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Abstract—Speech technology plays an important role in our
everyday life. Among others, speech is used for human-computer
interaction, for instance for information retrieval and on-line
shopping. In the case of an unwritten language, however, speech
technology is unfortunately difficult to create, because it cannot
be created by the standard combination of pre-trained speech-
to-text and text-to-speech subsystems. The research presented in
this paper takes the first steps towards speech technology for
unwritten languages. Specifically, the aim of this work was 1) to
learn speech-to-meaning representations without using text as an
intermediate representation, and 2) to test the sufficiency of the
learned representations to regenerate speech or translated text,
or to retrieve images that depict the meaning of an utterance in
an unwritten language. The results suggest that building systems
that go directly from speech-to-meaning and from meaning-to-
speech, bypassing the need for text, is possible.

I. INTRODUCTION

PEECH-ENABLED devices are all around us, e.g., all

smart phones are speech-enabled, as are the smart speak-
ers in our homes. Such devices are crucial when one can only
communicate via voice, e.g., when one’s eyes and/or hands are
busy or disabled, or when one cannot type a query in the native
language because the language does not have an orthography
or does not use it in a consistent fashion. These languages
are typically referred to as unwritten languages. However,
for only about 1% of the world languages the minimum
amount of transcribed speech training data that is needed
to develop automatic speech recognition (ASR) technology
is available [1], [41]. Languages lacking such resources are
typically referred to as ‘low-resource languages,” and include,
by definition, all unwritten languages. Consequently, millions
of people in the world are not able to use speech-enabled
devices in their native language. They thus cannot use the same
services and applications as persons who speak a language
for which such technology is developed, or they are forced to
speak in another language.

OS is with the Multimedia Computing Group, Delft University of Technol-
ogy, the Netherlands (part of this work was carried out while she was with the
Centre for Language Studies, Radboud University Nijmegen, the Netherlands).
LB is with LIG - Univ Grenoble Alpes (UGA), France. AB, FM, GN, SP,
and PA are with Carnegie Mellon University, Pittsburgh, PA, U.S.A., FC was
with Carnegie Mellon University, Pittsburgh, USA. MHJ and LW are with
the Beckman Institute, University of Illinois, Urbana-Champaign, USA. SS
and MM are with Karlsruhe Institute of Technology, Germany. PG is with
LIMSI, Paris, France. LO is with Brno University, Czech Republic and Johns
Hopkins University, Baltimore, MD, U.S.A. MD, EL, RR, and ED are with
ENS/CNRS/EHESS/INRIA, Paris, France.

Manuscript received August 8, 2019. Revision received December 2, 2019.

Much progress in speech-to-text (i.e., ASR) and text-to-
speech (i.e., speech synthesis) technology has been driven by
the speech-to-text conversion paradigm (e.g., [37]). In this
paradigm, all aspects of the speech signal that cannot be
converted to text (personality, prosody, performance, emotion,
dialect and sociolect, reverberation, environment, etc.) are
treated as sources of undesirable variability, and compensated
using feature and model normalization methods, for the pur-
pose of focusing energy on a clear and solvable task. To
that end, acoustic models of speech sounds are created which
are statistical representations of each sound (or phone), in
principle devoid of all aspects that cannot be converted to
text. Until about 2015, the majority of speech-to-text systems
required a pronunciation lexicon, and lexicon-based speech-to-
text systems still dominate the field. In lexicon-based speech-
to-text systems, words (the intended output) typically are
modeled as sequences of acoustic models of phones [38], [54],
[19]. In text-to-speech systems, the lexicon determines the
order of context-dependent phone models, and the context-
dependent phone models specify the process by which the
acoustic signal is generated [67], [68]. Recent end-to-end
deep neural networks usually bypass phones, in order to
convert audio input directly into text output [22], [10], [62].
Both phone-based and end-to-end systems, however, for both
speech-to-text and text-to-speech conversion, require text: it is
necessary to train the statistical model and/or neural network
using a large (sometimes very large) database of audio files
with matched text transcriptions.

In the case of an unwritten language, text cannot be used,
and the speech-to-text and text-to-speech technology thus
needs to be modified. Methods for doing so may be guided by
early work on speech understanding, when text was considered
to be a stepping stone on the path between speech and mean-
ing [47]. Training a speech-to-meaning system is difficult,
because few training corpora exist that include utterances
matched to explicit semantic parse structures; the experiences
reported in [32] suggest that such corpora are expensive to
create. On the other hand, a semantic parse is not the only
way to communicate the meaning of an utterance.

Ogden and Richards [51] defined meaning to be a three-
part relationship between a reference (a “thought” or cognitive
construct), a referent (a physical object which is an “adequate”
referent of the reference), and a symbol (a physical sign which
is defined, in some linguistic system, to be “true” if and only
if it connects to an existing cognitive reference in the mind of
the speaker or writer). In their model, the reference is never
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Fig. 1: A model of semantics for speech technology development
in an unwritten language. The speech signal (bottom of the figure)
has some propositional content which is unknown and not directly
observable (represented by the open circle in the center of the
figure). Instead of directly observing the propositional meaning of the
utterance, it is possible to observe its translation to another language
(top right, i.e., in Japanese), or to observe an image depicting the
meaning of the utterance (top left).

physically observable, because it exists only in the mind of the
speaker. Communication between two humans takes place by
the use of symbols (speech signals or written symbols), pos-
sibly with the help of gestures pointing to adequate referents
(physical objects or pictures). Consider the model of semantics
shown in Fig. 1. In this model, the reference (the logical
propositional form of an utterance’s meaning) is unknown, but
instead, we have two different symbols (a spoken utterance in
one language, and a text translation in another language) and
one referent (an image considered by at least one transcriber
to be an adequate depiction), all linked to the same reference.
Suppose we have a corpus in which some utterances are
matched to translations in another (written) language, some to
images, and some to both; can we learn a representation of the
meaning of the sentence that is sufficient to regenerate speech,
a translation, and/or retrieve an image from a database?

