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Speech technologies have been developed for decades as a typical signal processing area, while the last decade has brought a huge
progress based on new machine learning paradigms. Owing not only to their intrinsic complexity but also to their relation with
cognitive sciences, speech technologies are now viewed as a prime example of interdisciplinary knowledge area. This review article
on speech signal analysis and processing, corresponding machine learning algorithms, and applied computational intelligence
aims to give an insight into several fields, covering speech production and auditory perception, cognitive aspects of speech
communication and language understanding, both speech recognition and text-to-speech synthesis in more details, and con-
sequently the main directions in development of spoken dialogue systems. Additionally, the article discusses the concepts and
recent advances in speech signal compression, coding, and transmission, including cognitive speech coding. To conclude, the
main intention of this article is to highlight recent achievements and challenges based on new machine learning paradigms that,

over the last decade, had an immense impact in the field of speech signal processing.

1. Introduction

According to Kuhn’s theory of scientific revolutions [1], the
science makes progress through the revolutionary changes of
prevailing scientific paradigms, where a paradigm represents
a set of beliefs and values and technical and methodological
procedures common to a scientific community. Paradigms
define frames and models for solving scientific challenges.
New solutions come with new generations who are ready to
accept new truths and interdisciplinary approaches. New
paradigms appear suddenly and provide new lights to a
scientific problem, based on synergy of particular and
specialized knowledge consolidated into a functional and
coherent unity. Speech technology community investigates
spoken language processing as an interdisciplinary research
area (Figure 1), [2]. After a short retrospective of the main
scientific paradigms based on the knowledge of speech
production and auditory perception, this article presents

new achievements and perspectives based on the new ma-
chine learning paradigm related to neuroscience and ad-
vanced signal processing.

The roots of speech signal processing research were
closely related to the needs of speech signal digitization. The
pioneering solutions were deployed during the World War
IT due to a need of secure communication between the Allies.
The system was named SIGSALY, and it utilized pulse-code
modulation (PCM) to enable the first transmission of voice
using digital equipment [3]. In the next decades, the focus of
researchers was on standardizing rules of digital telephony
in order to provide high quality of reconstructed speech
signal in the wide range of speech signal variances [4-7]. The
compression paradigms regarding these systems have not
changed significantly for decades. Particularly, the focus of
research has slightly been moved toward improving the
signal quality at the receiving end or toward reducing the
required bit rate [8-13]. However, the significant
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Figure 1: Interdisciplinary nature of speech technologies, i.e.,
spoken language processing (adopted from [2]).

development of computer technology in the last decade has
enabled research into new approaches to advanced speech
signal processing including adaptive machine learning
methods [14]. Recent trends include cognitive speech coding
so that there is a paradigm shift from perceptual (auditory)
toward cognitive (auditory plus cortical) speech signal
processing [15].

Modern speech technology systems rely on in-
terdisciplinary research in the areas of multimodal signal
processing and artificial intelligence, and a number of
methods and algorithms have been developed with the aim
of solving various problems: dialogue systems based on
speech recognition and synthesis, including emotional
speech, speaker identification and verification, as well as
speech signal coding and transmission, denoising and
detection of signals in the presence of noise, quality en-
hancement, and medical diagnostics based on the analysis
of human voice. Recent progress in most of these speech
technology topics will be discussed in more details in the
following sections.

Spoken language processing (SLP) is an interdisciplinary
research area that has attributes of computational in-
telligence. SLP lies in the intersection of linguistics, psy-
chology, engineering, and artificial intelligence (AI) [2].
Advanced signal processing and machine learning methods
are positioned in the adopted view to the interdisciplinary
character of SLP, and both interconnections and in-
tersections of different disciplines are shown and presented
in a novel point of view (Figure 1). Instead of using the
original term “pattern processing” in Figure 1, we have opted
for the more common term “signal processing and machine
learning (SP&ML),” which represents the overlap between
the community of engineering and AI disciplines. With
linguistic aspects included, they compose the natural
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language processing (NLP) field. Human-computer in-
teraction (HCI) draws experience and methodology from
the fields of engineering and psychology, and with the
knowledge from linguistics included, they form a basis for
the study and development of dialogue systems.

The interconnection of psycholinguistics and Al is the
foundation of cognitive science or neurolinguistics. Neu-
rolinguistics has been treated here as the neuroscience of
speech. Neurolinguistics is presented in Figure 1 as domi-
nantly linguistics discipline but connected to Al through
computer linguistics which is on the intersection between Al
and linguistics from one side and also connected to psy-
chology through psycholinguistics, which is on the in-
tersection between psychology and linguistics from other
side. Neurolinguistics is on the opposite side from the en-
gineering point of view. The neuroscience of speech can also
be considered as an area of cognitive science, and cognition
is inherent part of both speech perception (in the phase of
understanding, the meaning of the message conveyed by
spoken language) and speech production (in the phase of
composing, a message intended to convey a certain mean-
ing). Finally, SLP combines knowledge from the in-
terdisciplinary areas of SP&ML, HCI, psycholinguistics, and
computer linguistics, or more precisely NLP, cognitive
sciences, dialogue systems, and information access.

Speech technologies are based on speech signal pro-
cessing that spans a wide range of topics, while the focus in
this review article is on three areas where the authors have
the most expertise:

(i) Fundamental topics (speech analysis and synthesis,
sound waves and speech features, speech pro-
duction, auditory perception, and cognition in-
cluding the linguistic aspect)

(ii) Dialogue systems based on speech recognition and
text-to-speech synthesis (emotional speech recog-
nition and text-to-speech synthesis including voice
and style conversion)

(iii) Speech coding, compression, and transmission

Speech technology fields within the scope of the paper
are presented in Figure 2 as a unified framework that en-
compasses covered topics, showing their complementarity,
ranges and borders, interconnections, and intersections in
the interdisciplinary area of SLP.

A brief retrospective and some perspectives of the
speech technology fields shown in Figure 2 are presented in
the following sections. Fundamental topics are shown in
the middle of Figure 2 and presented in Section 2, covering
speech production and perception analysis, including
cognitive and linguistic point of views. More details related
to the progress in speech recognition and speech synthesis,
as well as their contributions to a new generation of human-
machine speech dialogue systems, are presented in Section 3.
Finally, the progress in speech signal compression, coding,
and transmission is presented in Section 4, including
contributions of the authors to the area. Most of these
advancements are based on the new deep learning
paradigm and our better understanding of neuroscience
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FiGure 2: Unified framework that encompasses speech signal
processing fields in the scope of the article.

and modelling of cognitive aspects of spoken language
communication.

2. Progress in Speech Analysis and
Knowledge of Spoken Language Nature

Knowledge related to the nature of spoken language is es-
sential for efficient coding and transmission as well as sat-
isfactory real-time human-machine speech interaction.
Speech models based on either speech production or au-
ditory perception were inherent parts of most successful
algorithms. Most recent neuro-inspired computational
models are based on knowledge of cognitive speech pro-
cessing models [16]. After a brief review of sound pressure
waves and speech signal features, speech production and
auditory perception including cognitive and linguistic points
of view will be elaborated in more detail in the following
subsections.

