree of synthetic speech based on articulatory data [32].
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B. Improvement of acoustic models

Additive models: One of the most important problems in

HMM based speech synthesis is modeling the correlation

between contextual factors and acoustic features, i.e., spec-

trum parameters, F0 values, and durations. Typical context

dependent models, e.g., triphone HMMs, have direct depen-

dencies of contexts, i.e., if a phonetic context is given, the

Gaussian distribution is specified immediately. However, it is

known that prosodic information, such as F0, has an additive

structure with multiple contextual factors [132]. Therefore,

there probably exist more efficient model structures for repre-

senting the generation processes of observed data. The linear

regression model is one approach for representing additive

structures, and it is assumed that all the contextual factors

independently affect acoustic features. However, it is difficult

to find independent additive factors to obtain a good prediction

of acoustic features. To overcome this problem, Nankaku

et al. proposed an additive structure model that composes

multiple decision trees [144]. This method can represent the

intermediate structure of decision tree-based context clustering

and linear regression models. The context clustering algorithm

for the additive structure model that can automatically extract

additive components by constructing multiple decision trees

simultaneously has been proposed. Moreover, this method can

automatically determine the appropriate number of additive

components.

Bayesian approach: Bayesian learning is used to estimate

the posterior distributions of model parameters from prior

distributions and training data, whereas ML and MAP learning

are used to estimate the parameter values (point estimates).

This property enables us to incorporate prior knowledge into

the estimation process and improve model generalization due

to the marginalization effect of model parameters. It offers

selection of a model’s complexity in the sense of maximizing

its posterior probability. Recently, Watanabe et al. applied

the variational Bayesian-learning technique [145] to speech

recognition [146], and Hashimoto et al. applied this idea to

HMM-based speech synthesis [147]. Bayesian HMM-based

speech synthesis determines o as

omax = argmax
o

p(o | w,O,W) (25)

= argmax
o

p(o,O | w,W) (26)

= argmax
o

∫

p(o,O, λ | w,W)dλ (27)

= argmax
o

∫

p(o,O | w,W, λ)p(λ)dλ (28)

= argmax
o

∫

p(o | w, λ)p(O | W, λ)p(λ)dλ (29)

Eq. (25) is the fundamental problem that needs to be solved

in corpus-based speech synthesis, i.e., finding the most likely

speech parameters o for a given word sequence w using the

training data O, and the corresponding word sequence W .

The equations above also indicate that o is generated from

the predictive distribution, which is analytically derived from

the marginalization of λ based on the posterior distribution

estimated from O. We can solve this maximization problem by

using Bayesian speech parameter generation algorithms [147],

which are similar to ML-based speech parameter generation

algorithms [46]. One research topic in the Bayesian approach

is how to set the hyperparameters of the prior distribution,

because the quality of synthesized speech is sensitive to these.

These hyperparameters have been set empirically in conven-

tional approaches. Hashimoto et al. recently proposed a cross-

validation (CV)-based technique of setting hyper-parameters

[147] for Bayesian speech synthesis. It demonstrated that the

CV-based Bayesian speech synthesizer achieved better quality

synthesized speech than an ML-based one.

Unification with speech feature extraction: In typical para-

metric speech synthesis, feature extraction from speech signals

and statistical modeling are separated and independently opti-

mized. As a joint optimization method, Toda et al. proposed

a statistical method for estimating the vocal tract transfer

function from a speech signal based on the maximum a

posteriori criterion [148]. This method effectively models

harmonic components observed over an utterance by using a

factor analyzed trajectory HMM, which is a unified model

for spectral extraction and HMM-based spectral sequence

modeling. By dealing with a mel-cepstrum sequence as a

latent variable, the error in spectral extraction is effectively

considered in the HMM training. On the other hand, Maia

et al. proposed a method that combines the extraction of

spectral parameters and excitation signal modeling in a fashion

similar to the factor analyzed trajectory HMM [149]. The

resulting joint estimation of acoustic and excitation model

parameters can be interpreted as a waveform-level closed-loop

training, where the distance between natural and synthesized

speech is minimized. Similarly, Wu and Tokuda proposed

a training algorithm that directly minimizes the generation

error of harmonic components in the log spectral domain at

LSP frequencies modeled using HMMs [23]. These methods

can be regarded as a unification of feature extraction and

statistical modeling. It is expected that a joint optimization

of these two components can improve the performance of the

whole system by using useful information of both components

simultaneously.

Unification with text analysis: Standard TTS systems con-

sist of two major modules: text analysis and speech syn-

thesis. Conventionally, these two modules are constructed

independently. The text analysis module including phrasing

and prosodic models is trained using text corpora. On the other

hand, the speech synthesis module including acoustic models

(i.e., HMMs) is trained using a labeled speech database. If

these two modules were combined and trained simultaneously

as a unified model, we expect that the overall performance

of a TTS system would be improved. Oura et al. defined

a new integrated model for linguistic and acoustic modeling

and proposed a joint optimization method of these two model

parameter sets [150]. This method allows us to directly for-

mulate the TTS problem of synthesizing a speech waveform

from a word sequence. Another advantage of this method is to
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minimize the effort in hand-labeling of phrasing and prosodic

events required in both linguistic and acoustic model training

because these labels are regarded as latent variables in the

model.

IX. CONCLUSIONS

This paper gave a general overview of HMM-based speech

synthesis and its recent advances. HMM-based speech synthe-

sis has started to be used in daily life, e.g., cellphones, smart

phones, in-car navigation systems, and call centers. Although

the quality of synthesized speech generated by HMM-based

speech synthesis has been drastically improved recently, its

naturalness is still far from that of actual human speech. In

conversational speech, naturalness of prosody is still insuffi-

cient to properly convey nonverbal information, e.g., emotional

expressions and emphasis. To fill the gap between natural and

synthesized speech, the statistical approaches described in VIII

will be more important in the future.
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