To answer this question, we present three speech technology
applications that might be useful in an unwritten language situ-
ation. The first task is end-to-end (E2E) speech-to-translation.
In this task, a translation is created from raw speech of
an unwritten language into a textual transcription of another
language without any intermediate transcription [5], [72]. This
technology is attractive for language documentation, where
corpora are created and used consisting of audio recordings
in the language being documented (the unwritten, source
language) aligned with their translations in another (written)
language, without a transcript in the source language [1], [7].
The second task is speech-to-image retrieval. Speech-to-image
retrieval is a relatively new task [2], [23], [27], in which

images and speech are mapped to the same embedding space,
and an image is retrieved from an image database using spoken
captions. While doing so, the system uses multi-modal input to
discover speech units in an unsupervised manner. In a way, this
is similar to how children acquire their first language. Children
learn a first language using different modalities including the
visual modality and the auditory modality. Learning can then
occur in both a supervised way (e.g., a caretaker saying “There
is a ball” while simultaneously and explicitly showing a ball
to the child) and in an unsupervised manner (i.e., without
explicit referents or explicitly turning the child’s attention to
an object, e.g., by talking about a ball without pointing at
it). This technology is attractive for, e.g., online shopping. A
user might be interested in buying a coat, and ask for images
of coats. The third task is image-to-speech. Image-to-speech
is a new speech technology task [28], [29], which is similar
to automatic image captioning, but can reach people whose
language does not have a natural or easily used written form.
An image-to-speech system should generate a spoken descrip-
tion of an image directly, without first generating text. This
technology could be interesting for social media applications.
Particularly in situations where the receiver of an image is
not able to look at a screen, e.g., while driving a car. The
speech-to-image and speech-to-translation tasks bypass the
need for traditional phone-based acoustic models trained on
large databases of speech, and instead map the speech directly
to the image or translation. The image-to-speech application
creates “acoustic models” by automatically discovering speech
units from the speech stream. All three systems use a common
encoder-decoder architecture, in which the sequence of inputs
is encoded to a latent semantic space, permuted along the time
axis using a neural attention mechanism, then decoded into a
different modality. Note that all three experiments use similar
methods to compute the semantic encoding, but the encoding
weights are separately optimized for each application. The
possibility of sharing a single encoding between experiments
was not explored in this paper, but could be the subject of
future research.

The remainder of this paper describes the systems that learn
an underlying semantic representation in order to regenerate
the speech signal, or its text translation, or to retrieve an image
that depicts the same propositional content from a database.
Section II describes relevant background. Section III describes
the Deep Neural Network (DNN) architectures used for all
experimental and baseline systems. Section IV describes the
databases used for the experiments, and the methods used
to train and test the speech-to-translation, speech-to-image,
and image-to-speech systems. Section V gives experimental
results, Section VI is discussion, and Section VII concludes.

II. BACKGROUND

Algorithms for speech-to-translation generation, image-to-
speech generation, and speech-to-image retrieval have pre-
viously been published separately by a number of different
authors. To the best of our knowledge, this is the first paper
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seeking to develop a unified framework for the generation of
all three types of speech technology for unwritten languages. '

Speech-to-translation for unwritten languages was first pro-
posed in [6]; E2E neural machine translation methods for this
task were first described in [16], [5]. The 2018 International
Workshop on Spoken Language Translation IWSLT) was the
first international competition that evaluated systems based on
E2E speech-to-text translation performance, without separately
evaluating text transcription in the source language [50]. Most
participants in the IWSLT competition still relied on separately
trained speech recognition and machine translation subsystems
(“pipelined systems”), but at least two papers described neural
machine translation systems trained E2E from speech in the
source language to text in the target language [15], [35]. The
E2E systems were however outperformed by the pipelined
system: [35] reported BLEU scores of 14.87 for the pipelined
system, and of 4.44 for the E2E system; although transfer
learning from the pipelined to the E2E system improved its
BLEU from 4.44 to 6.71. The transfer learning idea was
further developed in [4] by first training a speech recognizer
in a written language (English or French), then transferring
the parameters of the trained speech encoder to the input side
of a speech-to-translation system for an unwritten language
(Spanish or Mboshi). Significant improvements (of 11.60
BLEU) were also obtained by fine-tuning the E2E system
using cleaned subsets of the training data [15].

The image-to-speech generation task was proposed in [28],
[29], and consists of the automatic generation of a spoken
description of an input image. The methods are similar to
those of image captioning, but with speech instead of text
outputs. Image captioning was first defined to be the task
of generating keywords to match an image [55]. The task of
generating keywords from an image led to alternate definitions
using text summarization techniques [58] and image-to-text
retrieval techniques [33]. End-to-end neural image captioning
(using text), using an output LSTM whose context vectors
are attention-weighted summaries of convolutional inputs, was
first proposed in [75].

While the speech-to-translation and image-to-speech tasks
described in this paper are both generation tasks: the output
(text or speech, respectively) is generated by a neural network,
to our knowledge, no similar generation network has yet been
proposed for the speech-to-image task. Instead, experiments
in this paper are based on the speech-to-image retrieval
paradigm, in which spoken input is used to search for an image
in a predefined large image database [23]. During training,
the speech-to-image system is presented with (image,speech)
pairs, where the speech signal consisted of spoken descriptions
of the image. The speech and images are then projected into
the same “semantic” space. The DNN then learns to associate

INote, a summary and initial results of this work were presented in
[59], also available in the HAL repository: https://hal.archives-ouvertes.fr/hal-
01709578/document. The current paper provides more details on the ex-
perimental setups of the experiments, including more details on the used
Deep Neural Network architectures and algorithms and rationales for the
experiments. Moreover, new results are presented for the image2speech task
and the speech2image task for which we report the currently best results
compared to results reported in the literature. Additionally, new baseline
results are added for the image2speech task compared to [28], [29].

portions of the speech signal with the corresponding regions
in the image. For instance, take a stretch of speech containing
the words “A nice tree in an open field” (please note, in this
paradigm there are no transcriptions available but for ease
of reading the acoustic signal is written out in words here,
see Fig. 1) and an image of a tree in a grassy field. If the
sound of the word “tree” is associated with similar visible
objects in a large enough number of training images, the
DNN then learns to associate the portion of the acoustic signal
which corresponds to “tree” with the region in the image that
contains the “tree”, and as such is able to learn word-like
units and use these learned units to retrieve the image during
testing (i.e., image retrieval) [27]. The semantic embedding
of input sentences can be further improved by acquiring tri-
modal training data, in which each image is paired with a
spoken description in one language and a text description
in another language; the retrieval system is then trained to
compute a sentence embedding that is invariant across the
three modalities [24].

