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Abstract—Advances in formulating spoken document retrieval
for a new National Gallery of the Spoken Word (NGSW) are
addressed. NGSW is the first large-scale repository of its kind,
consisting of speeches, news broadcasts, and recordings from the
20th century. After presenting an overview of the audio stream
content of the NGSW, with sample audio files from U.S. Presidents
from 1893 to the present, an overall system diagram is proposed
with a discussion of critical tasks associated with effective audio in-
formation retrieval. These include advanced audio segmentation,
speech recognition model adaptation for acoustic background
noise and speaker variability, and information retrieval using
natural language processing for text query requests that include
document and query expansion. For segmentation, a new eval-
uation criterion entitled fused error score (FES) is proposed,
followed by application of the CompSeg segmentation scheme on
DARPA Hub4 Broadcast News (30.5% relative improvement in
FES) and NGSW data. Transcript generation is demonstrated
for a six-decade portion of the NGSW corpus. Novel model adap-
tation using structure maximum likelihood eigenspace mapping
shows a relative 21.7% improvement. Issues regarding copyright
assessment and metadata construction are also addressed for
the purposes of a sustainable audio collection of this magnitude.
Advanced parameter-embedded watermarking is proposed with
evaluations showing robustness to correlated noise attacks. Our
experimental online system entitled “SpeechFind” is presented,
which allows for audio retrieval from a portion of the NGSW
corpus. Finally, a number of research challenges such as language
modeling and lexicon for changing time periods, speaker trait and
identification tracking, as well as new directions, are discussed in
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order to address the overall task of robust phrase searching in
unrestricted audio corpora.

Index Terms—Accent classification, broadcast news, document
expansion, environmental sniffing, fidelity, fused error score, in-
formation retrieval, language modeling, model adaptation, query
expansion, robust speech recognition, robustness, security, speech
segmentation, spoken document retrieval, watermarking.

I. INTRODUCTION

T
HE problem of reliable speech recognition for spoken

document/information retrieval is a challenging problem

when data is recorded across different media, equipment, and

time periods. In this paper, we address a number of issues

associated with audio stream phrase recognition, copyright/wa-

termarking, and audio content delivery for a new National

Gallery of the Spoken Word (NGSW) [1]. This is the first

large-scale repository of its kind, consisting of speeches, news

broadcasts, and recordings that are of significant historical con-

tent. The U.S. National Science Foundation recently established

an initiative to provide better transition of library services to

digital format. As part of this Phase-II Digital Libraries Initia-

tive, researchers from Michigan State University (MSU) and

the University of Colorado at Boulder (CU) have teamed to

establish a fully searchable, online WWW database of spoken

word collections that span the 20th century [5]. The database

draws primarily from holdings of MSU’s Vincent Voice Li-

brary (VVL) that include more than 60 000 hr of recordings

(from Thomas Edison’s first cylinder disk recordings to famous

speeches such as man’s first steps on the moon “One Small

Step for Man,” to American presidents over the past 100 years).

In this partnership, MSU digitizes and houses the collection,

as well as cataloging, organizing, and providing meta-tagging

information. A networked client-server configuration has been

established between MSU and CU to provide automatic tran-

script generation for seamless audio content delivery. MSU

is also responsible for several engineering challenges such as

digital watermarking and effective compression strategies [6],

[7]. The Robust Speech Processing Group—Center for Spoken

Language Research (RSPG-CSLR) (CU) is responsible for

developing robust automatic speech recognition for transcript

generation and proto-type audio/metadata/transcript-based user

search engine, which is called SpeechFind [2].

In the field of robust speech recognition, there is a variety

challenging problems that persist, such as reliable speech recog-

nition across wireless communications channels, recognition of

1063-6676/$20.00 © 2005 IEEE
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speech across changing speaker conditions (emotion and stress

[25]–[27], accent [28], [29]), or recognition of speech from

unknown or changing acoustic environments. The ability to

achieve effective performance in changing speaker conditions

for large vocabulary continuous speech recognition (LVCSR)

remains a challenge, as demonstrated in recent DARPA evalua-

tions focused on Broadcast News (BN) versus previous results

from the Wall Street Journal (WSJ) corpus. Although the

problem of audio stream search is relatively new, it is related

to a number of previous research problems. Systems developed

for streaming video search based on audio [30] or closed-cap-

tioning can be effective but often assume either an associated

text stream or a clean audio stream. Information retrieval

via audio and audio mining have recently produced several

commercial approaches [32], [33]; however, these methods

generally focus on relatively clean single-speaker recording

conditions. Alternative methods have considered ways to

time-compress or modify speech in order to give human lis-

teners the ability to more quickly skim through recorded audio

data [34]. In general, keyword spotting systems can be used

for topic or gisting1 applications. However, for phrase search,

the system must be able to recover from errors in both the user

requested text-sequence and rank-ordered detected phrase sites

within the stream. Phrase search focuses more on locating a

single requested occurrence, whereas keyword/topic spotting

systems assume a number of possible searched outcomes. Great

strides have also been made in LVCSR for spoken document

retrieval for BN in English [31], [35]–[39], German [40], [41],

Italian [42], Korean [43], Japanese [44]–[47], Mandarin/Chi-

nese [48]–[52], [57], Finnish [104], Portuguese [53], Arabic

[54], and French [55]. The American English BN corpus re-

flects a wider range of acoustic environments than many large

vocabulary corpora (e.g., WSJ, TIMIT). However, the recogni-

tion of speech in BN reflects a homogeneous data corpus (i.e.,

recordings from TV and radio news broadcasts from the 1990s,

organized into seven classes from F0: clean, to FX: low fidelity

with cross-talk). One natural solution to audio stream search is

to perform forced transcription for the entire dataset and simply

search the synchronized text stream. Whereas this may be a

manageable task for BN (consisting of about 100 hr), the initial

offering for NGSW will be 5000 hr (with a potential of 60 000

total hr), and it will not be possible to achieve accurate forced

transcription since text data will generally not be available.

Other studies have also considered web-based spoken docu-

ment retrieval (SDR) [3], [4], [56]. Transcript generation of

broadcast news can also be conducted in an effort to obtain near

real-time closed-captioning [58]. Instead of generating exact

transcripts, some studies have considered summarization and

topic indexing [59]–[61] or, more specifically, topic detection

and tracking [64]; others have considered lattice-based search

[101]. Some of these ideas are related to speaker clustering [62],

[63], which is needed to improve acoustic model adaptation

for BN transcription generation. Language model adaptation

[65] and multiple/alternative language modeling [66] have also

been considered for SDR. Finally, cross and multilingual-based

1Here, the word “gisting” refers to systems that identify the main topic or
“gist” of the audio material.

studies have also been performed for SDR [67], [68]. Advances

represented by the cited BN and SDR studies notwithstanding,

the NGSW database involves a level of complexity in terms of

the range and extent of acoustic distortion, speaker variability,

and audio quality that has not been approached in existing

research. Probably the only corpus-based study that comes

close to NGSW is one focused on Holocaust Survivors [69],

consisting of a broad range of speakers in structured two-person

interview formats.

In this paper, we introduce SpeechFind: an experimental on-

line spoken document retrieval system for the NGSW. In Sec-

tion II, we discuss the structure of the audio materials contained

in the VVL including time periods, recording conditions, audio

format, and acoustic conditions. Section III considers a brief dis-

cussion on copyright issues for NGSW. Section IV presents an

overview of the SpeechFind system including transcript genera-

tion and text-based search. Next, Section V addresses transcript-

generation based on i) unsupervised segmentation, ii) model

adaptation, iii) LVCSR, and iv) text-based information retrieval.

Section VI revisits copyright issues, with a treatment of digital

watermarking strategies. Section VII considers additional audio

stream tagging and language model concepts for next-genera-

tion SDR. Finally, Section VIII summarizes the main contribu-

tions and areas for future research.

II. AUDIO CORPUS STRUCTURE OF NGSW

Spoken document retrieval focuses on employing text-based

search strategies from transcripts of audio materials. The tran-

scripts, in turn, have reverse index timing information that al-

lows audio segments to be returned for user access. Whereas

automatic speech recognition (ASR) technology has advanced

significantly, the ability to perform ASR for SDR presents some

unique challenges. These include i) a diverse range of audio

recording conditions, ii) the ability to search output text mate-

rials with variable levels of recognition (i.e., word-error-rate:

WER) performance, and iii) decisions on what material/con-

tent should be extracted for transcript knowledge to be used for

SDR (e.g., text content, speaker identification or tracking, en-

vironmental sniffing [93], [94], etc.). For some audio streams

such as voice-mail, which normally contain only one speaker,

or two-way telephone conversations with two speakers, tran-

scription using ASR technology is possible since the task pri-

marily focuses on detecting silence/speech activity and then en-

gaging the recognizer appropriate for that speaker. However,

audio streams from NGSW encompass one of the widest range

of audio materials available today. Fig. 1 presents an overview

of the types of audio files and recording structure seen in the

audio. The types of audio include the following:

• Monologs: single speaker talking spontaneously or

reading prepared/prompted text in clean conditions;

• Two-Way Conversations: telephone conversations be-

tween two subjects that are spontaneous and could con-

tain periods with both talking;

• Speeches: audio data where a person (e.g., politician)

is speaking to an audience–primarily one talker, but

background audience noise could be present, and room

echo or noise is possible; typically read/prepared text;
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Fig. 1. Structure of i) NGSW audio recordings—speakers, microphone(s), recording media and ii) segmentation and classification, speech recognition, and
transcript generation.

• Interviews/Debates: audio streams where a person is

being interviewed by a TV or radio person. Debates

could include a moderator and/or various audience

participation (e.g., questions, applause, interruptions,

etc.); typically two speakers with spontaneous speech

in question/answer format;

• Radio/TV News Broadcasts: includes traditional news

anchor with periods of both prompted read speech, talk

radio, spontaneous speech, background music, call-in

speakers, commercials, other background audio con-

tent (e.g., office noise such as typewriter, etc.). Audio

content would come from TV or radio studio settings

(e.g., public radio such as NPR or 60 Minutes TV

show);

• Field News Broadcasts: audio content coming from

news reporters in the field (e.g., emergency or war loca-

tions, city streets, etc.); contains a wide range of back-

ground noise content of unpredictable origin. Commu-

nication channels also impact frequency content of the

audio;

• Recording Media/Transmission: audio properties

can be transformed based on the type of recording

equipment used (e.g., microphones, Edison cylinder

disks, reel-to-reel tape, cassette tape, DAT, CD, etc.)

or transmission (e.g., AM, FM , voice compression

methods—CELP, MELP, ADPCM, etc.);

• Meetings/Hearings: public formal inquiries (Water-

gate hearings, U.S. Supreme Court, etc.);

• Debates: presidential, formal and informal

(Nixon–Kennedy, Clinton–Dole, etc.);

• Historical Recordings: NASA: walk on the moon,

Nixon: “I’m not a crook,” M. L. King: “I have a

dream,” etc.

Therefore, NGSWaudio content includes a diverse range of

audio formats, recording media, and diverse time periods

including names, places, topics, and choice of vocabulary. The

following issues arise for transcript generation for SDR: Do we

transcribe commercials? Do we transcribe background acoustic

noise/events? Do we identify speakers with the text? Do we

identify from where the speakers are speaking (i.e., the environ-

ment/location)? How do we deal with errors in ASR (i.e., “dirty

transcripts”)? Since automatic transcription for such a diverse

range of audio materials will lead to significant variability in

WER, SDR employing text-based search of such transcripts

will be an important research issue to consider. For our initial

system, we focus on transcript generation of individual speech

and disable transcription production for music/commercials.

To illustrate the range of NGSW recording conditions, three

example spectrograms are shown in Fig. 2. The recordings are

(a) Thomas Edison, “my work as an electrician” [talking about

contributions of 19th century scientists; original Edison cylinder

disk recording, 1908], (b) Thomas Watson, “as Bell was about

to speak into the new instrument,” [talking about the first tele-

phone message from A. G. Bell on March 10, 1876; recorded

in 1926], and (c) President Bill Clinton, “tonight I stand before

you,” [State of the Union Address on economic expansion, Jan.

19, 1999]. These examples indicate the wide range of distor-

tions present in the speech corpus. Some of these include severe

bandwidth restrictions (e.g., Edison style cylinder disks), poor

audio from scratchy, used, or aging recording media, differences

in microphone type and placement, reverberation for speeches

from public figures, recordings from telephone, radio, or TV

broadcasts, background noise including audience and multiple

speakers or interviewers, a wide range of speaking styles and

accents, etc.

As another example, we show in Fig. 3 a summary of U.S.

Presidential speeches, consisting mostly of state-of-the-union

or campaign speeches from 1893 to the present. For each presi-

dential speech, we employed the NIST speech-to-noise ratio es-

timation scheme (STNR) to identify the mean speech and noise

decibel values. As we see from this figure, the resulting digitized

speech levels are typically near 80 dB, whereas background

noise levels can vary significantly (42–78 dB). We obtained the

STNR values for each presidential speech, which ranged be-

tween 4–37 dB. Clearly, the estimated STNR only has meaning

if frequency content is consistent, but as we see in this figure, the

estimated frequency bandwidth for early Edison cylinder disks

is about 1–2.5 kHz, whereas recordings of today are closer to

7 kHz, with AM/FM radio bandwidths in the 5–10 kHz range

(note that while the audio format is 44.1 kHz, 16 bit data, tran-

script generation uses a sample rate of 16 kHz; therefore, our

maximum bandwidth from these recordings for speech content

would have been 8 kHz). Recordings for Wilson and Hoover

were extremely noisy, with background audience and echo dis-

tortion, as well as poor scratchy recording equipment. In addi-

tion, vocabulary selection varies significantly over the 110-year
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Fig. 2. Example audio stream (8 kHz) spectrograms from NGSW. (a) Thomas Edison, recorded in 1908. (b) Thomas Watson, recorded in 1926. (c) President
William J. Clinton, recorded in 1999.

Fig. 3. Summary of presidential speeches (typically state-of-the-union addresses) from 1893 to present. Shown is each president, mean noise signal level (in
decibels) (top bars in each pair), mean speech signal level (in decibels) (bottom bars in each pair); approximate frequency bandwidth (BW) of each recording, with
an estimated speech-to-noise-ratio (STNR) varied from 4.5—37.25 dB.

period. Clearly, the ability to achieve reliable phrase recogni-

tion search for such data is an unparalleled challenge in speech

recognition.

III. COPYRIGHT ISSUES IN NGSW

When considering distribution of audio material via the

WWW, one primary logistics issue concerns copyright own-

ership. Research on watermarking digital sound is integral to

the creation of the NGSW. Most sound recordings have some

form of copyright protection under existing law. The US copy-

right Law (Title 17 of the US Code) explicitly protects sound

recordings made since 1978. Some famous speeches have been

heavily litigated. An example is Martin Luther King’s “I Have

a Dream” speech [20].

Many rights holders are willing to make their sound record-

ings available for educational purposes, but they often require

some form of technological protection to prevent legitimate

educational copies from being used for unauthorized commer-

cial purposes. The 1998 Digital Millennium Copyright Act

(DMCA) introduced penalties for circumventing technological

protections. Many in the academic community object to these

penalties because they create a contradiction in U.S. law: many
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Fig. 4. Overview of SpeechFind system architecture (http://SpeechFind.colorado.edu).

(a) (b)

Fig. 5. (a) Automatic transcript generation (SDR). (b) Statistical information retrieval (SIR).

legal “fair uses” of technologically protected works can be exer-

cised only through illegal circumvention. Audio watermarking

is a desirable technological protection mechanism because it

does not abrogate fair use rights.

There is evidence that the courts consider audio watermarks

to be a legitimate form of copyright protection. The Napster

music file-sharing case, for example, mentions both the lack of

watermarking on MP3 files and the intention to include it in the

future [19]. Watermarking is therefore not a preventative.

Prevention is attractive to those who put significant cap-

ital toward the creation of audio works and who fear the

loss of investment and future profits. However, prevention

is fundamentally inconsistent with most US copyright law,

which instead emphasizes mechanisms for redress once an in-

fringement has occurred. Watermarking facilitates redress and

represents a copyright protection technology that universities

can use without being inconsistent with their interest in and

commitment to sharing knowledge. Further treatment of copy-

right issues and fair use can be found in [7] and [21]–[24]. In

Section VI, we consider advances made in digital watermarking

for the NGSW project. For the present experimental online

SDR system, digital watermarking is employed to both protect

ownership as well as help ensure integrity of the audio content.

IV. SPEECHFIND SYSTEM OVERVIEW

Here, we present an overview of the SpeechFind system (see

Fig. 4) and describe several key modules. The system is con-

structed in two phases: i) enrollment and ii) query and retrieval.

In the enrollment phase, large audio sets are submitted for

audio segmentation and transcription generation and metadata

construction (EAD: extended archive descriptor). Once this

phase is completed, the audio material is available through the

online audio search engine (i.e., “query and retrieval” phase).

The system includes the following modules: an audio spider and

transcoder, spoken document transcriber, “rich” transcription

database, and an online public accessible search engine. As

shown in the figure, the audio spider and transcoder are respon-

sible for automatically fetching available audio archives from

a range of available servers and transcoding the heterogeneous

incoming audio files into uniform 16-kHz, 16-bit linear PCM

raw audio data (note that in general, the transcoding process

is done offline prior to being available for user retrieval). In

addition, for those audio documents with metadata labels, this

module also parses the metadata and extracts relevant informa-

tion into a “rich” transcript database for guiding information

retrieval.

The spoken document transcriber includes two components,

namely, the audio segmenter and transcriber. The audio seg-

menter partitions audio data into manageable small segments by

detecting speaker, channel, and environmental change points.

The transcriber decodes every speech segment into text. If

human transcripts are available for any of the audio documents,

the segmenter is still applied to detect speaker, channel, and

environmental changes in a guided manner, with the decoder

being reduced to a forced aligner for each speech segment to

tag timing information for spoken words. Fig. 5(a) shows that

for the proposed SpeechFind system, transcript generation is

first performed, which requires reliable acoustic and language

models that are appropriate for the type of audio stream and

time period. After transcript generation, Fig. 5(b) shows that

three associated files are linked together, namely i) the audio
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(a) (b)

Fig. 6. (a) Sample web page. (b) Output web page format. (http://SpeechFind.colorado.edu).

stream in (_.wav) format, ii) the transcript (_.trs) file2 with

time-indexed locations into the audio file, and iii) extended

archive descriptor (_.ead) file that contains metadata. Each

audio stream has a reverse index word histogram (with all stop

words—“the, a, or, …” set aside) that is employed with the nat-

ural language processing text search engine. These integrated

files form the statistical information retrieval (SIR) engine.

The online search engine (see Fig. 6) is responsible for infor-

mation retrieval tasks, including a web-based user interface as

the front-end and search and index engines at the back-end. The

web-based search engine responds to a user query by launching

back-end retrieval commands, formatting the output with rele-

vant transcribed documents that are ranked by relevance scores

and associated with timing information, and provides the user

with web-based page links to access the corresponding audio

clips. It should be noted that the local system does not store the

entire audio archive collection, due to both copyright and disk

space issues. Several hundred hours of audio have been digi-

tized by MSU, and a portion is accessible via SpeechFind [see

Fig. 6(b)].

V. SPEECHFIND: TRANSCRIBING AUDIO ARCHIVES

As Fig. 4 illustrates, the enrollment phase for an audio

stream first requires audio segmentation and clustering (see

Section V-A). Having segmented the stream, speech recog-

nition is performed for transcript generation (Section V-B).

In Section V-C, we also consider advances in acoustic model

adaptation to improve transcripts for non-native and native

speakers. Finally, Section V-D considers the text-based infor-

mation-retrieval (IR) search framework.

A. Spoken Archives Segmentation

The goal of audio segmentation and classification is to parti-

tion and label an audio stream into speech, music, commercials,

environmental background noise, or other acoustic conditions.

2Note that the (_.trs) file format follows LDC Transcriber format. Adopting
this format for transcript structure is critical for future advances in sharing digital
audio content through library services.

This preliminary stage is necessary for effective LVCSR, audio

content analysis and understanding, audio information retrieval,

audio transcription, audio clustering, and other audio recogni-

tion and indexing applications. Audio archive segmentation ob-

tains manageable audio blocks for subsequent speech decoding,

as well as allowing for location analysis of speaker(s), channel,

and environmental change points to help track audio segments

of interest.

The goals of effective audio/speaker segmentation [8], [9] are

different than those for ASR, and therefore, features, processing

methods, and modeling concepts that are successful for ASR

may not necessarily be appropriate for segmentation. Features

used for speech recognition attempt to minimize the differences

across speakers and acoustic environments (i.e., speaker vari-

ance) and maximize the differences across phoneme space (i.e.,

phoneme variance). However, in speaker segmentation for audio

streams, we want to maximize speaker traits to produce seg-

ments that contain a single acoustic event or speaker, and there-

fore, traditional MFCCs may not be as effective for speaker seg-

mentation. In this section, we consider segmentation for several

features (e.g., PMVDR [10], SZCR, FBLC) and performance of

the CompSeg segmentation scheme for the NGSW audio data.

1) Fused Error Score (FES): Alternative Evaluation Cri-

terion: The goal of reliable audio stream segmentation is to

measure the mismatch between hand/human segmentation and

automatic segmentation. In ASR, an integrated measure such

as WER incorporates substitutions, deletions, and insertions.

Frame accuracy is generally used as a measure of segmentation

performance; however, it may not be the best criterion for

audio/speaker segmentation since frequent toggling between

classes results in short audio segments that are not helpful

for automatic transcription if model adaptation is used (i.e.,

longer homogenous segments are better than numerous short

segments). Equal Error Rate (EER) is another popular eval-

uation criterion in segmentation. However, the miss rate can

be more important than the false alarm rate, and the average

time mismatch between experimental and actual break points

is also important. Therefore, the proposed FES [15] combines

the three evaluation criteria of false alarm rate, miss rate, and
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Fig. 7. Block diagram of CompSeg segmentation algorithm.

average mismatch in a manner similar in principle to WER and

accuracy in ASR, as follows:

(1)

where the average mismatch is in milliseconds, and the false

alarm and miss rates are in percent. It is suggested that the FES

integrates the three criteria that are important for assessing seg-

mentation performance. It should be emphasized that this is a

suggested integrated score, and we do not mean to imply that

this is the best performance metric since other measures are

clearly possible. The hope is that by suggesting the FES, other

researchers would consider proposing alternative scoring strate-

gies.

2) Compound Segmentation (CompSeg) and Weighted GMM

(WGN) Classification: The proposed CompSeg algorithm uses

a combination of three feature sets [PMVDR (24-Dim.: 12 static

PMVDR, first 11 delta-PMVDRs, and static energy), SZCR (20-

Dim.), FBLC (1-Dim.)], resulting in a 45-dimensional set. It

applies a previously formulated T2-Mean distance measure for

segments of duration shorter than 5 sec [15], BIC model selec-

tion [12] for longer duration segments, and, finally, a novel False

Alarm Compensation post-processing routine. The block dia-

gram of the CompSeg algorithm is shown in Fig. 7. The basis for

using the Hotelling -Statistic [16], [79] for speaker segmenta-

tion is the following: If two audio segments can be modeled by

multivariate Gaussian distributions and ,

and their covariances are equal but unknown, then the only dif-

ference is the mean values reflected in the distance as

(2)

where , are the numbers of frames within each of the audio

segments, respectively. Using the statistic with BIC results

in the T2-BIC segmentation scheme [16]: an improved version

of original BIC [12] that performs segmentation 100 times faster

with higher accuracy for short duration turns of less than 2 sec.

Under the equal covariance assumption, we can use more

data to estimate the covariance and reduce the impact of in-

sufficient data in the estimation. This is why the distance

measure can detect the break point accurately. If the processing

audio window is shorter than 2 sec, even a global covariance

will suffer from insufficient estimation. We can then further as-

sume the global covariance to be an identity matrix, in which

case, we call this the Weighted Mean Distance. Therefore, the

mean can be used to detect the break point in the short pro-

cessing window ( s) efficiently. As the window grows in

duration, the covariance can be estimated more accurately, and

we can then apply BIC to detect the break points directly, as in

[12]. This summarizes the CompSeg segmentation scheme.

For audio classification, we employ a Weighted GMM Net-

work (WGN), which uses the Variance of Spectrum Flux (VSF)

or the Variance of Zero-Crosing Rate (VZCR) to weight a GMM

network classification for speech/nonspeech classification [78].

3) Segmentation With Three Alternative Features: Having

developed a new integrated evaluation criterion, we now turn to

improved features for segmentation. We consider three features

and compare them to traditional MFCCs (see [15] for further

details).

PMVDR: High-Order Minimum Variance Distortionless

Response (MVDR) provides better upper envelope representa-

tions of the short-term speech spectrum than MFCCs [13]. A

perceptual-based MVDR feature was proposed in [10], which

we consider for segmentation here (i.e., PMVDRs) that do not

require an explicit filterbank analysis of the speech signal. We

also apply a detailed bark frequency warping for better results.

SZCR: A high Zero Crossing Rate Ratio (ZCR) has pre-

viously been proposed for speaker classification [95]. We pro-

pose that a smoothed ZCR can be effective for segmentation

[15] and computed using five sets of ZCR evenly spaced across

an analysis window with no intermediate overlap. The SZCR is

the mean of the five sets for this frame.

FBLC: Although it has been suggested that direct warping

of the fast Fourier transform (FFT) power spectrum without fil-

terbank processing can preserve most information in the short-

term speech spectrum [10], we find that filterbank processing is

more sensitive than other features in detecting speaker change.

As such, the FBLC are the 20 Mel frequency FilterBank Log

energy Coefficients.

4) Feature Evaluation: For our experiments, the evaluation

data is drawn from broadcast news Hub4 1996 training data,

Hub4 97 evaluation data, and NGSW data [1]. We first consider

segmentation performance using the Hub4 ’96 training data

and the Hub4 ’97 evaluation data. Table I shows that PMVDR

can outperform MFCC on all levels (see [15] for more details).

FBLCs have very small average mismatch, implying that they
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TABLE I
SDR SEGMENTATION FEATURE PERFORMANCE. NOTE THAT (x:x%) REPRESENTS THE RELATIVE IMPROVEMENT IN FA: FALSE ALARM RATE, MIS: MISS

DETECTION RATE, MMATCH: AVERAGE MISMATCH (IN MILLISECONDS), AND FES: FUSED ERROR SCORE

TABLE II
SDR SEGMENTATION PERFORMANCE USING COMPSEG WITH IMPROVED FEATURES, AUDIO CLUSTERING, AND FALSE ALARM COMPENSATION WITH I) DARPA

HUB4-97 BROADCAST NEWS DATA AND II) SAMPLE 1960S NGSW AUDIO MATERIALS. RELATIVE IMPROVEMENT OVER BASELINE IS SHOWN AS (xx.x%)

are very sensitive to changes between speakers and environ-

ments. Because PMVDR does not apply filterbank processing,

we combine PMVDR and FBLC together. In addition, the

SZCR encodes information directly from the waveform that we

combine as well. We select the 24 features from PMVDR, all

20 features from FBLC, and one SZCR (i.e., a 45-dimensional

set). We normalize the features to zero mean and unit variance

for improved discrimination ability.

5) NGSW and DARPA Hub4 Segmentation Evaluation: The

DARPA Hub4 1997 Evaluation Data was used for segmenta-

tion performance assessment. The set contains 3 hr of Broad-

cast News data, with 584 break points, including 178 short seg-

ments ( s). CompSeg uses PMVDR, SZCR, and FBLC fea-

tures and applies -Mean measure for segments of less than

5 sec and a novel False Alarm Compensation post-processing

routine [15]. The improvement using these advances versus a

baseline system employing MFCCs and traditional BIC [12] is

shown in Table II(i). We also evaluate the CompSeg [15] algo-

rithm with a portion of the NGSW corpus [1], using audio ma-

terial from the 1960s. From Table II(ii), we see that CompSeg

effectively detects not only speaker changes but music and long

silence ( s) segments as well.

B. Spoken Archives Transcription

For SpeechFind, all speech segments are decoded with a large

vocabulary recognizer. We currently employ the CMU Sphinx3

for this task in this study. Using the Sphinx system, we em-

ployed acoustic models that contain 5270 GMMs, each of which

has 32 mixture Gaussians. Acoustic models are built using a

subset of the 200 hr of Broadcast News released by LDC in

1997 and 1998. The language model is composed of 64 K un-

igrams, 4.7 M bigrams, and 15 M trigrams. The average de-

coding speed is about 6.2 real time on a P4-1.7 GHz Linux

machine. In establishing the baseline experiments, no model

adaptation schemes were applied at this stage, and first-pass de-

coding output is used as the automatic transcriptions, although

a second-pass rescoring using a more complex language model

might produce better results.

To evaluate recognition performance, 3.8 hr of sample audio

data from the past six decades in NGSW is used as the test

data. Table III provides a summary of the audio statistics along

with WER averaged for each decade. Here, we note that av-

erage WER does not increase as we move back in time, al-

though the Out-Of-Vocabulary (OOV) rate does. Instead, the

first three decades achieve better recognition accuracy, and the

lowest WER is observed for corpora from the 1970s. This can be

attributed to the lower average SNR for the recordings used from

the 1980s and 1990s. For example, three long audio recordings

from the 1990s that contain 2681 words have an average SNR

near 12 dB, which produce WERs above 75%, whereas other

recordings with a higher average SNR of 21 dB achieve WERs

less than 25%. The average SNR of recordings from the 2000s

is relatively high, whereas the audio files are from news confer-

ences regarding the hand counting of votes for the U.S. Pres-

ident in Florida. As a result, this portion becomes transcribed

primarily as noise by the recognizer, and as much as 35% of

the overall WER is from deletions. This performance is suffi-

cient for effective spoken document retrieval; however, it is clear

that all possible methods for achieving robust speech recogni-

tion will need to be brought to bear to further reduce the WER

as the diversity of the audio materials continues to expand.

C. Model Adaptation for Automatic Transcription

From Section V-B, it is clear that advances in acoustic model

adaptation would improve speech recognition performance.

Currently, the most commonly used speaker adaptation al-

gorithms include transformation-based techniques, the most

common being Maximum Likelihood Linear Regression

(MLLR) [82], which is achieved with affine transformations,
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TABLE III
DESCRIPTION AND EVALUATION PERFORMANCE OF A SAMPLE PORTION OF THE NGSW AUDIO CORPUS (29 628 WORDS, 3.8 HR)

and Bayesian learning that includes Maximum a Posterior

(MAP) [81] scoring, which combines adaptation data with

some a priori knowledge of the model parameters. In addition,

there are also several extensions to MAP and MLLR that have

been extensively investigated in recent years. These include

regression-based model prediction (RMP) [80], Structural

MAP [84], block-diagonal MLLR [83], MAP Linear Regres-

sion (MAPLR) [86], [87], and Structural MAPLR [85], among

others (refer to the review in [88] for more comparisons).

For relatively small amounts of adaptation data, transforma-

tion-based schemes have demonstrated superior performance

over MAP due to their global adaptation via transformation

sharing. On the other hand, MAP adaptation is more desirable

for its asymptotic convergence to maximum likelihood estima-

tion when the amount of adaptation data continues to increase

[81]. However, MLLR and MAP have not shown comparable

improvements when only limited amounts of adaptation data

are available (e.g., 5 sec of adaptation data). In this study, we

consider a novel approach based on primary eignendirections

called EigMap [89].

1) EigMap and SMLEM Model Adaptation: The basic idea

of EigMap [89] is to maintain the between-class variances (i.e.,

the discrimination power) of the baseline Gaussian means along

the first primary eigendirections in a test speaker’s eigenspace.

Given the primary eigendirections of a

test speaker’s observation covariance matrix , the adapted

Gaussian means are expected to satisfy

the following relationship:

(3)

For every component Gaussian in the model , all possible

adapted means that satisfies (3) form a -dimensional

subplane in the acoustic space that is given by

(4)

Rapid model adaptation when only sparse observation data is

available requires care, since not all Gaussians in the acoustic

space will be represented in the adaptation data. A conservative

approach is to minimize the shift from the well-trained baseline

model parameters, given the constraint of no loss of discrimi-

nation power along the first dominant eigendirections in the test

speaker eigenspace:

(5)

By substituting (4) into (5) and minimizing the objective func-

tion using the Lagrange Multiplier method, the adapted mean

can be obtained from using a linear transformation

, in which is an nonsingular ma-

trix given by

(6)

and where is an identity matrix. Considering the orthog-

onality between eigenvectors, one can show that .

After transforming the baseline model mean into using (6),

the discrimination information is assumed to be mostly encap-

sulated in the first dimensions where ; hence, the

last dimensions of can be discarded. In model space, this

can be represented by setting the last rows of to zeros

(7)

and the adapted Gaussian mean is achieved through following

transformation:

(8)

From the above equation, we note that the baseline model is not

only adapted through the transformation but also compressed

with reduced Gaussian dimensions of model mean, which fur-

ther suggests that faster recognition speed can also be achieved

using the adapted model due to reduced Gaussian computations.

A number of extensions to this EigMap model adaptation

scheme have also been considered [89]. One such extension

is SMLEM, which extends the core EigMap algorithm by im-

posing a further shift in the model space to maximize the adap-

tation data likelihood. To account for the adaptation data like-

lihood, the EigMap formulation can be extended by adding a

linear bias in the test speaker’s eigenspace:

(9)

where is derived in a manner that maximizes the adaptation

data likelihood given the model . Since only the

Gaussian means are adapted, we ignore other model parameters

in the auxiliary function using the EM algorithm. Further details

concerning this extension can be found in [89].

2) Evaluations: The baseline speaker-independent acoustic

model has 6275 context-dependent tied states, each having 16

mixture component Gaussians (i.e., in total, 100 400 diagonal

mixture component Gaussians exist in the acoustic model). The

baseline system uses a feature of 39 dimensions with 13 static

cepstral coefficients plus delta and double-delta. The baseline

speech recognition system used for experiments is the CMU
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TABLE IV
WER IN PERCENT OF NON-NATIVE SPEAKERS (WSJ SPOKE3) WITH APPROXIMATELY 4.5 SEC OF UNSUPERVISED ADAPTATION DATA

TABLE V
TRANSCRIPTION EVALUATION OF SAMPLE AUDIO TEST DATA FROM THE PAST SIX DECADES AFTER UNSUPERVISED MODEL ADAPTATION USING MLLR+EIGMAP

Sphinx-3.2 recognizer. The language model is a standard 5000-

word back-off trigram. In offline multistream tree-structured

Gaussian clustering, the 100 400 component Gaussians in the

SIR models are grouped into 300 base classes, and hence, a bi-

nary tree with 599 nodes is used to represent the structural space

for each stream.

The experimental results on the WSJ Spoke3 corpus (non-na-

tive speakers) are summarized in Table IV. On average, about

4.5 sec of adaptation data was used. Due to the mismatch

between the model and test data, the averaged baseline model

WER performance is as high as 20.7%. Table IV clearly shows

that EigMap consistently improves the recognition for all

non-native speakers, with a relative improvement of 18.4%,

whereas BD-MLLR achieves a 15.9% relative improvement.

By applying SMLEM to maximize adaptation data likelihood

after EigMap, the overall relative performance is further im-

proved to 21.7%.

Next, EigMap and SMLEM are applied to NGSW data. Since

the NGSW task is a large-scale real-world task, an increased vo-

cabulary size of 64 K is used. The acoustic models are cross-

word triphones with 5270 decision tree-based tied states, each

with 32 mixture Gaussians (i.e., a total of 168 640 mixture Gaus-

sians are used). In offline multistream tree-structured Gaussian

clustering, these component Gaussians in the baseline models

are grouped into 500 base classes, and hence, a binary tree with

999 nodes is used to represent the structured eigenspace for each

stream. Acoustic models are trained using a subset of the 200 hr

of BN data from LDC (released in 1997 and 1998). The system

uses a backoff trigram language model that is composed of 64

K unigrams, 4.7 M bigrams, and 15 M trigrams.

Unlike the WSJ corpus, NGSW contains continuous raw

recordings with multiple speakers. As such, the T2-BIC seg-

mentation scheme [16] previously discussed was used to first

segment data into ideally homogenous segments of duration 35

sec or less.

Audio streams used in the evaluation from Table III are now

considered for evaluating EigMap model adaptation. In Table V,

we summarize transcription evaluations of sample audio data

from the six-decade set after employing unsupervised adapta-

tion using MLLR+EigMap. Compared with the baseline per-

formance from Table III, it is clear that transcription perfor-

mance for audio data from every decade has been uniformly im-

proved. For some decades, the relative improvement is as high

TABLE VI
(I) DESCRIPTION OF SAMPLE NGSW HISTORICAL AUDIO DATA FOR

EIGENSPACE MAPPING-BASED MODEL ADAPTATION. (II) EVALUATION OF

EIGENSPACE MAPPING USING EIGMAP AND SMLEM MODEL

ADAPTATION METHODS

as 19.6%. For audio documents with extremely noisy segments

and overlapping and indistinguishable speech such as the 1980s

and 2000s, the deletion errors are still relatively high after adap-

tation. However, the effects of these errors for the overall SDR

task can be greatly alleviated through a technique known as doc-

ument expansion (see Section V-D).

We consider sample audio streams from the 1950s and 1960s

in more detail in Table VI. The OOV rates for the recordings

varied from 2–4%. The average length of the audio blocks after

T2-BIC segmentation was 10.6 and 15.6 sec, respectively. Here,

the SegSNR score from the NIST evaluation software reflects

the level of background noise present in the audio data and helps

explain why WERs were high (e.g., some background music,

speaker variability, and acoustic noise). EigMap and SMLEM

are both effective in reducing WER over the baseline system.

MLLR achieves better performance for the 1950s than SMLEM,

and SMLEM performs better than MLLR for the 1960s audio.

Since the average segment duration is more than 10 sec, the

amount of adaptation data is more than double what was avail-

able in Table IV using WSJ data. This increased amount of adap-

tation data allows for better estimation with MLLR. The perfor-

mance is also better with WSJ data because that audio material is

noise-free. Therefore, it is suggested that when noise is present,

it may be necessary to consider both noise and speaker adapta-

tion within the model adaptation process.

D. IR Over Automatic Transcripts and IR Advances

The current SpeechFind retrieval engine is a modified ver-

sion of MG [17]. Here, the tfidf weighting scheme is replaced

with Okapi weighting [90], and several query and document

expansion technologies are incorporated. To ensure a suffi-

cient number of documents from the perspective of IR, the
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TABLE VII
DESCRIPTION OF DOCUMENT AND QUERY SETS

transcript from each recognition segment is treated as a single

document. In our case, many historical spoken documents

are typically longer than 30 min; therefore, the use of small

segments as a search unit allows for a more specific user search.

The SpeechFind web interface provides the user access to the

detected speech segments and automatic transcripts and allows

the user to preview/listen to any parts of the entire audio file

containing the original detected segments.

Table VII describes the spoken document and query sets used

in the evaluation. Here, 25 test queries were designed by an

independent human researcher, based on human transcripts, and

human relevance assessments were made based on the audio

content of the corresponding segments. For indexing, stemming

and case folding are performed, but no stop words are removed.

As our document lengths are considerably shorter than corpora

used in the IR literature, we must tune the Okapi parameters for

our task. The baseline average precision after spoken transcripts

and query normalization is 42.17%, with the best performance

achieved when and for the Okapi weighting

scheme (see Table VIII). In the following subsections, we report

our retrieval performance with experiments on the transcribed

spoken documents.

1) Spoken Transcripts and Query Normalization: An in-

herent difference exists between transcribed spoken documents

and typical text documents. Automatic transcriptions essentially

decode acoustic recordings using the most probable in-vocab-

ulary word sequences. On the other hand, text documents and

queries written by humans tend to use a simplified notation. For

example, “1960” could be widely used in human-written docu-

ments to indicate the year 1960, but it is usually not included in

either the dictionary or language models in most state-of-the-art

speech recognizers. Hence, the audio phrase will appear as

“nineteen sixty” in automatic spoken document transcripts. To

address this issue, the spoken transcripts and queries are nor-

malized in the SpeechFind system to bridge this gap. Through

a predefined dictionary of mappings between “spoken words”

and “simplified human notations,” the automatic transcripts are

filtered, which, for example, replace “N. B. C.” with “NBC.”

Using an inverse of a similar dictionary, the queries are filtered

as well (e.g., we change the query word “1st” to “first”).

a) Query Expansion Using BRF: Query Expansion (QE)

is an application that could be used to address the problem of

missing query terms directly or missing term relations indirectly

[91]. We first experiment with query expansion using Blind Rel-

evance Feedback (BRF) on the test collection. Here, we consider

explicitly adding new terms to the existing query . We sup-

pose that the top returned documents are related to the orig-

inal query in the first round of retrieval; then, expansion terms

are chosen according to their Offer Weight (OW) [91] ranking in

TABLE VIII
AVERAGE PRECISION FOR QUERY AND DOCUMENT EXPANSION

these documents. It should be noted that stop words, which are

defined in a list of 371 common words that appear in the doc-

uments, are first excluded as expansion terms. We experiment

with several pairs of and , and the results are summarized

in Table VIII. The best result achieved is 44.72% when setting

and .

b) Document Expansion Using PBRF: The idea behind

Document Expansion (DE) [92] is that given a document, first

identify other parallel documents related to those in hand,

and bring “signal” words from the related documents into the

present document. To expand spoken documents, we first run

automatic transcription of the speech document as a query on a

parallel collection, and then, the query documents are expanded

using Parallel Blind Relevance Feedback (PBRF).

The effect of document expansion largely depends on the se-

lection of the parallel text collection, which should be related

to the spoken corpus. To construct a parallel text collection for

our audio recordings, we fetch and parse related historical doc-

uments of the 20th century from the web [97]. We also include

available human transcripts from NGSW audio data for the same

period. The parallel collection contains about 150 K words.

In our experiments, we use the same scheme of BRF to ex-

pand automatic transcriptions (i.e., using the original spoken

transcriptions as the query to search over the parallel collection;

all stop words in the spoken documents are not included in the

queries). The top returned documents are assumed to be rele-

vant, and then, the expansion terms are chosen to expand the

spoken document according to their ranking in terms of a weight

scheme in these documents. Since the transcribed audio seg-

ments have considerable length variations, we make equal to

some percentage of the number of terms in each original au-

tomatic audio transcription (which achieves better performance

than picking a fixed number of terms for all spoken documents).

To rank the candidate terms, we propose the rtfrw weighting

scheme:

rtfrw rtf rw

rtf (10)

where is the Relevance Weight defined in [91], is

the number of assumed relevant documents, where the term
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occurs, is the the number of assumed relevant documents for

a query, is the number of documents in the collection where

term occurs, and is the total number of documents in the

collection; rtf is the term frequency of term in the

assumed relevant documents for a query. Candidate expanding

terms are selected based on their ranking of rtfrw weight.

Again, the stop words are excluded for expansion. Using the

rtfrw weight achieves better results than using OW in our

experiments. As shown in Table VIII, the best performance for

using rtfrw weighting is 47.58%, whereas the best performance

using OW is 43.76% {which is not shown in the table}.

After obtaining expanded spoken documents, the original

queries can also be expanded based on expanded spoken docu-

ment collections. The results of DE+QE (see Table VIII) clearly

show that appropriate choices of and can be obtained,

and the performance of DE using PBRF and QE using BRF

are additive. The combination of DE+QE achieves an average

precision of 50.59%, which is a relative 20% improvement

from the baseline precision of 42.17%.

VI. DIGITAL SPEECH WATERMARKING

As discussed in Section III, the NGSW employs SpeechFind

to search a database containing rare and valuable audio material,

the copyright to which is held by numerous individuals, estates,

corporations, and other private and public interests. Accord-

ingly, in accessing and distributing NGSW content, SpeechFind

must integrate “speech protect” watermarking technologies.

The process of embedding a digital watermark [70] perturbs

original signal content, ideally imperceptibly. Fidelity of the

original content is adversely affected by increased perturbation,

whereas the robustness [70] of the watermark to attack is gen-

erally improved by increased signal distortion. The first compo-

nent of our strategy is the class of techniques called parameter-

embedded watermarking. Parameter-embedded watermarking

is effected through slight perturbations of parametric models of

some deeply integrated dynamics of the speech. A second com-

ponent is the deployment of innovative new methods for esti-

mation of parametric models known as set-membership filtering

(SMF). SMF provides the means to identify parametric water-

marks that result in a rigorously quantified fidelity criterion. The

third component of the strategy, which is also based on SMF, re-

sults in a set-solution of watermark candidates, each element of

which adheres to the fidelity requirement. The properties of this

set solution make it possible to develop multiwatermark strate-

gies designed to guard against attacks.

A. Algorithmic Methods

1) Parameter-Embedded Watermarking: A general formu-

lation of parameter-embedded watermarking is given in recent

papers [6], [71]. Here, the signal to be watermarked (cov-

ersignal), say , is assumed to follow the linear prediction

(LP) model [72],

(11)

with coefficients and prediction residual . For a

frame to be watermarked, the LP parameters are perturbed by

an independent (known) watermark vector by direct addition or

by addition to the autocorrelation sequence for the frame.3 The

watermarked signal (stegosignal) is constructed by employing

the perturbed LP coefficients, say , and the exact pre-

diction residual in the FIR filter

(12)

Parametric watermarking was found to be robust against a wide

variety of attacks, as discussed in [6]. In particular, the technique

is highly robust to additive white noise for two reasons: First,

the solution has been shown to be asymptotically immune to

additive white noise [73], and second, the parameter estimation

process severely attenuates the noise energy in the parameter

domain with respect to the signal domain [74].

An essential feature of any digital watermarking algorithm is

security. Security refers to the ability of the technique to avert

unauthorized detection, embedding, or removal. The following

aspects of the parameter-embedding algorithm contribute to its

security: Speech frames to be watermarked can be selected ran-

domly, and the LP model order can vary across watermarked

frames. In addition, a copy of the coversignal is required for

watermark recovery. Because the prediction residual associated

with the coversignal is used for reconstructing the stegosignal,

the autocorrelation values of the stegosignal are different from

the modified autocorrelation values derived from the perturbed

LP coefficients and the prediction residual . Hence, water-

mark recovery is rendered extremely difficult without a copy of

the coversignal.

2) SMF-Based Fidelity Criterion: In [71], a general param-

eter-embedding problem was considered whose solution is sub-

ject to an fidelity constraint on the signal. This constraint can

be generalized further to allow for more “local” fidelity consid-

erations in time as the signal properties change. The SMF con-

cept [75], [76] can be viewed as a reformulation of the broadly

researched class of algorithms concerned with set-membership

identification [77]. The SMF problem is used to design systems

that are affine-in-parameters (but not necessarily in the data),

subject to a bound on the absolute error between a desired se-

quence and a linearly filtered version of another sequence. The

two sequences may be directly observed, or they may be non-

linear combinations of other sequences considered to be the

system inputs and outputs.

Formally, the SMF problem is stated as follows: Given

a sequence of observations, a “de-

sired” sequence and a sequence of error

“tolerances” , find the exact feasibility set

of filters at time

(13)

3Earlier work [6] suggested robustness benefits using autocorrelation pertur-
bations, but further experimentation has shown that the relative robustness in
LP or autocorrelation domains depends on the nature of embedded watermark
vectors.
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The solution uses a series of recursions that ultimately return

a hyperellipsoidal membership set, say , and the el-

lipsoid’s center, say . The recursions execute an optimization

strategy designed to tightly bound by in some sense. Ac-

cordingly, the broad class of algorithms employed in the SMF

problem is often called the optimal bounding ellipsoid (OBE)

algorithms (see the tutorial papers [76] and [77] for details).

The construction of a watermark set guaranteed to satisfy a fi-

delity criterion is readily solved as an SMF problem. Subtracting

from each side of (12) and then rearranging yields

(14)

A fidelity criterion is prescribed in the form of a sequence of

pointwise absolute bounds on the coversignal pertur-

bation: for each . Upon defining

the sequence , (recall that

is known), the search for the constrained watermark parame-

ters is reduced to an SMF problem, as in (13). The result of

applying the SMF estimation is the hyperellipsoidal set of wa-

termark (perturbed model parameter) candidates guaranteed

to tightly bound the exact set

(15)

3) Watermark Recovery: For the watermark recovery algo-

rithm, the LP model is used to parameterize long intervals of

stationary or nonstationary speech. However, to understand the

robustness aspects of the watermarks, it is necessary to con-

sider stationary segments of the coversignal and the stegosignal.

That is, segments of , , and, hence, are assumed

to be partial realizations of wide-sense stationary and ergodic

random processes.

Watermark recovery is effected through least-square-error

(LSE) estimation of the perturbed parameters in the

following manner. Let us rewrite the stegosignal generation

(12) as

with (16)

In principle, this system of equations taken over

is noise free and can be solved for using

any subset of equations. For generality, to smooth roundoff

and to support further developments, we pose the problem as

an attempt to compute the LSE linear estimator of the “desired”

signal given observations .

The conventional set of normal equations is solved to pro-

duce the estimate of . This formulation admits a proof

of asymptotic unbiasedness in the presence of an additive white

noise attack and the introduction of prewhitening measures to

likewise mitigate the effects of additive colored noise. Experi-

ments with a variety of attack modes are described in [6], where

it is reported that the parametric embedding is quite robust to

additive noise, MP3 compression, jitter attack, cropping, and

Fig. 8. Detection rates for correlated noise attack.

requantization. Filtering attacks are reported to be more chal-

lenging in that account. More recent efforts have concentrated

on robustness to filtering with improved results [6], [71], [73].

Because of the correlation in the noise, however, the solution is

biased asymptotically. Depending on the level of cross-correla-

tion, the LSE estimation of the perturbed coefficients, and hence

the watermark signal, may be affected. A remedy is to whiten

the noise process, in which case, the effect of noise will be sim-

ilar to the white noise attack.

To demonstrate performance, we select a 3-sec coversignal

of Thomas Edison’s speech from the NGSW [1] [a portion is

shown in Fig. 2(a)]. The signal was sampled at 44.1 kHz and

partitioned into 33 frames of 3969 samples. A watermark was

embedded into each of the frames. A fourth-order LP model was

used for watermarking, and the fidelity constraint was set so that

for each . Correlated noise of various

SNRs was added to the stegosignals. Fig. 8 shows the water-

mark detection rates versus SNR, with and without the use of

a prewhitening filter. Improved performance is observed when

prewhitening is employed.

VII. FURTHER SDR ADVANCES: INTEGRATING ACCENT

KNOWLEDGE AND LANGUAGE MODELING

It is expected that advances in speaker and acoustic analysis

will provide new directions for supplementing SDR. Here, we

consider the application of automatic accent classification to de-

tect whether an audio sequence is native (neutral) or non-na-

tive American English. We applied the framework developed in

[98] to audio files uttered by former U.S. President R. M. Nixon

(i.e., “Therefore, I shall resign the presidency effective noon to-

morrow”) and his Secretary of State H. Kissinger (i.e., “There

is no other choice Mr. President”), who is a native speaker of

German. These audio sequences were selected from a collection

on the Nixon Watergate tapes, with similar topic/word content.

We employ the proposed algorithm in [98], where the speech

utterances were converted into a stream of feature vectors (12

MFCCs and log-energy), and then tokenized into a set of phone
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Fig. 9. Accumulated likelihood difference score for neutral/accent classification for Nixon and Kissinger audio sequences.

sequence using automatic forced alignment. During the detec-

tion stage, for each speech (phoneme) segment and the cor-

responding phone-labeled , the difference score between the

neutral score and accent score is defined as

(17)

where is a log-likelihood score generated from accent-de-

pendent phone acoustic models, is a Stochastic Trajec-

tory Model (STM) of phoneme trained from Neutral Amer-

ican English speech, is an STM of phoneme trained

from accented speech, and is a set of prototype accents (i.e.,

{Chinese, Thai, Turkish}; note that we deliberately do not

include a German accent model since our focus is on open-set

accent classification). Here, we used 35 context-independent

phoneme STMs for each accent; each STM has two mixtures

and five states obtained in a similar fashion to [99]. We sug-

gest that the “min” argument should provide the smallest tra-

jectory variation score from a set of accented models. Fig. 9

illustrates the plot of the accumulated summation of difference

scores as the number of accumulated phonemes is increased,

ignoring the score for which no phoneme acoustic models were

trained. As the phoneme number increases, the accumulated dif-

ference score of the Nixon audio stream moves toward the more

positive scale (neutral English scale), whereas the accumulated

difference score of the Kissinger audio sequence moves toward

the more negative scale (accent scale). Thus, this example shows

that an accent classification system can be employed for tagging

audio streams, even when that accent is not present in the model

set (i.e., we used Chinese, Thai, and Turkish accent models).

This suggests that future transcription-based strategies could be

employed to enrich the search process by providing accent [98]

or in-set speaker [100] recognition information.

Presently, SpeechFind employs whole-word search using our

modified MG-based search engine from the resulting transcript

outputs of a large vocabulary continuous speech recognizer.

However, a number of alternative strategies are possible for

text-based search using LVCSR. For BN stories, WERs can be

low with much redundancy in the news stories, and therefore,

search for key words over longer sequences is a reasonable

approach. However, when searching for a specific string from

an audio stream in the NGSW, it is expected that the particular

text string may only occur once (e.g., the expression “I have a

dream” occurs often in the speech by M. L. King concerning

civil rights; however, the expression “One small step for man,

one giant leap for mankind” is produced only once from the

NASA transmissions from the moon). An effective approach to

address this is to use output lattices of the word sets or subword

units with weight pushing [101].

In addition to search methods, statistical language models

play a key role in SDR for a corpus such as NGSW, which

extends over 110 years. In general, for optimal retrieval perfor-

mance, the index term representation should be based on words

for which the queries and speech data can be easily mapped

[66]. Proper names are typically used for queries, but they are

difficult to recognize from speech because of pronunciation

differences and the variety of names from such a time range.

Practical issues often limit the applicable vocabulary for lan-

guage models to be 65 k words, which increase OOV words.

In [66], an experiment was performed using audio materials

from the Chicago Roundtable discussions of the 1940s and the

NGSW six-decade materials from Table III. A series of LMs
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TABLE IX
SUMMARY OF EVALUATION OF SPEECH REFERENCE TRANSCRIPTS FROM SEVEN DECADES OF NGSW. [RESULTS INCLUDE OOV RATE, PERPLEXITY

(PERPL.), AND TERM ERROR RATE (TER)]

was developed using standard back-off trigrams with inter-

polated Kneser–Ney smoothing [102], [103]. A 65 347-word

vocabulary was selected based on the most common words

in the BN and North American news texts (News) corpora.

Speech decoding was performed using the SpeechFind frame-

work using one LM at a time. LMs that were built include i)

BN with Hub4 transcriptions using 168 M words, ii) News

employs BN but also with News corpora totaling 724 M words,

iii) Old which is an LM built using the Gutenburg archives

from 1900–1920 texts and 1940s Chicago Roundtable texts

(CTT), for a total of 5.7 M words, and iv) ALL, which is a

language model using basically all the text from these sources,

for a total of 750 M words. Evaluation of LM performance was

assessed by computing the average of the inverse of the next

word prediction probability (e.g., perplexity) on data that was

left out of the LM construction. