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Speech Vision: An End-to-End Deep
Learning-Based Dysarthric Automatic

Speech Recognition System
Seyed Reza Shahamiri

Abstract— Dysarthria is a disorder that affects an individ-
ual’s speech intelligibility due to the paralysis of muscles
and organs involved in the articulation process. As the
condition is often associated with physically debilitating
disabilities, not only do such individuals face communi-
cation problems, but also interactions with digital devices
can become a burden. For these individuals, automatic
speech recognition (ASR) technologies can make a signif-
icant difference in their lives as computing and portable
digital devices can become an interaction medium, enabling
them to communicate with others and computers. How-
ever, ASR technologies have performed poorly in recog-
nizing dysarthric speech, especially for severe dysarthria,
due to multiple challenges facing dysarthric ASR systems.
We identified these challenges are due to the alternation
and inaccuracy of dysarthric phonemes, the scarcity of
dysarthric speech data, and the phoneme labeling impreci-
sion. This paper reports on our second dysarthric-specific
ASR system, called Speech Vision (SV) that tackles these
challengesby adoptinga novel approach towards dysarthric
ASR in which speech features are extracted visually, then
SV learns to see the shape of the words pronounced
by dysarthric individuals. This visual acoustic model-
ing feature of SV eliminates phoneme-related challenges.
To address the data scarcity problem, SV adopts visual data
augmentation techniques, generates synthetic dysarthric
acoustic visuals, and leverages transfer learning. Bench-
marking with other state-of-the-art dysarthric ASR consid-
ered in this study, SV outperformed them by improving
recognition accuracies for 67% of UA-Speech speakers,
where the biggest improvements were achieved for severe
dysarthria.

Index Terms— Dysarthria, dysarthric speech recognition,
deep learning, synthetic speech.

I. INTRODUCTION

D
YSARTHRIA is a neurological motor speech disorder

characterized by an individual’s loss of control of their

motor subsystems [1]. Symptoms of dysarthria can vary sig-

nificantly depending on the underlying cause and severity

that may result in speech produced be moderately slurred or

severely unintelligible as the disease progresses [2].
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Since dysarthric speech can be significantly unintelligi-

ble [3], a typical audience may face difficulties communicating

with dysarthric speakers unless s/he has prior experience with

such individuals. This substantially affects the abilities of

dysarthric speakers in communicating with normal speakers.

Furthermore, dysarthria can often accompany neurological

conditions; thus, many people with dysarthria are also physi-

cally debilitated, which means interfacing with digital devices

and computers via mouse, keyboard, and touchscreen may

be challenging or impossible. For such individuals, automatic

speech recognition (ASR) technologies can be a desirable

alternative to enable them to interface with digital devices or

become a communication intermediary [4]; ASR technologies

can significantly improve the quality of life of dysarthric

individuals via their applications in Augmentative/Alternative

Communication (AAC) tools.

Dysarthria may significantly affect how phonemes are

pronounced by dysarthric individuals, especially in server

dysarthria, making dysarthric speech quite different from

normal speech. The phonemes pronounced by the affected

individuals can be highly imprecise, with pitch pauses in

vocalic segments and consonants’ production inaccuracies.

These alternations may also mask the discriminative acoustic

attributes that ASR systems rely upon to recognize phonemes.

Furthermore, because the effects of the disability vary from

one subject to another, speech variations among dysarthric

speakers are significantly more than normal speech. These

differences make acoustic modeling components in standard

ASR systems ineffective in mapping dysarthric speech signals

to phonemes correctly; they need to deal with challenges

caused by unusual and imprecise phonation, tempo and speed

inconsistencies, sonorants random shifting of formant fre-

quencies, etc. Thus, normal speech recognition systems have

shown poor performance in recognizing dysarthric speech [5].

A review conducted in [6] suggests that while state-of-the-art

normal ASR systems perform well on mild dysarthria, the per-

formance degrades significantly as the condition worsens. The

study shows how various characteristics of dysarthria at dif-

ferent severity levels affect the performance of standard ASR

systems and reported the Word Error Rate (WER) measure

was very high for the most severe cases.

Hence, tackling the dysarthric ASR problem requires

speech recognition systems specially designed to recognize

dysarthric speech. Studying the literature shows multiple
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attempts to design dysarthric-specific ASR systems; however,

these systems still often perform poorly, especially for severe

dysarthria, since they mostly adopt standard acoustic mod-

eling approaches used in normal ASR systems that rely on

identifying phoneme sequences. Additionally, the increased

variability of speech associated with dysarthria means building

a dysarthric ASR requires significantly more dysarthric speech

samples than building a normal ASR. The increased data is

necessary for the ASR systems’ acoustic models to compre-

hend dysarthric speech better and deal with the variability

of dysarthric speech and phoneme alternations and masking

issues. Nonetheless, this is not the case since the research

community has a very limited amount of dysarthric speech

data available to create accurate ASR systems because the

subjects are not capable of producing enough data as their

speech production muscles are also weakened, resulting in

physical fatigue and frustration when they try to talk for longer

periods.