III. ARCHITECTURE

We assume that all three modalities (speech, translated
text, and images) can be projected into a common semantic
embedding space using convolutional and recurrent encoder
networks, and can then be regenerated from the semantic
space using decoder networks. We assume that text input
is presented in the form of a one-hot embedding. Speech
is presented as a sequence of mel-frequency cepstral coeffi-
cient (MFCC) vectors. Images are pre-encoded using a very
deep convolutional neural network, with weights pre-trained
for the ImageNet image classification task, e.g., using the
VGGI16 [63] implementation of [20]. In order to convert the
image into a sequence of vectors appropriate for encoding by
a recurrent neural network, the penultimate feature map of the
ImageNet classifier is converted into a two-dimensional array
of sub-images (overlapping regions of 40 x 40 pixels each),
which is then read in raster-scan order, one row after another,
in order to form a one-dimensional pseudo-temporal sequence.
These assumptions are satisfied by the architecture shown in
Figure 2.

Let X = [Z4,...,Z1,] be a sequence of Tx MFCC vectors
representing the speech utterance, let Y = [#1,...,%n, ] be a
sequence of Ty one-hot vectors representing the translated
text, and let Z = [Z),...,2Zr,] be a sequence of feature
vectors representing overlapping sub-images in raster-scan
order. The problem of speech-to-translation generation, then,
is to learn a function fy x that minimizes a loss function
L(Y, fyx(X)). The problem of image-to-speech generation is
to learn a function fx that minimizes a similar loss function,
L(X, fxz(Z)). The problem of speech-to-image retrieval (or
image-to-speech retrieval) is to learn embedding functions
gx(X) and gz(Z) in order to minimize a pair-wise loss
function between correct retrieval results, £(gx (X), gz(Z)).

The architecture shown in Figure 2 represents the speech-to-
translation task, fy x, as the composition of a speech encoder
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Fig. 2: Proposed neural architecture. Separate encoder and decoder
networks are trained for each of the three modalities. The fig-
ure shows the speech encoder (a pyramidal LSTM), and decoders
(LSTMs with attention-weighted input context vectors) that would
generate an image output or a translated text ouput.

gx and a text decoder hy . Likewise, the image-to-speech task,
fxz, is the composition of gz and hx, thus

fyx(X) =hy(9x(X)), and fxz(Z)=hx(9z(Z)) ()

The speech encoder, gx, is modeled as a pyramidal bidirec-
tional long-short term memory network (pyramidal biLSTM):
a biLSTM with three hidden layers, in which the input to each
layer is the concatenation of two consecutive state vectors from
the layer below (thus each layer has half as many frames as the
layer below it). The speech-to-image retrieval system uses as
its image encoder, gz, a pre-trained deep convolutional neural
net. The image-to-speech generation system uses the same
pre-trained convolutional network, followed by a three-layer
pyramidal biLSTM. For image coding purposes, the input to
the biLSTM is created by scanning the last convolutional
layer in raster-scan order, i.e., left-to-right, top-to-bottom.
For example, in the VGG16 encoder [63], [20] used in our
image-to-speech experiments and our initial speech-to-image
experiments, the last convolutional layer has 512 channels,
each of which is 14 x 14, therefore Z; is a 512-dimensional
vector, and Tz = 14 x 14 = 196.

For purposes of more detailed exposition, consider the
image-to-speech system, fx z(Z) = hx(g9z(Z)). The encoder
is a pyramidal biLSTM with three hidden layers, and with each
layer downsampled by a factor of two relative to the preceding
layer. For example, € ¢, the t™ LSTM state vector at level [ of
the network, is computed from the preceding time step (€,:—1)
and the preceding level (€;_1 2;—1 and €;_1 2;):

€t =7 (€—1,€1-1,2¢—1,€1—-1,2t) 2)

The output is a sequence of encoder state vectors at the L™
level,

92(2) =

where Dy = T»2~ L is the number of state vectors in the L™
level of the encoder.

The speech decoder, hx, has two parts. In the first part of
the decoder, the embedding sequence gz (Z) is converted into

[gL,la ceey gL,Dz] ) (3)

a sequence of monophone labels by an LSTM. In the second
part of the decoder, the monophone sequence is converted
into a sequence of MFCC vectors (for more details, please
see Section IV.C.4), X = [Z,...,Z1,], by a random forest
regression algorithm. The first part of the decoder is an
LSTM, whose inputs are attention-weighted context vectors,
¢;, computed from the encoder state vectors as

Dz
&= aufLy, )
t=1

where a;; is the attention weight connecting the i" decoder
state vector, 5;, to the tM encoder time-step, €r+, and is
computed by a two-layer feedforward neural net o(5;_1, €L ¢)

as (51 E00)
exp a(S;—1, €r,
ait = =p, 5)
2721 exp (81, €L,T)
The decoder state vectors are generated by a single LSTM
layer, (3, as

gi :5(5'2'71752'7@7271) (6)

The probability of the monophone j being computed as the
™ output symbol, Pr(m; = j), is computed using a softmax
layer, in which the LSTM state vector §; and context vector,
Ci, are concatenated, multiplied by a weight vector @;, and
normalized so that the output is a probability mass function:

exp([s}, &} ;)
S exp([5], & i)

Since the state vector §; is a function of all preceding output
symbols [§1,...,8;—1], it is possible that a high-probability
output in any given frame might lead to low-probability
outputs in future frames; to ameliorate this problem, we used
a Viterbi beam search with a beamwidth of 20. The resulting
monophone sequence is used as input to a random forest in
order to compute both the duration of each monphone, and
the sequence of MFCC vectors X = [Z1,...,Z1y].

The image-to-speech neural network components are trained
to minimize the cross-entropy between the generated mono-
phone sequence and the reference monophone sequence. The
random forest is trained, using the FestVox algorithm [8],
to minimize mean cepstral distortion between the reference
MFCC and the MFCC generated by the random forest from
the reference monophone sequence. The speech-to-translation
neural network is trained to minimize cross-entropy between
the softmax output probabilities Pr(g; = j) (as in Eq. 7, but
computing the probability of an output word g;, rather than
the probability of an output monophone m;) and the reference
translated word sequence Y = [, ..., ¥, ]

ZlnPr

The speech-to-image retrieval task requires us to measure the
similarity between the embedding of any particular speech
sequence, ¢gx(X), and the corresponding image sequence,
Z. Speech-to-image retrieval experiments were tested using
LSTM encoders for both speech and image, but in the end,
the best-performing system used a fully-connected image

mi—1,2) = (7

Pr(mi :j|m17"'a

(YfYX _:lji|g1a"'7gi—17X) (8)
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encoder, which we will denote vz(Z), rather than the LSTM
image encoder gz (Z) described in Eq. 3. The fully-connected
LSTM encoder first performs 2 X 2 max-pooling in each of
the 512 channels of the last convolutional layer, in order
to create a tensor of size 7 x 7 x 512; this tensor is then
flattened into a vector of length 7 x 7 x 512 = 25088, and
transformed through three fully-connected layers to create a
vector vz(Z) with 1024 dimensions. In some experiments,
the image embedding vz (Z) was computed from the same
VGG-based CNN features as the image-to-speech system; in
the most successful experiments, it was computed, instead,
from a different pre-trained CNN (Resnet-152 [31]). In both
cases, the speech encoder is a bidirectional recurrent neural
network (RNN) with architecture similar to that described in
Eq. 3; early experiments used the same three-layer pyramidal
biLSTM as the speech-to-translation system, but the most
successful experiments used, instead, a network with one
convolutional layer followed by a bidirectional GRU. In either
case, the state vectors of the speech RNN, €7, ;, were combined
using attention weights, az;, computed as a measure of the
similarity between the speech state vector and the fixed-length
image embedding vector vz (Z), in order to create a context
vector Czx:

Tx
Czx = Y azér, 9
=1

expa(yz(Z),€r.4)
f:X1 €xp O‘('YZ(Z)v 6ﬁLﬂ')

(10)

azt =

where a() is a two-layer fully-connected feedforward network
with the same architecture as the «() network in Eq. 5.
For any particular speech signal, the speech-to-image system
returns the image that maximizes the cosine similarity measure
cos(X, Z), defined to be

cos(X,Z) = — % x12(2)

lezx |l - vz (2]
The network weights are then trained using a bi-modal triplet
loss. The bi-modal triplet loss was defined by [23] to be similar
to a standard triplet loss [11], but with incorrect exemplars
X' # X and Z' # Z drawn uniformly at random for both
the speech and image modalities. The loss is then computed
as the sum, over all correct pairs (X, Z) in the minibatch B,
of the clipped difference between similarities of the incorrect
and correct pairs:

>

(X,2),(X",2")eB

Y

L= (max(O, cos(X,Z") —cos(X,Z) + 1)+
max (0, cos(Z, X') — cos(Z, X) + 1))
(12)

IV. EXPERIMENTAL SET-UP

Fig. 1 suggests a three-part model of semantics, in which
the meaning of an utterance (its cognitive representation) is
unknown, but is indicated by a text translation and by an image
referent. In order to test the model, it is necessary to acquire

training and test data, and to define training and test evaluation
criteria.

A complete test of Fig. 1 requires data in which each
utterance is matched to a text translation, and to an image.
Such data exist in no unwritten language, therefore some type
of proxy dataset is necessary. Two types of proxy datasets
are used in this paper: a proxy dataset containing all three
modalities, but with speech in a language that is not truly
unwritten (FlickR-real), and a proxy dataset containing only
two modalities (speech and translation), with speech in a
language that is truly unwritten (Mboshi).

First, the FlickR-real speech database is a tri-modal (speech,
translated text, images) corpus, but the speech is in a language
that is not truly unwritten nor a low-resource language (En-
glish). The images in this dataset were selected through user
queries for specific objects and actions from the FlickR photo
sharing website [33]. Each image contains five descriptions in
natural language which were collected using a crowdsourcing
platform (Amazon Mechanical Turk; AMT) [33]. AMT was
also used by [23] to obtain 40K spoken versions of the
captions. These are made available online.> We augmented
this corpus in two ways. First, the database was made tri-
modal by adding Japanese translations (Google MT [73]) for
all 40K captions, as well as Japanese tokenization. Second,
we generated monophone transcriptions of all English speech
files: original text prompts were converted to monophone
sequences using CMUdict [42], after which the original text
prompts were discarded, and not used for any further purpose.
Other than the monophone transcriptions, no other English-
language resources were used; thus, apart from the monophone
transcriptions, English was treated as an unwritten language.

The second proxy dataset used a truly unwritten language
(Mboshi), but contained only two of our target modalities
(speech and translation). Mboshi is a Bantu language (Bantu
C25) of Congo-Brazzaville [1], [64]. Mboshi was chosen as
a test language because Mboshi utterances and their paired
French translations were available to us through the BULB
project [1]. The Mboshi corpus [21] was collected using a
real language documentation scenario, using ligaikuma,® a
recording application for language documentation [7]. The
Mboshi corpus is a multilingual corpus consisting of 5k
speech utterances (approximately 4 hours of speech) in Mboshi
with hand-checked French text translations. Additionally, the
corpus contains linguists’ monophone transcriptions (in a
non-standard graphemic form which was designed, by the
linguists who used it, to represent the phonology of the
language) [1], [21]. The corpus is augmented with automatic
forced-alignments between the Mboshi speech and the lin-
guists’ monophone transcriptions [13]. The corpus and forced
alignments are made available to the research community.*
Monophone transcriptions of the Mboshi corpus were used
in order to train and test translations from Mboshi speech

Zhttps://groups.csail.mit.edu/sls/downloads/flickraudio/

3http://lig-aikuma.imag.fr

4It is made available for free from ELRA at: http:/catalogue.elra.info/en-
us/repository/browse/ELRA-S0396/; it can also be retrieved online at:
https://github.com/besacier/mboshi-french-parallel-corpus
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Fig. 3: The encoder architecture for speech-to-translation experiments
was a three-layer bi-directional pyramidal LSTM, observing speech
features computed by a one-layer convolutional network over the top
of MFCCs.

to Mboshi monophone sequences, but were not used for the
translation of Mboshi speech to French text (see below).
Table I gives an overview of the characteristics of the multi-
and unimodal datasets, which were used in the experiments.
The neural architecture shown in Fig. 2 was trained using
the XNMT [48], [17] architecture, and tested in three appli-
cations: speech-to-translation sequence generation, speech-to-
image retrieval, and image-to-speech sequence generation.

A. Speech-to-translation

We built end-to-end speech-to-translation systems with
the neural sequence-to-sequence machine translation toolkit
XNMT [48], [17] on the FlickR-real (English-to-Japanese) and
Mboshi corpora (Mboshi-to-French). The speech-to-translation
systems were based on the neural machine translation func-
tionality [39], [65], [3], [49] of XNMT.

The speech encoder for the speech-to-translation experi-
ments (Fig. 3) takes in a sequence of speech feature vectors,
and converts them into a format conducive for translation. The
encoder used a bi-directional pyramidal LSTM. The first layer
observes speech features computed by a convolutional neu-
ral network applied over Mel-frequency cepstral coefficients
(MFCCs) inputs.

The decoder, shown in Figure 4, is an LSTM that generates
either word or character outputs. Word-output systems always
exhibited lower BLEU scores (both word-based BLEU and
character-based BLEU), therefore results will only be reported
for systems that generated character outputs. The decoder
is a uni-directional LSTM, observing context vectors c¢; that
are generated by the attention-weighted combination of input
encoder vectors. Each LSTM cell also observed the previous
frame’s LSTM cell, and a one-hot vector specifying the
identity of the character generated in the previous frame.

The encoder and decoder are combined to generate an out-
put sentence character-by-character in a probabilistic fashion,
given the spoken input sentence. During training, the model’s
parameters are updated using stochastic gradient descent on
the cross-entropy loss computed from the training corpus;

Words / Chars . - .
Yi-1 Yi Yry

Word Embeddings

MLP + Softmax

LST™M

Ci CTy

Ci—1

Fig. 4: The decoder architecture for speech-to-translation experiments
was a one-layer LSTM generating characters as output (word outputs
were also tested, but were not as successful).

training stops when cross-entropy of an independent validation
set stops decreasing.

B. Speech-to-Image

The speech-to-image retrieval system was implemented in
PyTorch. Image referents are not available for the Mboshi
corpus, therefore speech-to-image experiments were only per-
formed using FlickR-real. The training set consisted of 6000
training images, 1000 test, and 1000 validation images. When
an image is part of the training or validation corpus, all of its
spoken captions are used, thus the FlickR-real training corpus
included 30,000 audio-image pairs (6000 distinct images).

The model used a pretrained ResNet-152 [31] with the top
layer removed to encode the images. These features were
then fed into a fully connected layer with 1024 units. The
speech was encoded using a 1d convolutional layer with
stride 2, width 6 and 64 output channels on the MFCCs. The
resulting features were fed into a GRU with 1024 hidden units
and finally a vectorial self-attention layer [12]. The resulting
embeddings were normalized to have unit L2 norm, and used
a similarity score based on cosine similarity (Eq. 11) between
the image and speech embeddings to perform the retrieval task.

Two types of acoustic features were compared: 1) MFCCs
(baseline features), similar to [23] but with added speaker-
dependent mean-variance normalization on the features before
zero-padding/truncation. We used 10 ms skip step and 25 ms
window for the spectrogram and 40 filters; 2) Multilingual
Bottleneck features (MBN) [18]. The MBN were taken from
the hidden layer of a neural network trained on multiple source
languages in order to learn a multilingual feature space more
generally applicable to all languages. The MBN features are
extracted at a 10 ms rate from a 80-dimensional bottleneck
layer of a feed-forward neural network trained to classify
the senones of multiple languages. The neural network was
trained on 17 languages [18]; none of them English. Although
the MBN feature is supervised, it does not require any text
transcription of the target language.

C. Image-to-speech

The image-to-speech pipeline [29] consists of four types
of standard open-source software toolkits: 1) an image em-
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TABLE I: Overview of the databases.

Data set Language | Size Paired translations Paired images | #spkrs Tasks
Mboshi Mboshi Sh yes (French - Human) no 3 Speech-to-translation
FlickR-real speech English 62h yes (Japanese - MT) yes 183 All three tasks

bedder VGGI16 visual object recognizer which converts each
image into a sequence of image feature vectors, 2) a speech
segmenter that discovers discrete phone-like speech segments
in the unwritten language, 3) an image-to-segment transducer
that learns, and then implements, the mapping from image
feature vectors into speech segment labels, and 4) a segment-
to-speech transducer that learns, and then implements, the
mapping from speech segment labels into speech signals.
Training data (for the image-to-segment and segment-to-
speech transducers) and testing data (for all four components)
were drawn from FlickR-real. Each image has five associated
speech files, and their associated segment transcriptions. The
image-to-segment transducer was trained in order to minimize
its average loss, averaged across all five of the segment
transcriptions for each training image. The segment-to-speech
transducer was separately trained to replicate the segment-to-
speech mappings for all training pairs. The FlickR-real training
corpus included 6000 images, associated with 30,000 speech
files. The validation set consisted of 1000 validation images,
associated with 4000 speech files, while a further 1000 images
(4000 speech files) were used for testing.

1) Image embedder: The image embedder was imple-
mented using part of a pre-trained VGG16 object recog-
nizer: the TensorFlow re-implementation, by [20], of the best
single network solution [63] in the Imagenet Large Scale
Visual Recognition Challenge 2014 Sub-task 2a, “Classifica-
tion+localization with provided training data,”, which is a 13-
layer convolutional neural network trained using the 14 million
images of ImageNet [14].

2) Speech segmenter: Speech segments are monophones,
or monophone-like units. Two different systems were tested.
First, English-language monophone transcriptions of the
FlickR-real corpus were generated from the distributed text
prompts (the text prompts were then discarded, and not used
for any other purpose). Since English is the language of both
the audio and the phone transcripts, these phone transcriptions
could be called same-language phone transcripts.

Second, in the cross-language definition of units approach
[60], [61], a DNN was trained on a high-resource language,
Dutch, which was subsequently mapped to English (of the
FlickR-real database). Although Dutch and English are both
Germanic languages, their phoneme inventories differ. The
number of Dutch phonemes in the Spoken Dutch corpus
(Corpus Gesproken Nederlands, CGN?>, [53]) that was used for
this task is 42, while the number of English phonemes in the
FlickR dataset was 45. Eleven Dutch phonemes are not present
in English and their corresponding vectors were removed from
the soft-max layer. Fifteen English phonemes do not exist in

SThe CGN is a corpus of almost 9M words of Dutch spoken in the
Netherlands and in Flanders (Belgium) in over 14 different speech styles,
ranging from formal to informal. For the experiments reported here, we only
used the read speech material from the Netherlands, which amounts to 551,624
words for a total duration of approximately 64 hours of speech.

Dutch. Nine of these are diphthongs or affricates which can
each be constructed from a sequence of two Dutch phonemes.
Six English phonemes, however, need to be created which is
done through a linear extrapolation between two (or three)
vectors in the soft-max layer corresponding to two (or three
depending on the English phoneme which needs to be created)
existing Dutch acoustic units (D; see for the mapping [60]).
The Dutch vectors that are used to initialize the new English
acoustic feature vectors are chosen manually on the basis of
their linguistic similarity to the English phonemes which need
to be created, e.g., to create English /ae/, an initial vector
is created by extrapolating between Dutch /a/ and Dutch /e/
using:

Vs = V.01 + (V.2 — Vi.p3)

where 17@ g is the vector of the missing English phone ¢, E
that needs to be created, ‘7¢7 Do are the vectors of the Dutch
phones ¢, Dz in the soft-max layer that are used to create the
vector for the missing English phone ¢, E. Among the three
Dutch phones, D1 refers to the phone which is used as the
starting point from which to extrapolate the missing English
phone, and D2 and D3 refer to the Dutch phones whose
displacement is used as an approximation of the displacement
between the Dutch starting vector and the English vector
that should be created. « is a factor corresponding to the
approximation of the displacement of ‘7@ g from V¢7 p1 and
was set manually.

Subsequently, the DNN trained on Dutch but with output
vectors adapted to English is used to decode the FlickR-real
English data, creating so-called ’self-labels’. The thus-obtained
self-labels of the English data are used to retrain the Dutch
DNN towards English. The DNN is then iteratively retrained
with the English self-labels.

3) image-to-segment transducer: The mapping from im-
age features to segment sequences (same-language phones
or cross-language phones) is learned, and then implemented
during test time, using a sequence-to-sequence neural network
implemented in XNMT. The image-to-segment model learned
by XNMT is a sequence-to-sequence model, composed of an
encoder, an attender, and a decoder. The encoder has three
128-dimensional bidirectional LSTM hidden layers: the input
of each layer is the concatenation of two sequential outputs
from the previous layer, so that the time scale decreases by
a factor of two with each layer. The input to the encoder
are the image feature vectors created by the VGGI16 object
recognizer. The attender is a two-layer perceptron. For each
combination of an input LSTM state vector and an output
LSTM state vector (128 dimensions each), the attender uses
a two-layer perceptron (one hidden layer of 128 nodes) to
compute a similarity score. The decoder has one hidden layer,
which is a 128-dimensional unidirectional LSTM. The output
layer of the decoder is a softmax where each output node is a
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TABLE II: Speech-to-translation results (Character BLEU score,
%) for the FlickR-real and Mboshi corpora. Val=Validation set,
Test=Evaluation test set.

Speech | Translation | BLEU (%: Val) | BLEU (%: Test)
English | English 17.74 12.71
English | Japanese 30.99 25.36
Mboshi | Mboshi 56.91 39.53
Mboshi | French 22.36 12.28

speech unit in the unwritten language. The number of output
nodes is equal to the size of the speech unit vocabulary in the
unwritten language. The output of XNMT is a sequence of
discrete speech units, e.g., monophones.

4) segment-to-speech-transducer: The mapping from seg-
ment sequences to speech signals is learned, and then imple-
mented during test time, using a random forest regression al-
gorithm implemented in Clustergen [8]. The Clustergen speech
synthesis algorithm differs from most other speech synthesis
algorithms in that there is no predetermined set of speech units,
and there is no explicit dynamic model. Instead, every frame
in the training database is viewed as an independent exemplar
of a mapping from discrete inputs to continuous outputs. A
machine learning algorithm (e.g., regression tree [8] or random
forest [9]) is applied to learn the mapping. The mapping is
refined, during training, by resynthesizing each speech signal
from the learned units, and then aligning the synthetic and
original speech waveforms [45]. Clustergen works well with
small corpora because it treats each frame of the training
corpus as a training example. It is able to generate intelligible
synthetic voices from these small training corpora using an
arbitrary discrete labeling of the corpus that need not include
any traditional type of phoneme [46], which makes it suitable
for our low-resource scenario.

V. RESULTS

A. Speech-to-translation

Four speech-to-translation systems were trained, two same-
language and two cross-language systems using two different
input languages: English (using audio from the FlickR-real
corpus), and Mboshi (using audio from the Mboshi corpus).
For each spoken language, two different text outputs were
computed: text output in the same language (English or
Mboshi), and text output in a different language (English
to Japanese, Mboshi to French). Resulting character BLEU
scores (average recall accuracy of character 1-gram through 5-
gram sequences [56]) are shown in Table II. Word-level BLEU
scores were not calculated, because they are essentially zero:
there are very few complete and correct words in the generated
output. Note, other papers have also reported very low BLEU
scores for this task; the highest reported word-level BLEU
score for the Mboshi-to-French corpus, of which we are aware,
is only 7.1% [4].

As Table II shows, the character BLEU scores for English-
to-Japanese were significantly higher than those for Mboshi-
to-French. Interestingly, the BLEU scores for the same lan-
guage English-English task were lower than those for the
English-Japanese translation task.

TABLE III: Speech-to-image retrieval results (Recall@N in %) for
the tested input speech features.

Feature type R@1 | R@5 | R@10
Alishani et al. [2] 5.5 16.3 253
MFCC 7.3 21.8 32.1
Multiling. Bottleneck 7.6 239 36.0

TABLE IV: Image-to-speech results (Phone-level BLEU scores and
phone error rates (PER (%)) on the val(idation) and test sets of the
same-language and cross-language image-to-segment transducers.

System Val BLEU | Val PER | Test BLEU | Test PER
Human Transcr. 48.4 66.4 48.6 66.1
Same-language 30.7 70.4 30.2 70.4
Cross-language 25.9 71.9 259 71.7
Chance 2.9 81.8 3.4 81.5

B. Speech-to-Image

Table III shows the results for the two features for the
speech-to-image task evaluated in terms of Recall@N. For
reference, the best results in the literature to date on the
same data set, i.e., those by Alishani and colleagues [2], are
added to Table III. As the results clearly show, both the MBN
and MFCC based models show state-of-the-art results. The
MBN features are superior to the MFCC features, with an
improvement of 1.9% absolute for R@1 which increased to
10.7% absolute for R@10 on the previous best results by [2].

C. Image-to-speech

The image-to-speech system was trained using either same-
language phone transcriptions (generated from the English-
language prompts distributed with FlickR-real) or cross-
language phone transcriptioning (generated by a Dutch ASR,
mapped to English phones using a knowledge-based cross-
language mapping). The Phone Error Rate (PER) of the cross-
language recognizer prior to retraining was 72.59%, which is
comparable to the phone error rates (PER) of cross-language
ASR systems (e.g., [30] reports PER ranging from 59.83% to
87.81% for 6 test languages). Re-training the system, using
the self-labelling approach, yielded a small (i.e., less than
1% absolute) though significant improvement after the first
iteration [60].

The image-to-speech results were computed by generating
one spoken image caption from each image. This spoken
image caption consisted of the segment sequence produced
by the image-to-segment transducer, and the resulting speech
signal generated by the segment-to-speech transducer. Each
test image is matched with the five reference spoken de-
scriptions. The segments generated by the image-to-segment
transducer are evaluated using multi-reference BLEU [56]. A
similar multi-reference PER is also reported, being the average
across all utterances of the minimum, across all five references,
of the PER comparing the hypothesis to the reference. The
resulting multi-reference PER and BLEU scores are listed
in Table IV. Two other scores are also reported: chance,
and human. Chance is computed by generating a hypothesis
exactly the same length as the shortest reference hypothesis,
but made up entirely of the most common phone (/n/): the
resulting PER is 81.5%. Human BLEU and PER are computed
by scoring the human transcriptions against one another: each
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human transcription was converted to a phone string, and its
multi-reference PER and BLEU were computed with respect to
the other four human transcriptions. Word-level BLEU scores
were not computed, because 1) an unwritten language does
not have the concept of a written word; 2) the image-to-speech
network has no concept of “words” in the output language.

As Table IV shows, the BLEU scores for the cross-language
system are worse than those of the same-language system.
The PER scores for the cross-language and same-language
image-to-segment transducers are similar though also quite
poor. However, as the PER and BLEU scores of the human
transcribers show, the task is difficult.

Any two languages will differ in their phoneme set (see [44].
Future research will have to show whether using a different
combination of languages yields better results. Initial results on
Dutch-to-Mboshi [61] show comparable classification results
as Dutch-to-English.

VI. DISCUSSION

This paper investigated whether it is possible to learn
speech-to-meaning representations without using text as an
intermediate representation, and to test the sufficiency of the
learned representations to regenerate speech or translated text,
or to retrieve images that depict the meaning of an utterance
in an unwritten language. The here-presented results suggest
that spoken language human-computer interaction may be
possible in an unwritten language. Three types of systems are
described: speech-to-translation generation, speech-to-image
retrieval, and image-to-speech generation. All three systems
use similar neural sequence-to-sequence architectures, and, in
fact, re-use many of the same software components.

The speech-to-image retrieval results in Table III are better
than the previously published state of the art. Accuracy of
our speech-to-translation system (Table II) is worse than the
state of the art. Previous papers have reported word-level
BLEU scores of up to 7.1 [4] for this task, but it is not clear
that small changes in a very small BLEU score adequately
characterize differences in the utility of the system for an
unwritten language. At this very early stage in technology
development for unwritten languages, it may be that analysis
of individual examples is the most useful way to characterize
areas for future research.

Consider, for example, Fig. 5, which shows two examples
generated by the speech-to-translation system from Mboshi
to French. Both the hypothesised and ground truth French
character sequences are shown. The first example is relatively
good: it only misses part of the end of the sentence. The second
example shows that the model has difficulty translating a full
sentence and diverges to an unconditional language model
(unrelated to the source).

Similarly, consider Fig. 6, which shows three examples
generated by our image-to-speech system from the valida-
tion subset of the FlickR-real corpus, and one image from
the evaluation subset. For each image, four transcriptions
are shown: two of the five available reference transcriptions
(Ref; to give the reader a feeling for the differences among
reference transcriptions), the transcription generated by the

Mboshi-to-French Example #1
Hyp:j’#ai#fun#abces

Ref:j #ai#un#abces#a#la#fcuisse
Mboshi-to-French Example #2
Hyp:il#a#de#la#gale#partout
Ref:il#m’ #a#donné#de#l #ecau#
glacée

Fig. 5: Speech-to-translation examples from Mboshi to French. Hyp
indicates the hypothesised character sequence in French; Ref indicates
the ground truth character sequence French translation; # indicates
word boundary.

same-language image-to-speech system (Network), and the
transliterations into words (done by hand). The phoneme
transcriptions consist of ARPABET phones of [40]. The PER
of 70.4% for the same-language system (and 71.7% for the
cross-language system) seems to be a pretty high number,
until one looks at the examples. The examples show that
the system has captured part of the meaning of each image,
and that the high PER arises primarily because the neural
network chooses to express the meaning of the image using
words that differ from those chosen by the human annotators.
In particular, note that, although the neural network has no
explicit internal representation of words (it simply transduces
sub-image sequences into phone sequences), yet, by copying
the statistics of its training data onto the generated sentences
of the test data, it is able to generate outputs that take the
form of intelligible and almost-correct image descriptions.
In the first two examples, the phone strings shown can be
read as English sentences that mislabel boys as men (note
that the two captions provided by humans disagree on the
gender of the people in the image), but are otherwise almost
plausible descriptions of the images. The third example shows
several ways in which the network can fail: it has generated a
sentence that is syntactically incorrect, and whose semantic
content is only partly correct. The phone sequence in this
image can be interpreted to contain valid English words, but
the transliteration shown here is debatable; since the neural
network has no internal representation of “words,” it is not
clear that transliteration into English words is appropriate in
this case. Although the PER and BLEU scores for the cross-
language system are lower than those for the same-language
system, the results are encouraging.

Due to the lack of text in unwritten languages, standard
acoustic models cannot be trained for unwritten languages.
In order to train the necessary acoustic models for speech
technology in a low-resource language, including unwritten
languages, different approaches have been proposed, which
can be roughly divided into three strands, each deriving from
a different historical tradition within the speech community.
First, there is a strand of research deriving from self-organizing
speech recognizers. When speech data come without any
associated text transcripts, self-organizing systems must create
phone-like units directly from the raw acoustic signal while
assuming no other information about the language is available,

2329-9290 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: TU Delft Library. Downloaded on March 02,2020 at 15:08:04 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TASLP.2020.2973896, IEEE/ACM

Transactions on Audio, Speech, and Language Processing

JOURNAL OF IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING 10

FlickR-real Example #1

Ref #1: The boy +um+ laying face down on a
skateboard is being pushed along the ground by
+laugh+ another boy.

Ref# 2: Two girls +um+ play on a skateboard
+breath+ in a court +laugh+ yard.

Network: SIL +BREATH+ SIL T UW M EH N AA
RRAYDIX NG AXREHD AEN W AY T SIL
R EY S SIL.

Transliteration: Two men are riding a red and white
race.

FlickR-real Example #2

Ref #1: A boy +laugh+ in a blue top +laugh+ is
jumping off some rocks in the woods.

Ref #2: A boy +um+ jumps off a tan rock.
Network: SIL +BREATH+ SIL EY M AE N IH Z
JHAHMPIXNGIHNDHAXFAOREHST
SIL.

Transliteration: A man is jumping in the forest.
FlickR-real Example #3

Ref #1: A close-up of a white dog that is laying its
head on its paws.

Ref #2: A large white dog laying on the floor.
Network: SIL +BREATH+ SIL EY B L AE K AE
NDAOGZR AH N IX NG AX B L AE K SIL.
Transliteration: A black an dogs running a black.

Fig. 6: Image examples from the FlickR-real corpus, with for each
image, two of its reference transcriptions, the output of the network
and its transliteration by the same-language system.

and using these phone-like units to build ASR systems (i.e.,
the zero resource approach; e.g., [36], [52], [69], [57], [76]).
Second, there is a strand of research using the international
phonetic alphabet (IPA) to define language-independent phone
units for speech technology [66]. Importantly, however, dif-
ferent languages have slightly different productions of each
IPA phone (e.g., [34]). Therefore it is necessary to create
language-dependent adaptations of each language-independent
base phone, which is done through building ASR systems
using speech data from multiple languages [66], [43], [71],
[70], [74]. The third strand takes its inspiration from the way
hearing children learn language and is exemplified by the
speech-to-image systems described in the Background section:
In addition to the auditory input, hearing children, when
learning a language, also have visual information available
which guides the language learning process. This third strand
compensates the lack of transcribed data with using visual
information, from images, to discover word-like units from the
speech signal using speech-image associations [23], [2], [27].
Here, we propose to extend or widen this third strand to move

beyond going from speech-to-images, to go from speech-to-
meaning and from meaning-to-speech. We thus add a new
semantic dimension on top of speech and images and that
is translated text. We refer to this approach as “unsupervised
multi-modal language acquisition”.

The goal of the research described in this article was to
develop this idea using multi-modal datasets that not only
include images but also include translations in a high-resource
language (Figure 1). Parallel data between speech from an
unwritten language and translations of that speech signal in
another language exist, and additional corpora can fairly easily
be collected [7], by field linguists and speech technologists.

Here, the speech-to-meaning and meaning-to-speech ap-
proach has been used to discover word-like units from the
speech signal using speech-image associations [23], [2], [27].
However, it is possible to push this approach further and
searching over subsets of the audio and image can identify
sections of audio (“words”) that maximally correlate with
sections of the image (“objects”) [26]. Moreover, unsupervised
decomposition of the audio words can be used to deduce
phoneme-like units [25].

VII. CONCLUSIONS

Three speech technology systems were implemented. The
results are encouraging, and suggest that building systems
that go directly from speech-to-meaning and from meaning-
to-speech, bypassing the need for text, is possible.

This research paves the way for developing speech technol-
ogy applications for unwritten languages, although more re-
search is needed to build viable systems that can be deployed.
The proof-of-concept end-to-end systems we developed were
an image-to-speech system, a speech-to-translation system,
and a speech-to-image retrieval system. One of our systems
outperformed previously reported baselines: an image retrieval
system that used multilingual bottleneck features beat the best
result reported in the literature for this task.

Speech and language technology systems can be developed
for an unwritten language, in a way that is similar to how chil-
dren learn a language. The speech-to-meaning and meaning-
to-speech systems built show that intermediate representations
are not necessary to build speech and language technology.

Important avenues for future research are improving the
quality of the discovered speech, image and translation encod-
ings, finding the optimal acoustic feature set for the end-to-end
systems, and the development of new evaluation metrics that
more accurately quantify the utility of a speech technology
system in an unwritten language.
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