2.1. Sound Pressure Waves and Speech Signal Features.
Sound propagates as a continuum of acoustic waves (sound
pressure), and, once received, it can be recorded, digitized,
coded, transmitted, processed, and reproduced. In case of
speech sounds, frequencies relevant for recognizing what
was said and who has said it are located mostly below 4 kHz
and hardly ever above 7-8 kHz, which is just a portion of the
entire frequency range of the human auditory sense [17].
This fact was the basis of the design of analogue telephone
communication systems, including the choice of micro-
phones used. For that reason, a speech signal is sampled at
8 kHz (for a basic level of quality) or 16 kHz (if a higher level
of quality is desired). It is also well known that the dynamic
range from the softest to the loudest sounds in average
human speech is approximately 40 dB. Even if whisper and

elevated voice are included, this dynamic range is rarely
above 50 dB [14]. For these reasons, the requirements for a
microphone needed to record voice are typically less strict
than in case of recording, e.g., music. As to quantization, it is
known that each bit contributes to the signal-to-noise ratio
(SNR) by 6 dB, which means that the quantization noise is
practically inaudible if 8 bits are used for coding every sound
sample [4]. Thus, the typical case of using the sampling rate
of 8kHz and 8bits per sample produces the bit rate of
64 kbits/s. A lot of effort has been invested to reduce this rate
without significant loss of quality at the receiving side, and
Section 4 is devoted to this subject.

Digitalization including quantization is the basis of all
digital speech processing techniques. If the aim is to rep-
resent speech compactly and robustly, as is the case in
automatic speech recognition or most types of speech coding
for transmission, one of the basic questions is the selection of
relevant features that will enable fast, accurate, and robust
recognition of speech (or the speaker, language, or even
emotion), and/or fast and efficient speech coding for
transmission without significant loss of quality. Linear
predictive coding (LPC) and LPC analysis have fundamental
significance in speech signal modelling and speech feature
estimation [18]. Many speech coding schemes are based on
LPC including Low Delay-Code Excited Linear Prediction
(LD-CELP) coding scheme defined by G.728 standard,
Conjugate Structure Algebraic Code-Excited Linear Pre-
diction (CS-ACELP) coding scheme defined by G.729A
standard, Algebraic Code-Excited Linear Prediction coding
scheme defined by G.723.1 standard, and Adaptive Multi-
Rate Wide-Band (AMR-WB) coding scheme defined by
G.722.2, standards which are used in today mobile voice
communication and VoIP [5, 7].

One of speech production models is also based on LPC
analysis and provides speech feature sets describing speech
spectrum, which is most important for speech recognition
[19]. The main scope of speech signal and data processing in
real time (or limited time) is to reduce the amount of data
(speech features), while providing high quality of repre-
sentation of such a reduced signal, that is, data source. The
realization of this goal is supported by statistical signal and
data processing as well as methods and algorithms which
deal with signal and data reduction [20]. The most efficient
methods and algorithms incorporate adaptation, and these
topics will be elaborated in more details in the next sections.

2.2. Speech Production and Auditory Perception. Figure 3
shows a block diagram of both speech production and
perception. Text-to-speech synthesis (TTS) and automatic
speech recognition (ASR) are shown in parallel as corre-
sponding processes performed by machines. Speech and
language are learned, while the sense of hearing is innate.
There are a lot of differences among human and machine
speech production and perception, but the increase in the
ability of machine learning paradigms to simulate human
speech production mechanism, as well as auditory per-
ception and cognition abilities, will inevitably bring about an
increase in the accuracy of ASR and naturalness of TTS.
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FiGure 3: Block diagram of speech production and speech perception and corresponding processes performed by machines carrying out
text-to-speech synthesis (TTS) and automatic speech recognition (ASR).

Speech communication between humans begins and
ends at the cognitive level of message composition and
interpretation. Taking into account the average speech rate
of 10-12 phones per seconds and the number of phones in a
language, which typically corresponds to 5 or 6 bits needed
to encode them, a speech message conveyed as text could be
considered to correspond to a bit rate of 50-60bits per
second. The speaker plans not only what to say but also how
to say it—(s)he controls the volume, speech rate, and in-
tonation (prosody)—any of which can carry linguistic, and
also paralinguistic and extralinguistic information [21].
With that information added, the bit rate can be considered
to increase to several hundreds of bits per second.

Once the speaker decides what to say and how to say it,
an appropriate sound wave is produced through nervous
and muscular activity [22, 23]. In that, phones are not
pronounced in isolation, but the articulatory targets re-
quired for corresponding phonemes are rarely reached,
leading to the coarticulation effect, which aggravates the task
of ASR. Most often, the entire speech apparatus is consid-
ered through the source-filter model, where the activity of
vocal folds defines the excitation and the remainder of vocal
tract acts as a filter and shapes the sound spectrum [19, 21].
Besides being dependent on the phone, the acoustic features
of the speech signal at a particular moment also carry in-
formation relevant to the speaker and thus represent a
biometrical feature which can reveal the speaker’s identity
[24] and possibly other factors related to the speaker or to
the message. Including the influence of speaker variability,
the bit rate at this level increases to several thousand bits per
second. This segment of speech communication is studied by
articulatory and acoustical phonetics, and its machine
counterpart is TTS, namely, the module charged with the
production of the artificial speech signal itself.

Distribution of speech sample amplitudes is non-
uniform, and this knowledge is used in nonuniform speech

signal coding defined by p-law and A-law [25], while some
new research results provide better solutions based on
adaptive algorithms. The speech production mechanism ar-
ticulates a series of phonemes nonuniformly, according to an
empirical statistical law formulated by George Kingsley Zipf, a
linguist [26], referring to the principle of the least effort from
evolutionary biology field: interlocutors try to understand each
other using phonemes and words that are easier for pro-
duction and perception in a particular context. The knowledge
of phoneme and word statistics has been introduced into ASR
algorithms long ago, and stochastic speech models like Hidden
Markov model (HMM) [27] were the prevailing scientific
paradigm and represented the state of the art in speech rec-
ognition and synthesis community for decades.

On the other side, the continuum of acoustic waves
reaches the ear of the listener and certain frequencies excite
the eardrum, and over the malleus, incus, and stapes, they
excite the cochlea, where spectral analysis is performed,
based on the movement of the basilar membrane, whose
length is about 35 mm [17, 22, 23, 25, 28]. The hair cells in the
cochlea respond to different sounds based on their frequency
so that high-pitched sounds stimulate the hair cells in the
lower part of the cochlea, while low-pitched sounds stim-
ulate the upper part of the cochlea [28]. Thus formed neural
impulses are sent to the central auditory system in the brain
[22], and based on spectral differences, the brain recognizes
relevant acoustic differences and attempts to recover the
string of phones that the original message was composed of,
taking into account its language model (at the level of
morphology, syntax, semantics, and pragmatics). It can thus
be considered that the task of ASR is to reduce the bit rate of,
e.g., 64 kbits/s (digitized speech) to a bit rate of 50-60 bits/s
(plain text), which would correspond to the textual contents
of the message without speech prosody.

However, speech perception, which principally relies on
the sense of hearing, is a nonlinear process. As is the case
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with other human senses (vision, taste, touch, and smell),
auditory perception of both sound pressure level (SPL) and
fundamental frequency (f0, pitch) follows the Weber-
Fechner law [28] from psychophysics: a change perceived as
linear corresponds to an exponential change in the physical
stimulus. Apart from SPL and pitch, perception of sound is
affected by the distribution of sound energy across fre-
quencies, i.e., the spectrum of the sound, which usually
represents a mixture of a sequence of discrete frequency
components (timbre), as in the case of periodic sounds, and
a continuous mix of nonharmonic or random frequency
components, as in the case of various types of noise [22, 28].
This is why common speech features like cepstral coeflicients
are considered to be located at frequencies rescaled from Hz
to mel-scale-MFCC; they are estimated by cepstral analysis
from speech frames of 20-30 ms together with their first and
second derivatives calculated from several successive
frames [29].

Auditory scene analysis is the process by which the
auditory system separates individual sounds in natural-
world situations [30, 31]. Regardless of whether sound is
received by a human ear or a microphone, the incident
sound pressure wave represents a sum of pressure waves
coming from different individual sources, which can be
either human voices or any other sound sources. These
sounds usually overlap in both time and frequency. Nev-
ertheless, the human auditory system is usually able to
concentrate on an individual sound source at a time [23, 31].
While listening and separating one source, the listener
constructs a separate mental description for that source.
Although he/she cannot actively listen to two sound sources
simultaneously, he/she can switch immediately his/her at-
tention from one to the other [30]. For example, if a student
listens to the teacher, he ignores the noise from LCD pro-
jector and a colleague who may be speaking to him; if he
switches the focus to his colleague, he cannot actively listen
to the teacher anymore. Furthermore, if a human listener
follows the context, he/she is able to reconstruct some
phonemes or entire words that he/she may not be able to
hear for some reason. Humans are as successful in sound
separation as they are more experienced in real-word sit-
uations and they always analyse the incoming signal using
heuristic processes. As the ultimate step of the hearing
process, human auditory cortex constructs a cognitive
representation of the received sound wave. Without the
cognition step, sound waves coming to the ears are not
perceived. Heuristic analysis is based on (ir)regularities in
the sum of underlying sounds.

Individual sounds differentiate from each other in at
least one of the following dimensions: time, space, and
frequency spectrum [28, 31]. Temporal and spatial sensa-
tions in the human auditory system are presented in more
details in [32]. In the time dimension, two sounds can have
some onset/offset asynchrony. In a specific environment,
binaural hearing enables the localization of sound sources,
which is easier, but also often more important, in the
horizontal plane where human ears are positioned than in
the vertical plane. The spectrum of frequency components
can determine the perceived pitch, timbre, loudness, and the

difference in the spectra of sounds received by both ears
enables the localization of sound sources [23, 31, 32]. Pitch is
related to the fundamental frequency f0 in periodic sound
waves such as musical tones or vowels in speech; their
spectrum consists of f0 and its harmonics. Temporal vari-
ation of fO results in melody in music and intonation in
speech. Timbre represents a specific distribution in the in-
tensities of fOs and its harmonics in the spectrum. Two
renditions of the same tone from two different musical
instruments, having the same 0, will have different timbres
due to the difference in the relative intensities of particular
harmonics (the spectral envelope), and as a result, they will
sound different [22]. If a sound spectrum does not contain
just harmonic tones (fOs and their harmonics), the spectrum
is not discrete; sound spectrum is rich with frequency
components in parts or in the entire frequency range of the
human auditory sense. Such sounds, with a spectrum that is
more or less continuous, are much more frequent in nature
(e.g., noise of a car or a machine or any transient noise).
Magnitudes of spectral components contribute to the
loudness; sound pressure level is defined in dB relative to the
threshold of hearing at 1kHz (20 yPa) and has range 0-
120dB to the threshold of pain [17, 22]. To conclude, two
sounds can be separated from each other in an auditory
scene analysis according to the differences in loudness, pitch
(f0, if present), and timbre or spectrum as a whole, as well as
in their temporal and/or spatial variations that can create a
variety of sound impressions.

Acoustic signals are received by a listener and trans-
formed into linguistic and nonlinguistic categories, but it is
not known exactly how. There is ongoing research on
neurophysiology of speech communication using the latest
advances in invasive and noninvasive human recording
techniques, with the aim to uncover fundamental charac-
teristics of cortical speech processing [16]. The research team
in question has studied phonetic feature encoding and
mechanisms of noise robust representation of speech in
auditory cortex based on the evidence that humans and
animals can reliably perceive behaviourally relevant sounds
in noisy and reverberant environments.

Neuro-inspired computational models try to provide
progress in artificial deep neural network (DNN) perfor-
mance, based on better understanding of the representation
and transformation performed by these models. A case study
in ASR given in [33] attempts to identify the mechanisms
that normalize the natural variability of speech and com-
pares these mechanisms with findings of speech represen-
tation in the human auditory cortex. The aim is to compare
DNNs with their biological counterparts, identify their
limitations, and reduce the performance gap between bi-
ological systems and artificial computing. For example, a
human is able to concentrate on one speaker voice and
ignore other sounds and voices [23, 31], based on their
differences in spatial positions, pitch, and timbre, coherence
of changes in level and/or frequency, and time character-
istics (onset/offset asynchrony) [30]. An algorithm aimed at
focusing on one speaker in a group of many speakers based
on deep attractor network is proposed in [34], based on
similar principles. It has been shown that switching attention



to a new speaker instantly changes the neural representation
of sound in the brain. An adaptive system should change the
sensory representation in real time to implement novel, task-
driven computations that facilitate the extraction of relevant
acoustic parameters.

Human listeners have a remarkable ability to understand
quickly and efficiently the world around them based on
behaviour of known sound sources. Moreover, they are able
to pay attention and focus on the meaning of speech of a
particular speaker. Attentional focus can be integrated into
HCI dialogue strategy [35], while data related to human
cognitive effort can be used in postprocessing and im-
provement of the performance of ASR systems [36].
Humans are able not only to separate one speaker or
concentrate only to one sound source but also to group more
sound sources and hear, e.g., the entire orchestra as one
musical sound based on harmonicity and synchrony of
particular sound sources. Concurrent and sequential
grouping processes are described in more details in [37].