In addition, since the subjects are typically not capable

of producing accurate sounds, labeling the phonemes for

dysarthric speech can be challenging and inaccurate. Although

modern end-to-end deep learning ASR models do not require

phoneme-level labeling given there are sufficient data available

for them to learn, dysarthric ASR systems do not benefit

from this advantage duo to the data scarcity problem. Conse-

quently, any attempt to design dysarthric ASR should consider

solutions to overcome 1) the alternation and imprecision of

phonemes in dysarthric speech, 2) the scarcity of dysarthric

speech data, and 3) the dysarthric speech phoneme labeling

inaccuracy. This paper reports on our progress to develop our

second dysarthric-specific ASR system, called Speech Vision

(SV), which continues from our first attempt published in 2014

[7]. This new system benefits from deep learning advance-

ments, data augmentation, and synthetic speech generation

ever since we developed our first system and addresses the

challenges mentioned above.

SV is a whole-word, isolated speech dysarthric ASR.

Instead of using a standard acoustic modeling component

to recognize the sequence of phonemes, SV adopts a novel

approach towards speech recognition in which speech features

are presented visually. SV then learns to see the shape of the

words pronounced by dysarthric individuals using our deep

2-dimensional Spatial Convolutional Neural Network (S-CNN)

and recognizes individual words. It adopts visual data aug-

mentation techniques to augment the available dysarthric

speech data during training to help with tackling the data

scarcity problem. We also applied transfer learning to max-

imize the effects of learning from healthy speech-visuals and

transfer that knowledge to dysarthric speech without relying

on sound-specific information, which further improved SV’s

odds with the limited dysarthric data available.. Furthermore,

we experimented with speech generation systems to reconfig-

ure a text-to-normal-speech system to produce dysarthric syn-

thetic speech and used these extra speech samples during SV’s

training. Finally, because SV does not operate by recognizing

phoneme features, it is not affected by the difficulties asso-

ciated with the dysarthric speech phoneme labeling. SV has

been verified in detail and compared to other related dysarthric

ASR systems in the literature.

II. RELATED WORK

This section surveys the state-of-the-art, dysarthric-specific,

English ASR systems published in the literature. To avoid

redundancy, we excluded reviewing those works we already

reviewed in [7], [8].

Our first attempt to design a dysarthric ASR started with

studying how to best present dysarthric speech features and

finding the most effective MFCC setup [8]. The findings of

that study were then used to design our first system that bene-

fited from an active learning theory called multi-views multi-

learners (MVML), in which several learners were used to

distribute the complexity of pattern recognition problems [7].

We developed a dysarthric multi-networks speech recognizer

(DM-NSR) based on a realization of MVML using an array

of artificial neural networks (ANNs) capable of improving

the tolerance of dysarthric speech. Trained on a vocabu-

lary of 25 common words from UA-Speech dataset [9], the

DM-NSR delivered considerable efficacy improvements over

the baseline system across all severity levels of dysarthria.

Nevertheless, the data scarcity problem resulted in a sharp

accuracy reduction when we attempted to increase the vocab-

ulary size since a speech recognition task’s difficulty increases

linearly as the vocabulary size gets larger [10], [11]. The

limitations of DM-NSR led to the development of Speech

Vision.

Between the development of DM-NSR and Speech

Vision, there have been few other attempts to design

dysarthric-specific ASR. The first attempt is [12], in which

a whole-word speaker adaptive dysarthric ASR was designed

and evaluated on UA-Speech speakers with a vocabulary

size of 155 words. Based on whether an ASR system is

open-set or closed-set speaker, ASR tasks are categorized into

three categories. The first category is speaker-dependent (SD),

in which the ASR is trained to recognize a specific speaker’s

speech. The second category is speaker-independent (SI),

where the ASR recognizes speech uttered by any speaker, even

if speakers’ data were not given to the ASR during training.

With speaker-adaptive (SA) ASR, a speaker-independent ASR

is typically customized to learn the acoustic features of a

specific speaker. With dysarthric ASR, SD and SA approaches

are more favorable due to the increased speech variability

between different dysarthric individuals and the existing data

scarcity problem significantly impacting the performance of SI

dysarthric ASR. Among SD and SA dysarthric ASR, SA seems

to be more on-demand lately as the SI system can be initially

trained using normal speech and then adopt to individual

speakers with dysarthria [5].

The study conducted in [12] investigated the best baseline

SI system to design an adaptive dysarthric ASR. It then

proposed a hybrid adaptation approach based on maximum

a posterior (MAP) combined with maximum likelihood lin-

ear regression (MLLR) to adjust the Hidden Markov Model

(HMM) in the baseline ASR. Speech data were presented as

12-dimensional MFCCs in 25ms frames with a sliding window
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of 10ms, and 15 UA-Speech speakers were considered in

which block B1 and B3 utterances were used for training

and B2 for testing. Despite achieving a high absolute average

accuracy across all dysarthria severity levels for the SA

models, the study was inconclusive due to the difficulties

associated with selecting the baseline ASR. In particular,

the authors concluded that different baseline systems should

be considered for each dysarthria severity level by individually

studying dysarthric acoustic characteristics to achieve the high-

est accuracies; hence, no best speaker-adaptation strategy was

recommended. Furthermore, MAP and maximum likelihood-

based ASR systems are effective when enough training data

are available, which is not the case for dysarthric ASR [13].

Before deep learning (DL) based ASR approaches achieved

near human-level performance to recognize normal speech,

HMMs were amongst the most popular generative algorithms

in ASR tasks. As such, multiple studies tried to apply them

in developing dysarthric ASR, similar to [12]. Nevertheless,

because the speech produced by dysarthric individuals is

typically partial and incomplete, and due to the scarcity of

dysarthric data, conventional HMM-based ASR approaches

tend to perform poorly when given dysarthric speech. Hence,

some studies were more interested in hybrid HMM-based

ASR or customized HMMs. An example is a small vocab-

ulary dysarthric ASR based on Generative Model-Driven

Feature Learning in which conventional HMMs were trained

by extra features produced by log-likelihood and transition

probability Support Vector Machines (SVMs) in addition to

the 39-dimensional MFCCs [13]. The system was trained on

15 dysarthric speakers’ data provided by UA-Speech, but the

vocabulary size was only 29 words. The study concluded

that conventional HMMs did not perform well, but when

log-likelihood SVM features were considered, an overall Word

Recognition Accuracy (WRA) of 87.91% was achieved.

To improve acoustic features in dysarthric ASR, Vach-

hani et al. [14] trained autoencoders on normal speech to

enhance dysarthric speech features. The authors also applied

a severity-based tempo adaptation to modify the speech data.

Once the features were augmented, HMM-based ASR systems

were trained on UA-Speech speakers, but the authors did not

mention the vocabulary size. In another attempt, the authors

experimented with manually augmenting normal speech sam-

ples to capture dysarthric speech characteristics [15]. Particu-

larly, they manipulated the duration of normal speech samples

using both speed and tempo-based augmentation [16], creating

3,458 augmented speech samples, then trained an ASR with a

vocabulary of 19 words from UA-Speech on both original and

the augmented dysarthric speech. Nonetheless, an issue with

both of these studies is in choosing the evaluation metric used

to measure their ASR performance. Both studies evaluated

their ASR systems with UA-Speech data, but the dataset

only provides isolated word samples rather than continuous

speech samples, yet the performance of their systems was

evaluated by measuring Word Error Rate (WER). WER is

measured for word sequence tasks based on the number of

word substitutions, deletion, insertion, etc., in the prompts

recognized by the ASR, where an isolated speech ASR does

not produce a word sequence by default. However, the authors

did not explain how they trained and tested a continuous

speech ASR using isolated speech data and measured WER

instead of word recognition related metrics.

Another popular dysarthric speech corpus dataset is

TORGO [17] that contains continuous dysarthric speech sam-

ples. España-Bonet and Fonollosa [18] experimented with a

hybrid DL and HMM-based continuous speech ASR trained

on TORGO data in which different DL algorithms were

used to estimate the HMM state likelihoods. Speech fea-

tures were presented as the fusion of 13-dimensional MFCCs

with 25ms frames sliding each 15ms, Linear Discriminative

Analysis transformation that extracted 40-dimensional frame

sequences, and Maximum Likelihood Linear transformation

to calculate the vector correlations. The authors built multiple

ASR systems by selecting various DL algorithms such as the

standard fully connected dense neural networks, CNNs, and

Long Short-Term Memory neural nets. The best mean WER

was achieved with the standard neural net, which was expected

since the dysarthric data provided by TORGO solely is not

enough to train deep and complex DL models.

A similar study is [19], in which ways to improve hybrid

HMM-based dysarthric ASR on TORGO were studied. The

authors experimented with finding and fine-tuning the required

parameters of Gaussian Mixture Model (GMM) acoustic mod-

els and then applied their best performing configuration to

training DL-HMM based ASR solutions where the neural net

hyperparameters were provided by their previous study [20].

The neural net was a fully connected, dense model. The

authors reported a 17.62% relative reduction of WER com-

paring to [18] across all speakers. Unlike previous studies,

the authors reported that combining normal speech samples

with dysarthric speech reduced the recognition accuracy for

server and moderate dysarthria. Additionally, this study high-

lights the complexity of hybrid approaches where different

algorithms are used in different stages of ASR, comparing

to end-to-end DL models, as each of these algorithms needs

to be trained and fine-tuned individually while end-to-end

models are more straightforward to train; this highlight is also

consistent with the current trend of using end-to-end models

for normal ASR systems.

In another study, Takashima et al. [21] proposed another

hybrid DL-HMM-based isolated-speech ASR where the

acoustic model was a Convolutional Restricted Boltzmann

Machine (CRBM) pre-trained on normal speech. The CRBM

in this study mapped segment MFCC mel-maps extracted by

a CNN to 54 phonemes, but the authors experimented with

only one Japanese speaker diagnosed with athetoid cerebral

palsy, and the severity of the impairment was not provided in

the paper.

An AAC system composed of a continuous-speech, SD,

HMM-based Dysarthric ASR, an error correction module, and

speech synthesis system was proposed by Celin et al. [22].

In this study speech is initially recognized using the

continuous ASR then corrected using a weighted finite state

transducer (WFST) before being uttered by the synthesis

system. The ASR was trained on 10 Nemours dysarthric

speakers [23] and a Tamil corpus. The authors reported

that the inclusion of the error correction component of the



SHAHAMIRI: SV: END-TO-END DEEP LEARNING-BASED DYSARTHRIC ASR SYSTEM 855

AAC system proved to be highly effective in improving

the overall performance.

The latest attempt at the time of this writing is[24], where

a comparison between MFCCs, mel-frequency spectral coef-

ficients, and perceptual linear prediction features extraction

approaches was made to develop a dysarthric phoneme recog-

nition system. Then, another comparison was made between

CNN and Long-Short-Term Memory neural architectures

and benchmarked with the conventional GMM-HMM-based

approaches. This study presented a dysarthric phoneme recog-

nizer trained and evaluated using 11 Nemours dysarthric

speakers, and the authors reported the CNN trained with

perceptual linear prediction features to recognize 44 phonemes

achieved the highest accuracy of 82% for mild dysarthria.

Although the results presented in this study is comprehensive,

this study and other similar ones that rely on phoneme

recognition or mapping to recognize dysarthric ASR do not

address the dysarthric ASR issues mentioned before as they

still need to rely on ambiguous and inconsistent dysarthric

sounds and require phoneme labeling until the data scarcity

problem is addressed. On the other hand, our proposed solution

is not affected by these limitations, as explained in the next

section. It is pertinent to note that[24] was excluded from our

comparative study since a compete ASR was not proposed,

and the phoneme accuracy measured was not comparable to

WER or WRA – two criteria usually used to evaluate ASR

efficacy.

III. SPEECH VISION (SV)

SV is a whole-word and isolated speech, deep learning ASR

system specifically designed to recognize dysarthric speech

that considers all three challenges highlighted in section 1.

SV is explained in detail here.

A. Dysarthric Speech as Voicegrams

As explained before, the unreliability of phonemes uttered

by dysarthric individuals is one of the reasons making conven-

tional acoustic models representing the correlation between a

speech signal and phoneme sequences inaccurate when given

dysarthric speech. To overcome this challenge, we investigated

other ways to present speech without relying on phoneme

information solely. In this investigation, we were more inter-

ested in visual representations of speech so that visual-data

augmentation approaches could also be leveraged to deal with

the dysarthric acoustic data scarcity problem. To achieve this,

we studied whether there are correlations between the shapes

of dysarthric speech samples pronouncing the same word;

such correlations could be learned via shape detectors such

as CNNs.

During this investigation we realized that some correlations

exist in voicegrams extracted from different dysarthric utter-

ances of the same word. A voicegram is the visualization of

spectrum frequencies and their dynamics over time, presented

as a heat map. Fig. 1 depicts examples of waveforms and their

voicegrams for two dysarthric speech samples, one pronounc-

ing the word “Command” and the other “Word” by two differ-

ent dysarthric speakers from UA-Speech. The colors seen on

Fig. 1. Waveform and voicegram comparison.

the voicegrams in Fig. 1 indicate the intensity of the frequency

at a specific time, with blue being low and yellow being high.

As can be seen, the shapes created by the heat maps are similar

for each word, while the same cannot be seen between the

waveforms. These similarities are interesting: we expect to

see similarities between phoneme-level voicegram shapes in

normal speech. In contrast, since dysarthric phonemes tend to

be inaccurate, their phoneme-level voicegrams have different

shapes, which should have resulted in different word-level heat

map shapes in return. However, this is not the case, as can be

seen in Fig. 1.

Additionally, the presence of intense noise in utterance

M08_B1_CW29 is obvious in the waveform of the signal

but not in the voicegram that may facilitate the denoising

tasks sometimes required to pre-process speech before fed to

ASR. It is pertinent to note that the background noise (that

exists in UA-Speech samples in varying degrees) is the reason

for the greenish background instead of deep blue in Fig. 1

voicegrams.

Thus, unlike other prominent speech recognition systems

in which recognizing phonemes is the core of their acoustic

modeling, SV operates by extracting the speech features

visually and learning to see the shape of the words

pronounced by dysarthric speakers. To put it differently,

instead of mapping speech signals to a sequence of phonemes

and then use a language model and decoder to find the

likelihood of the phoneme sequences presenting words,

SV extracts word-level voicegrams for the given speech

signals and visualizes them as RGB images highlighting

the words’ shapes. Then, taking advantage of this visual

representation, SV perceives dysarthric speech recognition

as a word-shape-detector and uses our deep 2-dimensional

Spatial Convolutional Neural Network (S-CNN) to learn and

recognize the shapes of the words pronounced by dysarthric

speakers.
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B. Deep 2-Dimensional Spatial Convolutional Neural
Network

Fig. 2 depicts the structure of the S-CNN. The input voice-

gram RGB images are resampled to 150 × 150 pixels before

being fed to the network. The network is composed of eight

convolutional layers in four sets, which each set is followed

by a max pooling layer with pool size 2×2. The convolutional

layers started with applying 32 filters that were gradually

increased to 256 filters in the last set.

Because the ratio of available data to the number of distinct

classes (i.e., the vocabulary of 155 words) was quite small,

SV faced a significant overfitting problem during our initial

experiments. To resolve overfitting, Spatial 2D Dropout reg-

ularization [25] with a relatively large drop rate was applied

in each set of convolutional layers to minimize the network’s

memorability and emphasize on generalizability instead. The

main difference between standard dropout and spatial dropout

is the latter drops the entire 2D features maps extracted from

the voicegrams instead of individual pixels selected randomly.

However, the last max pooling layer is followed by a standard

dropout layer. The drop rate for all layers was set to 50%.

The activation function for all convolution layers was ReLU,

but the output layer was softmax to promote one-of-many clas-

sification. The loss function was Categorical Cross Entropy,

and the optimizer was ADADELTA [25]. The training data

were given to the network in batches of 256 samples. The

optimizer needed to adjust 1,877,403 trainable parameters.

The configuration and hyperparameters were selected via grid

search in which multiple setups were trialed, and then the

best performing one was selected. The network was designed

in TensorFlow and Keras.

C. Voicegram Data Augmentation

Addressing the scarcity of dysarthric data problem, we uti-

lized visual-data augmentation [26] to create more voicegrams

based on the existing speech data available during training.

In particular, using this technique, we were able to artificially

increase the number of training samples by creating modified

versions of the voicegrams. The new images were created

by shifting the width of voicegrams, sheering, and zooming

through them.

D. Synthetic Dysarthric Speech Data Generation

In addition to the data augmentation explained above,

SV also adopts normal-speech generation techniques to recon-

figure a text-to-speech system trained to produce synthetic

dysarthric speech samples. We experimented with Tacotron

2 [27], Ryuichi Yamamoto’s implementation of Deep Voice

3 [28], and DC-TTS [29]. The first two systems did not pro-

duce naturally sounded dysarthric speech as they either needed

more dysarthric samples to learn acoustic characteristics of the

speakers or required significantly longer training time. Hence,

DC-TTS was selected for this task; the system was initially

trained on control speech and then fine-tuned to produce

dysarthric speech leveraging transfer learning and neuron

freezing. Several configurations of DC-TTS were considered

and used to produce synthetic dysarthric speech, then a Mean

Opinion Score (MOS) analysis was conducted to rate the

naturalness of the generated dysarthric speech and how similar

the generated speech was to the original dysarthric speaker.

The configuration with the highest average MOS was then

chosen to produce synthetic voicegrams, and in conjunction

with the original dysarthric speech augmented voicegrams,

used to train SV.

E. Transfer Learning

Transfer learning is a machine learning technique where

learning in a new task is accelerated by transferring knowl-

edge from a related task. In deep learning, transfer learning

happens when the knowledge learned by a model trained on

a different dataset, usually with sufficient or more training

data, is re-trained for another dataset; however, some trainable

hyperparameters and neurons are usually frozen to preserve

the knowledge obtained from the original dataset [30]. Speech

Vision utilizes this technique to maximize the benefits of

the control data (i.e., speech data collected from normal

speakers uttering the same vocabulary) and further address the

scarcity of dysarthric data. During this procedure, SV learns

the basic acoustic-visual features of words in the vocabulary

and then refines its knowledge when presented with dysarthric

voicegrams. This was achieved by initially training the S-CNN

shown in Fig. 2 using the speech data collected from 12 nor-

mal speakers provided by the dataset (explained in the next

section), while speech samples collected from one speaker

were employed to validate the control-model. During this

initial phase, no impaired speech sample was given to the

model.

While using control data to pre-train ASR is a common

practice in dysarthric ASR, SV freezes some neurons to ensure

the overall word-shape-knowledge acquired by the S-CNN

is not forgotten during the dysarthric refinements. Once the

control-model was trained, we proceeded with applying trans-

fer learning and re-training the model with the impaired speech

samples during which the synaptic weights and biases of the

top three sets of convolutional neurons were frozen so that

only the hyperparameters of the last set were adjusted to

learn dysarthric speech patterns. Freezing layers informs the

network’s optimization algorithm not to alter or update the

hyperparameters of the frozen neurons and forces the S-CNN

to move towards minimizing the loss function by only adjust-

ing the hyperparameters of the unfrozen neurons. In addition,

the drop rate was increased to 70% to further protect the

network from overfitting due to the limited availability of

dysarthric voicegrams – this increase of the drop rate only

reflected on the unfrozen layers since the rest of the layers

were non-trainable. Fig. 3 illustrates which layers were frozen

during Speech Vision’s transfer learning step. The blue layers

were frozen, i.e., non-trainable, while the green layers were

trainable.

IV. EXPERIMENTS

A. Materials and Participants

Produced by the University of Illinois, UA-Speech [9]

contains speech samples collected from 19 dysarthric subjects
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Fig. 2. The S-CNN architecture.

Fig. 3. Speech vision transfer learning.

with different speech intelligibility levels from as low as 2%

to 95%. Speech intelligibility is the proportion of one’s speech

that can be comprehended by a normal listener, which is

commonly used to present the severity of dysarthria in affected

individuals [31]. Each subject was asked to utter a collection

of commonly used words such as yes, no, up, down, etc., and

each word was recorded individually. Furthermore, the dataset

provides utterances of the same words obtained from 12 nor-

mal speakers as the control data. We utilized the utterances

of 15 UA-Speech dysarthric speakers shown in Table I, and

the vocabulary size was set to 155 words composed of the ten

digits, 19 computer commands, 26 radio alphabets, and one

hundred common words. However, the dataset did not supply

TABLE I

UA-SPEECH DYSARTHRIC PARTICIPANTS

speech samples from the other four dysarthric speakers, so we

could not consider them in this study.

The speech samples were recorded using a multichannel

microphone array setup, and the speakers repeated each word

three times; hence, three blocks of recordings per speaker are

provided by UA-Speech. Each block contains seven wave files

of the vocabulary words corresponding to a different record-

ing channel. We applied blocks B1 and B1 audio samples

(2179 utterances) to train each speaker model and then block

B3 samples (1085 utterances) to test them.

B. Control-Model Training

Speech Vision was initially trained as a speaker-

independent, whole-word ASR trained on the control data

provided by eleven normal speakers from UA-Speech. The

verification of this model was done by all utterances col-

lected from UA-Speech control subject CM06, a male normal

speaker. The best performing model delivered the training loss

of 0.27 with 92% accuracy, and SI validation loss of 0.55 with
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Fig. 4. Control-model training performance.

TABLE II

PROMPTS USED DURING THE MOS ANALYSIS

85% accuracy given that CM06 speech was unforeseen for the

model. This model was saved as the control-model and used to

train the dysarthric SD models via the transfer learning proce-

dure explained before. Fig. 4 portrays the training performance

of the control model.

C. Generating Synthetic Dysarthric Speech and MOS
Analysis

In order to identify the best configuration of DC-TTS

transfer learning to generate synthetic dysarthric speech,

we experimented with freezing different neural components

of DC-TTS. DC-TTS is composed of multiple modules with

various layers, such as convolution, highway, deconvolution,

and CharEmbed layers. Each module’s layers can be individ-

ually frozen, so their weights remained unchanged during the

transfer learning procedure with the dysarthric speech samples.

After the initial screening, five different configurations were

shortlisted, and for each configuration, three sets of phrases

were generated, as shown in Table II. Set A contained three

sentences that the model saw during training, whereas sets

B and C had three prompts that were unforeseen for the

model during training. Set B’s prompts were all isolated words

to evaluate the model’s single word generation performance.

The references to these prompts were supplied by TORGO

dataset [17] but omitted during training. The prompts from

set C were selected from Harvard Sentences dataset [33] to

gauge the model’s performance across various sounds, but

there was no corresponding dysarthric ground truth sample

for these prompts as they were external to TORGO.

Ten participants were invited to rate the generated dysarthric

speech from each model configuration based on the prompts

in Table II. As these participants had no dysarthric speech

experience, a few samples from the original training data

were played to help them better understand dysarthria. The

participants were then asked to judge each generated synthetic

dysarthric sample on two criteria: naturalness and similarity.

Naturalness was defined for them as to how ’human’ the

Fig. 5. Synthetic voicegram versus the original.

samples sounded, where a robotic sounded sample would score

lower for naturalness. For ’similarity’, the criterion was how

the generated samples were similar to the original reference

speaker (for sets A and B prompts). The generated sample

should capture the typical speech characteristics of the speaker

(i.e., pronunciation) as well as the dysarthric characteristics

(for example, slurring, breathiness, and nasality). The ground

truth samples for sets A and B were played alongside the

generated samples to help with the comparison.

The best MOS scores were achieved when the last eight

layers of each DC-TTS module were re-trained, but the rest

remained frozen. Thus, this model was selected to generate the

synthetic dysarthric speech samples from UA-Speech to train

Speech Vision. Particularly, we re-trained DC-TTS for each

dysarthric speaker in Table I separately, then used the trained

model to produce synthetic speech for the entire 155 words

in the vocabulary, adding one extra sample per word-speaker.

Fig. 5 compares a sample of the generated voicegram with

the original one for UA-Speech speaker F05 pronouncing

“Charlie”.

D. Speech Vision Dysarthric Training

Production of the dysarthric speaker adaptive models was

done in two steps in which 30 SA versions of SV were

produced. First, 15 SA versions of SV for each dysarthric

speaker mentioned in Table I were generated, during which

only the original data supplied by UA-Speech were used to

train the models. Next, the generated synthetic speech data was

also included in the training data in addition to the original

blocks B1 and B2 dysarthric utterances, and then another

15 SA models were re-trained from the control-model and

re-evaluated. This procedure was performed to measure the

impact of the synthetic data on SV’s performance. In both

steps, the transfer learning procedure mentioned in section

III.E was considered in which the control-model neurons were

frozen, then the training of the model proceeded with the

dysarthric speech data.

V. RESULTS AND DISCUSSION

A. Speech Vision Dysarthric SA ASR Results

Table III provides the testing results obtained from SV

trained with each dysarthric speaker’s data, including and

excluding the synthetic data. As can be seen, the inclusion of

the synthetically generated dysarthric speech improved SV’s

accuracy for 14 out of 15 dysarthric speakers comparing to

those experiments in which only original utterances were used
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TABLE III

DYSARTHRIC SPEECH VISION TESTING RESULTS

during training. The biggest improvement was for speaker

M12 where an improvement of WRA 6.13% was achieved

while the minimum improvement was 0.53% for speaker M10.

WRA was defined as the ratio of correctly recognized words

for each speaker model to the vocabulary size. The aver-

age improvements for each intelligibility levels were 5.54%,

5.31%, 3.8%, and 1.1% for very low, low, mild, and high

intelligibility, respectively, which demonstrates better efficacy

for dysarthric speakers with speech intelligibility of less than

60% with an average improvement of 5.4%. Specifically,

severe dysarthria’s improved performance is consistent with

the similar experiments reported in the literature [15], [32].

Overall, using the synthetic dysarthric voicegrams delivered

an absolute average WRA improvement of 3.60%.

Nonetheless, using the synthetic data did not significantly

improve SV’s performance for mild dysarthric severity with

high speech intelligibility. In this category, the best WRA

improvement was 2.15% for speaker M09, with an aver-

age improvement of 1.1%. The speaker who did not show any

improvement was F05, classified as having mild dysarthria.

After listening to her speech samples provided by the dataset,

we noticed that this speaker was highly intelligible and

almost indistinguishable from normal speech. For this speaker,

SV already achieved a 94.41% accuracy without the extra

synthetic data; hence, we believe there was little to be gained

by adding the additional generated samples. It is possible that

the adverse effects of having synthetic utterances may have

outweighed the benefits of adding the extra samples to the

training set.

B. Performance Comparative Study

To select the baseline systems and benchmark SV’s perfor-

mance, the following conditions were set: 1) being whole-word

and isolated speech dysarthric ASR, 2) the same dataset

and speakers were considered, 3) a vocabulary size of at

least 100 words was adopted, and 4) WRA was measured

for each speaker. Thus, the dysarthric ASR systems in [12]

(aka Baseline #1) and [33] (aka Baseline #2) were selected

that can be directly compared with Speech Vision, although

the vocabulary size in [33] was larger than SV and Base-

line #1. Other dysarthric ASR systems did not satisfy these

conditions; hence a direct comparison was either impossible

or not informative due to the differences in the ASR tasks,

datasets used, the performance criterion, or the vocabulary

size. Fig. 6 plots the WRAs of these benchmark systems

against SV results. It is noteworthy to mention that results

from both speaker-dependent and speaker-adaptive dysarthric

ASR experiments were provided in these baseline systems and

included in our comparative study as well. However, since

SV was initially trained on normal speech in an SI manner,

we consider SV to be a speaker-adaptive ASR.

SV delivers the highest WRAs for 67% of the speakers

compared to both SD and SA baseline systems. Between

SD baseline 1 and 2, baseline 1 delivered better results for

13 of the speakers, but SV performed significantly better than

SD baseline 1 with delivering higher WRAs for 73% of the

speakers, improving baseline 1 SD accuracies by up to 260%.

Nevertheless, baseline 1 speaker-adaptive ASR delivered the

best results for moderate dysarthria (speakers with speech

intelligibility 43% to 62%).

A comparison of the average WRAs across each speech

intelligibility level is also provided by Table IV. Instead of

mild intelligibility, SV provided the best average WRAs for

the rest of the severity levels with an average 6.12%, 6.26%,

2.67% higher average accuracy for very low, low, and high

intelligibility, respectively compared to the next best version

of the baseline systems. With respect to the absolute average

accuracy improvements, SV trained with the synthetic speech

delivered the best performance than all baselines versions.

SV performed better for mild intelligibility than baseline 2 but

did not offer better results over baseline 1.

The better results delivered by SV are because SV does not

perform phoneme recognition to recognize the words. Instead,

the visual mapping of the speech signals to voicegrams and

then to words enables the system to leverage data augmenta-

tion. Moreover, the differences between synthetic and original

speech are masked by converting the data into voicegrams,

which may further increase the synthetic data’s effectiveness.
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Fig. 6. Speech vision’s WRAs versus baseline #1 and #2.

Likewise, using a set of convolutional neurons has been

instrumental in the efficacy improvements offered by SV since

convnets learn translation-invariant patterns in the input feature

space in contrast to dense neurons that learn global patterns.

In other words, after convnets learn a certain pattern in the

input data, they can recognize it anywhere in the feature

space, whereas a dense neuron will have to learn the pattern

again if it appears at a new location. This feature of convnets

makes them more data efficient, which is a desirable attribute

given the limited availability of dysarthric acoustic samples.

Another benefit of convents is the facilitation of visual data

augmentation built-in with most DL platforms; not only it

TABLE IV

BENCHMARKING AVERAGE WRAS

helps to achieve better learning dynamics when the training

data is scarce, but it is also highly effective in maximizing the

impact of learning translation-invariant patterns.

Additionally, since SV does not require labeled phoneme

data to operate, it is more robust to the effects of the inac-

curacies of dysarthric phonemes and difficulties in labeling

them, making it easier for future studies to collect dysarthric

data to increase the vocabulary and training size. In contrast,

conventional dysarthric ASR may need to label the phonemes,

which can be tedious yet insufficient.

VI. CONCLUSION

In this study, we identified three challenges in developing

dysarthric ASR systems and proposed a system called Speech

Vision that attempts to address them. The first challenge

was due to the alternation and inaccuracy of phonemes in

dysarthric speech, making conventional ASR systems less

effective to recognize dysarthric speech. SV addresses this

issue by converting word utterances into visual-feature rep-

resentations and attempting to recognize the shape of the

words instead of recognizing phonemes. The next issue was

related to the unavailability of dysarthric speech samples,

where SV facilitates by considering three measures: 1) apply-

ing visual data augmentation approaches to benefit from the

translation-invariant learning feature of convnets; 2) gener-

ating synthetic dysarthric speech using state-of-the-art text-

to-speech technologies to have extra training samples; and

3) utilizing transfer learning and neuron freezing to learn the

basic word shapes from normal speech. The final issue we

identified was the inaccuracy and difficulties with labeling

dysarthric phonemes, which SV was immune to as it did not

rely on phoneme data to recognize dysarthric speech.

Speech Vision was evaluated in two steps: initially, it was

trained and tested by only considering the original data

supplied by UA-Speech dataset, and then generating extra

synthetic voicegrams for all vocabulary words and speakers

and use them in addition to the original data for training.

SV delivered absolute average WRAs of 61.11% and 64.71%

for the two steps experiments, respectively. Moreover, in a
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detailed comparison with other dysarthric speech recognizers

verified with the same dysarthric speakers’ data, SV outper-

formed them in recognizing mild and severe dysarthric speech

achieving state-of-the-art results.

Nevertheless, the following limitations are identified, and

future studies could investigate them to further improve SV’s

performance:

• Synthetic data generation produced the same output for

the same prompt - we could only generate one additional

sample per word for each speaker.

• SV did not deliver the best average WRA for moderate

dysarthria.

• The S-CNN architecture could be improved by the inclu-

sion of measures to minimize vanishing gradients and

representational bottlenecks.

Speech Vision’s source code is available from [34].
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