The role of the nonlinearities in DNN in categorization
of phonemes by their nonuniform and nonlinear warping of
the acoustic space are studied in [38], as well as the way
perceptual invariant categories are created. Biological neu-
rons are able to dynamically change the synaptic efficacy in
response to variable input conditions. It is called synaptic
depression and when it is added to the hidden layers of a
DNN trained for phoneme classification, ASR system be-
comes more robust to noisy conditions without explicitly
being trained for them. The results from [39] suggest that
more complete neuron models may further reduce the gap
between the biological performance and artificial comput-
ing, resulting in networks that better generalize to novel
signal conditions.

2.3. Engineering vs. Linguistic Point of View to NLP as a
Typical AI Topic. The mechanism of speech production and
the physical component of sound perception are relatively
well-studied topics [22, 31], while cognitive aspects of speech
communication still represent a widely open research area.
All aspects of human-machine speech communication that
are related to linguistics, such as natural language processing
(NLP), cognitive sciences—neurolinguistics, and dialogue
management (see Figure 1), represent great challenges to the
scientific community. In the recent past, the development of
speech technology and spoken dialogue systems has gained
most momentum from the engineering disciplines, through
the possibility of automatic learning from vast quantities of
data, in terms of development of computational facilities,
complex learning algorithms, and sophisticated neural
model architectures addressing particular phenomena and
problems of cognitive linguistics. At the same time, cognitive
speech sciences mostly remain outside of the scope of the
immediate interest of engineering disciplines relevant to
speech technology development. Nevertheless, the knowl-
edge in these areas overlaps in the concept and scope with
machine learning, which, inspired by neurosciences, has
brought about progress not only in human-computer in-
teraction and computational linguistics but also in the area
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of spoken language processing, which lies in their in-
tersection. This is indicated in Figure 1, which also shows a
relatively wide gap between cognitive sciences (neurosci-
ence) and psycholinguistics on one side and predominantly
engineering disciplines on the other.

As regards the role of machine learning in the devel-
opment of speech technology, it has offered a powerful
alternative to models dependent on linguistic resources and
modules performing particular linguistically motivated
subtasks. Linguistic resources such as dictionaries and
speech databases are typically quite expensive and time-
consuming to collect and annotate, while the development of
modules that compose a speech technology system requires
deep domain knowledge and expert effort. In the last two
decades, some of the tasks performed by rule-based systems
or simpler machine learning methods have, one by one, been
overtaken by neural networks. Namely, in the case of
acoustic speech recognition, neural networks have been
shown to outperform hidden Markov models (HMMs) in
acoustic modelling [40] but have also outperformed classical
N-gram language models in terms of generalization, using
either architectures based on long short-term memory
(LSTM) neurons [41] or recurrent neural networks (RNN)
[42]. Solutions based on neural networks have been shown
to reach human parity in tasks as complex as casual con-
versational speech recognition [43]. In combination with a
range of data-synthesis techniques for obtaining large
quantities of varied data for training, it is now possible to
obtain an end-to-end ASR capable of outperforming state-
of-the-art pipelines in recognizing clear conversational
speech as well as noisy one [44, 45]. They have also been used
in multimodal speech recognition, i.e., recognition of speech
from audio and video [46]. The task of speech synthesis is a
more language-dependent one, and in that it is more
challenging since it aims to reintroduce the redundancy
which is lost when speech is converted into text, and to do it
in such a way that, among a multitude of prosodic renditions
of a particular utterance, it produces one that the listener will
consider acceptable in a given context. Here again, neural
networks have shown to overperform classical models
working on parameterized speech such as HMM:s [47, 48] in
acoustic modelling, and they have also been employed for
prosody modelling [49] as well as modelling of acoustic
trajectories [50]. Neural networks have also addressed the
problem of a somewhat muffled character of synthesized
speech due to the use of a vocoder, by performing synthesis
of raw speech waveforms instead [51]. Finally, to overcome
the need for sophisticated speech and language resources
that require deep domain expertise, a range of end-to-end
architectures were proposed, with the ultimate end that the
system should be trained on pairs of text and audio,
exploiting the capability of neural networks to automatically
develop higher-level abstractions [52]. The flexibility of such
a powerful data-driven approach in comparison with clas-
sical speech concatenation synthesizers has also brought
significant progress in the area of multispeaker TTS and
speaker adaptation [53-55] as well the ability to conform to a
particular speech style or emotion [56]. This is particularly
relevant as it coincides with the emergence of applications
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such as smart environments, virtual assistants, and in-
telligent robots, demanding high-quality speech synthesis in
different voices and different styles and conveying different
emotional states of the perceived speaker [57]. Other lan-
guage technology tasks have also been successfully addressed
by neural networks, such as question answering [58], text
classification [59, 60], machine translation [61, 62], and
sentiment analysis [63]. Neural networks have also been
used as a powerful linguistic tool, for modelling sentence
syntax [64] or exploring particular linguistic phenomena
such as establishing word representations in vector spaces
[65]. However, rather than providing a decomposition of the
problem and a clear analytical insight into it, neural net-
works provide an alternative, data-driven point of view, and
thus cannot be considered a classical tool of theoretical
linguistics. On the other hand, their performance in solving
these problems justly makes neural networks state of the art
in the development of speech technology.

3. Progress in Speech Recognition and
Synthesis, as well as Dialogue Systems

Apart from automatic speech recognition (ASR) and text-to-
speech synthesis (TTS), a human-machine speech dialogue
system also includes a dialogue management module with
corresponding dialogue strategies and language technologies
for spoken language understanding (SLU) and spoken
language generation (SLG), as illustrated in Figure 4.

This section presents some achievements in the field of
speech technologies such as ASR and TTS. They have been
developed with an effort to combine interdisciplinary
knowledge from different areas such as linguistics, acoustics,
computer science, and mathematics. Signal processing en-
gineers usually have integrating roles among linguists from
one side and mathematicians from the other side.

3.1. Progress of Automatic Speech Recognition Systems.
Research and development of ASR systems began in the
1950s in Bell Labs, with simple digit recognition systems,
and since then the recognition tasks have become more
complex—from the recognition of isolated digits, then
isolated words, then continuously spoken words in a silent
environment, up to the recognition of spontaneous speech in
a noisy environment. Consequently, the complexity of the
algorithms used also increased drastically. A brief review of
historical development of ASR can be found in [66]. There
were three important moments in the development of ASR
systems: introduction of mel-frequency cepstral coefficients
[67], introduction of statistical methods (hidden Markov
models (HMM) with Gaussian mixture models (GMM))
[68], and introduction of deep neural networks (DNN) [69].
This development was also supported by the technological
development in the computer industry as well as the increase
in the amount of data available for training these systems.

The domination of DNNs in ASR started with [40],
which showed that feedforward DNN outperforms GMM in
the task of estimation of context-dependent HMM state
emitting probabilities. For a small database, such as English
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Broadcast News (about 30 h of training data), the difference
in word error rates (WER) was not significant, but for the
Switchboard database, which is bigger (about 300h of
training data), the difference became substantial. Further
improvement of DNN was based on better optimization,
new activation functions, new network architectures, new
speech preprocessing methods, and leveraging multiple
languages and dialects [70]. One of the important findings
was that layer-by-layer pretraining using restricted Boltz-
mann machines (RBM) is not obligatory and that back-
propagation algorithm is sufficient for training in case of a
large quantity of available training data as well as a large
number of units in the hidden layers. Additionally, LeCun
et al. showed in [71] that in case of sufficiently wide DNN
(large number of units in a layer), there is no problem with
the local minima and that the values of local minima are very
close. The next big step was a complete elimination of HMM
from the model. Graves and Jaitly in [72] reported a speech
recognition system that directly transcribes audio data with
text, without requiring an intermediate phonetic represen-
tation. The system is based on a combination of the deep
bidirectional long-short term memory (LSTM) recurrent
neural network architecture and the connectionist temporal
classification (CTC) objective function. Such a direct
mapping of an audio signal into a grapheme sequence allows
easy application of the system on new languages such as
Serbian [73]. Inspired by CTC, Povey at al. in [74] developed
lattice-free maximum mutual information using phone n-
gram language model starting from randomly initialized
neural networks. This method was also successfully applied
to Serbian [75]; i.e., the relative reduction of WER was about
25% with respect to the best previous system.

3.2. Progress of Speech Emotion Recognition. Since humans
are not always rational and logical beings—emotions play
very important aspects in acceptance of new products and
technologies [76]. The earliest attempts to recognize speaker
emotional state on the basis of voice characteristics date back
to the 1980s [77]. The initial motive for this research di-
rection was the adaptation of an ASR system to emotionally



stressed speech [78], but another motive appeared with the
development of spoken dialogue systems, where it was useful
to modify the dialogue strategy based on, e.g., user an-
noyance [79]. There are a number of emotions that can be
easily represented in the activation-evaluation space [80],
but classification of such a large number of emotions is
difficult. Hence, classification space has been reduced to
neutral and 6 archetypal emotions: anger, disgust, fear, joy,
sadness, and surprise, which are the most obvious and
distinct emotions [80]. It should be noted that archetypal
emotions are not primary emotions in so-called “pallet
theory,” where each emotion can be represented as a
combination of the primary ones.

One of the important steps in the design of a speech
emotion recognition system is the extraction of features that
efficiently discriminate between emotions independently of
lexical content, speaker, and acoustic environment. It is well
known that prosodic features are correlated with emotions
[80], which is why standard features used in emotion rec-
ognition systems include pitch, energy, and phone duration
[81]. These features are also related to the voice quality that is
related to the emotions [82]. Emotions affect speech energy
distribution across a wide range of frequencies, thus spectral
features such as MFCCs, linear prediction cepstral co-
efficients, log frequency power coefficients, and formants
were further proposed [83, 84]. Feature extraction procedure
starts with the segmentation of the input signals into 20—
30ms long frames shifted by 10ms, since speech is a
nonstationary signal. After that, the features extracted from
a chosen segment (corresponding to a particular phoneme,
syllable, word, or sentence) are mapped into a single vector
using functionals such as mean, second moment, contour
slope, and range. Hereafter, features “condensed” in such a
way represent the input of standard classification algorithms
such as linear Bayes [85], k nearest neighbours [85, 86],
support vector machines [87], GMM [86], and artificial
neural networks [88]. On the other hand, such frame-based
features can also be classified as a sequence using HMM [84]
and RNN [89]. Besides low-level acoustic features, indi-
vidual words or sequences of words obtained by ASR can
also be used to perform emotion classification [90]. After a
huge success of convolutional neural networks (CNN) in
image classification, where lower layers of the network
perform feature extraction, some research groups have tried
to implement CNN in the same manner to obtain features
[91, 92]. Since speech emotion recognition is a scarce data
problem, one of the future trends will be the application of
semisupervised learning [93]. More details about features,
classification algorithms, and databases can be found in
[94-97].

3.3. Progress in the Development of Text-to-Speech Synthesis.
The very first “speech machines” were mechanical devices
capable of producing single phonemes, and some of their
combinations were introduced by Christian Kratzenstein
and Wolfgang von Kempelen at the end of eighteenth
century [98]. The VODER, presented in 1939 by Homer
Dudley, can be considered as the first synthesizer which
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could generate whole sentences [99]. The first full TTS
system for English was introduced in 1968 by Teranishi and
Umeda [100]. It was an articulatory-based system which
could perform text analysis and determine pauses in text
using a sophisticated parser [101].

However, it was not until concatenative synthesizers
were invented, that TTS gained widespread usage. The idea
of concatenative TTS is to concatenate appropriate parts of a
prerecorded database [102]. If the goal is domain-specific
synthesis or a very large speech database is available, this
approach can produce high-quality speech. However, there
are audible glitches at the concatenation points if the ap-
propriate units cannot be found in the database. The method
is also extremely inflexible in terms of changing the speaking
style or the voice of the speaker; it requires a whole new
database to be recorded and annotated.

As applications of TTS became more popular and more
widely used, the necessity of algorithms that could produce
different voices and speaking styles from smaller databases
has grown. From around 2000, statistical parametric speech
synthesis, where the spectrum, fundamental frequency, and
duration of speech were modelled by multispace probability
distribution HMMs and multidimensional Gaussian dis-
tributions [103], became popular. The HMM synthesis en-
ables transformation of speaker-independent system toward
a target speaker using a very small amount of speech data
[104], creating expressive voices [105], as well as multilingual
voices [106]. However, this method never achieved the
naturalness of concatenative TTS. One of the main problems
is the signal smoothness caused by modelling similar con-
texts with the same Gaussian mixtures. Another big problem
introduced with parametric methods is the usage of vocoder,
a system that produces speech waveforms from predicted
acoustic features. Vocoders, although significantly improved
over the time, introduce some artefacts which affect the
overall quality of generated speech. A detailed review of
HMM-based speech synthesis can be found in [107].

The first attempts to use neural networks in speech
synthesis can be found in [108]. However, the recent de-
velopment of hardware, especially graphical processing units
(GPUs), has popularized this approach and established its
dominant status in the TTS research society. Deep neural
networks (DNN) replaced decision trees and Gaussian
mixture models in mapping input linguistic features to
output acoustic features, enabling nonlinear mappings [109].
Although simple feedforward NN with several hidden layers
and sigmoid or tangent hyperbolic activations are sufficient
for the production of intelligible and natural sounding
synthetic speech, introduction of LSTM (long short-term
memory) units has brought further improvement into the
quality of synthesized speech [110]. Some improvements
were also reported by introducing generative adversarial
networks [111] and stacked bottleneck features [112].

DNNs have not only just enabled generating synthetic
speech of high quality but also introduced many possibilities
for production of speech in different voices and speaking
styles. A majority of methods for creating new DNN voice
using limited amount of training data is based on usage of
multispeaker models. In multispeaker modelling, a large
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database consisting of multiple speakers is required. Each
speaker is usually represented with less data than in case of
single-speaker modelling. Due to a variety of contextual in-
formation and better network generalization, the quality of
speech produced with multispeaker models is similar or even
better than speech obtained with single speaker models.
Speaker identity in multispeaker systems can be represented
in several ways. One group of approaches is based on the use
of a unique vector for each speaker. This vector can be
represented as i vector [113] or just one-hot vector [54] and is
used in training as extension of standard input or additional
input to any of the hidden layers. Another group of methods
for representing speaker identity is based on splitting network
to speaker-specific and shared parts. In [53], separate output
layers for each speaker have been introduced. In [114], even
language-dependent parts of the network have been added,
but this approach requires data from the same speaker in
multiple languages. Creating a new voice, whose samples have
not been seen in the training phase, in a multispeaker
framework is based on adapting only the speaker-dependent
part of the network [53], estimating the speaker-specific
vector for the new speaker [55] or adjusting the parame-
ters of neurons in starting models [113]. As opposed to the
usage of multispeaker models as starting models for adap-
tation, in [115], adaptation starting from a single speaker
model is investigated. It has been shown that only ~10 min of
target speaker voice is required in order to produce synthetic
speech in target speaker’s voice reaching the quality of
conventional methods built on several hours of speech da-
tabase. The hypothesis was that the models of speakers A and
B are more similar than a randomly initialized model and the
model of speaker B, consequently requiring less data to train
the model of speaker B starting from the model of speaker A
than starting from a randomly initialized model.

Synthetic speech should convey not only just in-
formation but also paralinguistic information such as
emotional state. There is also a need to support some task-
specific speech styles such as news, commercials, storytell-
ing, and warnings [116]. It has been shown that emotion,
mood, and sentiment affect attention, memory, perfor-
mance, judgement, and decision-making in humans [117],
which supports the necessity of using different speaking
styles in synthetic speech for many applications. Three
different methods for style modelling are compared in [118].
The presented methods are based on ideas introduced in
multispeaker modelling using input codes, network adap-
tation, and separated output layers. It has been shown that
only ~5min of speech per style is sufficient in order to
produce speech of acceptable quality in a specific style. Using
input codes for representing different styles is also presented
in [119, 120]. There have also been attempts at style
transplantation, ie., producing speech in the voice of
speaker A in style X without having any sentence from
speaker A in style X in the training data, in which case the
network is forced to learn the style X from other speakers in
the training database [121, 122].

Although DNNs have shown to be extremely powerful
and flexible, for a long time, one of their main disadvantages
in speech synthesis has been their dependence on the usage

of a vocoder. For the first time in 2016, raw audio samples
were directly predicted by DNN using WaveNet architecture
[51]. This model is fully probabilistic and autoregressive,
with the predictive distribution for each audio sample
conditioned on all previous ones. When conditioned on
linguistic features derived from text and speaker identity, it
can be used as TTS and it significantly outperforms all other
TTS systems. The main drawbacks of this system are its need
for extremely large databases and extreme computational
power, although the synthesis has since been accelerated by
the introduction of approaches such as Parallel WaveNet
[123]. A similar model called DeepVoice was introduced in
2017 [124]. In DeepVoice, every part of TTS pipeline is
replaced by a corresponding DNN. Its main drawback is the
fact that all components of TTS system are trained in-
dependently, and it leads to a cumulative error in synthe-
sized speech in the end.

As opposed to WaveNet and DeepVoice systems, which
use lexical features as inputs, there are systems which use raw
orthographic text as input, such as Tacotron [52], Tacotron 2
[125], and Deep Voice 3 [126]. Tacotron outputs spectro-
grams that are transformed to speech samples using
Griffin-Lim algorithm, which also introduces artefacts in
generated speech. On the other hand, the Tacotron 2 system-
generated spectrograms are used for conditioning standard
WaveNet architecture, which generates speech samples.
DeepVoice 3 architecture can output spectrograms or other
features which can be used as input to some waveform
synthesis models. Adaptation to new speakers has also been
investigated in end-to-end systems [127, 128] as well as
synthesis in different styles [129, 130].

The main advantage of an integrated end-to-end TTS
system is that requires minimal human effort since there is
no need to label input data. Since in end-to-end systems,
direct sample values are often predicted [29], the usage of
16 bit samples would make the prediction complicated and
some type of quantization is performed. For this reason,
improved coding and compression algorithms are important
for TTS.

3.4. Dialogue Systems. Automatic speech recognition and
speech synthesis are technologies with a long history. During
the last five decades, a wide spectrum of algorithms shaped
our knowledge within the speech technology field. With the
recent advances in the world of deep learning and artificial
neural networks, we are able to imitate to some extent the
human auditory system sensitivity, recognition accuracy,
human voice intelligibility and naturalness, emotions in
synthesized speech, etc. As the result, machines are able to
identify particular speakers, recognize human words in a
noisy environment or to perform large-vocabulary contin-
uous speech recognition with high accuracy. Furthermore,
with a small amount of speech data from target speakers,
they synthesize high quality speech, good enough to become
a threat to automatic speaker verification systems.

One question that naturally arises is whether this is
enough to achieve intelligent-like, natural and long-term
human-machine speech interaction. Unfortunately, it is not.
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Speech recognition and synthesis are only two of the six
modules in a typical architecture of a speech dialogue system,
depicted in Figure 4, and each of the six modules corresponds
to certain cognitive aspects underlying the human language
processing system. As a result, dialogue management be-
comes a complex structure that involves cooperation of
several, quite different functional units. Leaving aside the
division of dialogue systems into task-oriented and non-task-
oriented, we must emphasize that the biggest challenge sci-
entists face during the research in this area is to emulate
human ability to understand meaning and conduct a con-
versation that is forward-looking, informative, and coherent.
Regarding the dialogue initiatives, machines are successful in
handling conversations that are system initiative (or single
initiative). In such cases, the system completely controls the
conversation and maintains the processes of speech recog-
nition, meaning extraction, answer generation, and speech
production. However, as it is known, natural dialogue is not
deterministic and real improvements in human-machine
speech interaction can be achieved only if adaptive behav-
iour with respect to the intention, the current context, and
history of interaction are provided.

As a traditional paradigm shift, recent works in this area
have addressed a series of data-driven, end-to-end trainable,
non-goal-driven systems based on generative probabilistic
models [131]. As such, these models can be viewed as artificial
cognitive systems, aimed at grouping and carrying out tra-
ditional dialogue management tasks: language understanding,
reasoning, decision-making, and natural language generation.
They are corpus-based, data-driven dialogue systems, based
on machine learning algorithms using corpora created from
real word data. The statistics observed in dialogue corpora is
the main knowledge for the optimization of parameters and
variables.

It is worth pointing out that, besides the importance of
domain knowledge, linguistic context has the crucial impact
for active and engaging conversation. However, one of the
main drawbacks of these approaches is related to sparsity
issues that can be expected during integration of contextual
information into statistical models. In the work of Sordoni
et al. [132], the neural network architecture is used to ad-
dress this problem, allowing the system to take into account
the previous dialogue utterances. While modelling contex-
tual information, the authors identify models for three
linguistic entities in a conversation: the context (c), the
message (m), and response (r). On that basis, they suggest
three context-based generation models to estimate a re-
sponse r =r,,...,r as follows:

T
p(rlc,m)= Hp(rtlrl,.‘.,rt,l,c,m). (1)
t=1

This work extends the recurrent neural network lan-
guage models (RNNLM) as a generative model of sentences
[133]. As the basic principle in this neural network model,
input vector, representing the current word at time instant ,
is concatenated to the output from neurons in network
context layer at time t—1. In order to capture long-span
dependencies together with semantic and syntactic
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similarities, the authors select word embedding as a con-
tinuous representation of words and phrases. Similar ap-
proaches already advanced classical language modelling,
based on traditional n-gram language models [134, 135].

In line with this, many researches are trying to take
advantage of combining neural network and end-to-end
training possibilities with the large amount of freely avail-
able text or audio material from social media, movie scripts,
etc. [136]. Serban et al. [137], for example, demonstrated
introduction of latent variables to hierarchical recurrent
encoder-decoder architecture. The research presented in
[138] extended the hierarchical structure with the attention
mechanism (word level attention and utterance level at-
tention), taking into account that words and utterances in
the context are differentially important.

Although end-to-end, statistical models have drawn most
of the recent research on dialogue systems, many problems
remain unresolved [131]. Neural network-based models are
capable of handling large amount of data, but still it is hard to
design an intelligent system based on imitating responses
(especially if we take into account that the dialogue data for a
specific domain are quite limited). Hence, to reduce these
limitations, MiSkovi¢ et al. [36] proposed a different, repre-
sentational approach. This work extends the focus tree model,
a cognitively inspired computational model of working
memory that allows for adaptive dialogue management in
human-machine interaction. The research not only is focused
on improvements of speech recognition module but also
points to possible new architectural aspect of dialogue sys-
tems. Following the assumption of the hierarchical and as-
sociative nature of human memory system and facts that the
processing of the user’s dialogue acts in human-machine
interaction is always context-dependent, this model en-
ables, to some extent, understanding of language and real
word data.

4. Progress in Speech Signal Compression,
Coding, and Transmission

In general, speech coders can be classified into three major
categories depending on the applied coding technique:
waveform coders, parametric coders, and hybrid coders. The
primary idea behind a waveform coder design is to preserve
the shape of a speech signal waveform, thus encoding in-
formation about the original time-domain waveform
[4-6, 14, 139]. Such coders are broadly used in embedded
applications due to several reasons: low cost of manufacturing,
low computational resource usage, and high speech quality
[4-7, 14, 139]. The simplest and most well-known type of
waveform coders is pulse code modulation (PCM) coder,
which is considered as a standard in digital telephony. One of
the key advantages of PCM coders is that they are in-
stantaneous, implying a coding delay of no more than one
sample period [4]. Unlike waveform coders, which tend to
reconstruct the original shape of the speech signal in time-
domain, parametric coders reconstruct the speech signal from
certain parameters that model the source signal, making no
attempt to preserve the original shape of the waveform
[4-7, 14, 139]. Due to this limitation, parametric coders are



Computational Intelligence and Neuroscience

more signal dependent and less versatile. Additionally,
compared to waveform coders, they provide a lower quality of
speech signals. In parametric coders, human speech pro-
duction mechanism is modelled with a time-varying filter,
having coefficients commonly determined by the linear
prediction analysis procedure. In the end, hybrid coders
represent a class of coders, which combine features of both
previously described classes of coders, namely, hybrid coders
tend to preserve the shape of the signal in time domain and
also exploit perceptive characteristics, that is, parametric
approach [4-6, 14, 140]. Performance comparison of these
three classes of coders is presented in Figure 5, where mean
opinion score (MOS) is used as one of the standard subjective
measures of reconstructed speech signal quality [4].

From Figure 5, one can conclude that waveform coders
provide excellent quality of reconstructed speech signal and
that they represent the best choice at bit rates higher than
16 kbits/s, whereas parametric coders cannot provide high
quality regardless of the bit rate. On the other hand,
parametric coders provide much better quality than wave-
form coders at low bit rates. Finally, hybrid coders are most
suitable at medium bit rates. As for the purposes of speech
synthesis and automatic speech recognition, the highest
possible quality of reconstructed signal is desirable and
waveform coders are usually considered as an adequate
choice. Thus, what follows is focused on PCM and adaptive
PCM (ADPCM) coding techniques.

4.1. Adaptive PCM. Speech signal can be considered as a
nonstationary process, whose average power significantly
fluctuates in time domain, resulting in a wide dynamic range
[4]. However, speech signal can be considered as almost
stationary in a short period of time (up to 30 ms). This means
that speech signal has a highly predictable characteristics
during short periods of time, which is suitable for utilizing
adaptive quantization [4, 8-10, 141-147]. Commonly,
adaptive quantization is frame-based, where frames are
formed by dividing an input speech signal into sets of
samples.

There are two fundamentally distinct categories of
adaptive quantization techniques: forward and backward
adaptive quantization techniques [141]. Forward adaptive
techniques require transmission of additional information
about the estimated gain, which is used for adaptation.
Moreover, forward adaptive techniques require a longer
processing delay than backward adaptive techniques as
samples within a frame have to be stored in a buffer, in order
to estimate predictable characteristics of every frame. When
the gain is estimated and the quantizer is adapted, samples
can be quantized and further transmitted to the decoder
along with the quantized gain.

A general forward adaptive PCM model is presented in
Figure 6 [8, 10]. The encoder is formed of two parts: a fixed
(nonadaptive) part, consisting of a fixed quantizer Qg and an
adaptive part, consisting of a buffer, a gain estimator, one
divider, and a fixed gain quantizer Q. If Q; is a piecewise
linear p-law quantizer designed for 8 bit/sample and y = 255,
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FIGURE 5: Speech signal quality according to MOS versus bit rate
for various speech signal coding techniques.

the general forward adaptation model becomes a forward
adaptive PCM model defined by G.711 standard [148].

Unlike forward adaptation, backward adaptation does
not estimate characteristics of samples in a frame while
encoding, which means that there is not additional in-
formation that has to be transmitted [149]. In fact, gain
estimation is performed at the receiver after decoding,
considering previously quantized samples. The simplest
backward adaptive quantization model is based on uniform
quantization with one codeword memory exploited for gain
estimation and it is commonly referred as Jayant’s model [4].

Advanced backward adaptive models commonly in-
corporate more sophisticated gain estimation methods, or
variance (6?, (n)) estimation methods, which, for quanti-
zation of a current sample x(n), typically exploit a larger
number of previously decoded samples y (n—1i) [4]:
+00 .

oty (n-i), (2)

i=1

2
- (n) =
}’() l+a

where « is a weighting parameter, which can take values
0 <a<1. Parameter « defines a learning period, that is, a
time required for variance estimation [4]:

1+
L=—¢ (3)
1-«

Equation (2) can be written in the following recursive
form:

3 (n) =%y2(n—l)+(x8§,(n—l), (4)
which is straightforwardly used in the simplest mathematical
model of Jayant’s backward quantizer with one codeword
memory. One of the realizations of backward adaptive PCM
with one codeword memory that incorporates a widely used
companding quantization model is shown in Figure 7, where
M (n—1) denotes a step size multiplier, used for adaptation,
and c(x) and ¢ !(x) are a compressor function and an
expandor function, respectively.
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4.2. Dual-Mode Quantization. Dual-mode and adaptive
dual-mode quantizers belong to a relatively new class of
quantizers whose design is based on multiparameter
adaptation, such as variance and maximum amplitude
[8, 9, 11]. Depending on their purpose and application,
they can perform quantizer adaptation according to the
frame variance and to the frame maximum amplitude x,,
and also according to the subframe maximum amplitude.
By utilizing two quantizers, which compose the dual-
mode system, and by applying switched technique, it is
possible to achieve a better quality of the quantized signal,
or a higher compression, compared to the common single-
mode quantizers. In Figure 8, a dual-mode quantization
scheme is shown, where Encoder 1 and Decoder 1 are
related to the quantizer applied for processing signals
having restricted amplitude range, whereas Encoder 2 and
Decoder 2 are related to the quantizer applied for pro-
cessing the signals having unrestricted amplitude range
[8, 9, 11]. The switched process is frame-based, and it is
performed so that the restricted quantizer is used in the
case if all samples within a frame belong to the restricted
quantizer’s support region, while the unrestricted quan-
tizer is used otherwise [8, 9, 11]. The main idea behind
such quantization model is to enable a more preferable

selection of the restricted quantizer, with a narrower
support region, than the unrestricted one, since, in such a
manner, an increase of the signal to quantization noise
ratio can be provided.

Considering that speech signal can be described using
Gaussian probability density function (PDF) or Laplacian
PDF, which is heavy-tailed, it is expected that only small
percentage of speech frames will have some samples of large
values. However, this also depends on the size of a frame.
Consequently, the support region threshold values for both
quantizers should be chosen so that the restricted quantizer
usage should be dominant, but taking also into account the
frame size and the whole input signal dynamics in order to
achieve a minimum of the total distortion introduced in the
quantization process [8, 9, 11].

4.3. Differential Pulse Code Modulation. Differential pulse
code modulation (DPCM) represents a simple but high-
quality speech signal coding scheme for middle bit rates. It
initially exploited uniform quantization and the first-order
prediction [150, 151]. As it was already discussed, speech
signal has highly predictable characteristics within a frame,
which is exploited to reduce the dynamic range of amplitudes
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FiGure 9: DPCM: (a) encoder; (b) decoder.

for quantization in the DPCM scheme [4, 12, 13, 152, 153]. In
particular, DPCM predicts the next sample amplitude value
and encodes the difference between the predicted value and
the value of the current input signal amplitude. Due to the
high correlation, these differences have much smaller values
compared to ones of the input signal samples, so that the
dynamic range of amplitudes is significantly reduced before
quantization. Accordingly, with a suitable design of a DPCM
system, a certain distortion may be provided at lower bit rates

compared to the PCM system. In other words, a worthy
compression may be achieved with the DPCM system
compared to the PCM.

More sophisticated solutions may incorporate pre-
diction of a higher order or other kinds of quantization
models, such as a gain-adaptive quantization model [154].
Figure 9 shows a DPCM scheme with incorporated simple
first-order predictor and forward gain-adaptive quantizer
based on optimal companding model [151].
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In the DPCM system given in Figure 9, the reconstructed
speech signal X is determined by

x[n] =a-x[n-1]+ y*[n], (5)

where y* denotes the output of the adaptive quantizer,
whereas n denotes the n-th sample of the signal. It can be
noted that the value of parameter a depends on the nature of
the input signal. If an input signal is highly correlated, it is
preferred to use values close to 1 (e.g., a=0.8), whereas
values close to zero are preferred for lowly correlated signals
(e.g., a=0.3). However, the choice of parameter a is not an
easy task even if adaptation is applied. The determination of
linear predictor coeflicients can be done using methods that
are based on statistical learning such as least mean squares
(LMS) estimation method [155]. LMS search algorithm
reduces distortion by adapting coefficients for each input
sample, and its main features, which attract researches, are
low computational complexity, proof of convergence in
stationary environment, unbiased convergence in the mean
to the Wiener solution, and stable behaviour when imple-
mented with finite-precision arithmetic [156]. Moreover,
coeflicients of linear predictor as well as determination of
other important parameters for quantizer design may be
determined by exploiting artificial neural networks or re-
gression methods.

5. Conclusions

This review article has provided an overview in the recent
development of speech technologies and other scientific
areas related to them, mostly due to the development of the
new machine learning paradigm, which has had a tre-
mendous impact in this domain. Apart from natural speech
production and speech perception, understanding of cog-
nitive aspects of speech communication is very important
for future HCI systems including both spoken language
understanding and generation as language technologies. The
machine learning paradigm has had a great impact on au-
tomatic speech recognition (ASR) and text-to-speech syn-
thesis (TTS) as basic speech technologies. It is expected that
ASR systems based on deep learning and adaptive algo-
rithms in the near future will be able to recognize sponta-
neous speech in complex acoustic environments, with the
accuracy that will surpass the corresponding ability of
humans. Synthetic speech has already reached such quality
that is hard or impossible to differentiate from human
speech. With flexibility of changing speaker and style, HCI is
becoming as pleasant and natural as human-human in-
teraction. Unsupervised and reinforcement-based machine
learning algorithms will also develop further, which will, in
turn, bring about progress in areas where large data sets are
not available, as is the case in speech analysis for speech
recognition and synthesis for under-resourced languages. A
short overview of speech coding techniques and of current
progress in adaptive scalar quantization has been presented
as the quality of digitized and compressed speech signal is
important for accurate automatic speech signal detection
and synthesis. Although these techniques can be designed to
be robust in a wide dynamic range of speech signal

Computational Intelligence and Neuroscience

variations, or to be frame-adaptive, one can anticipate that
machine learning tools of increasing popularity will lead to
novel solutions, which will improve performances of various
systems by adapting predictive coeflicients. To conclude, we
are witnessing an increasingly fast progress in the field of
speech signal processing due to machine learning para-
digms, and it appears very hard to predict what they will
bring about next and how soon that can be expected.
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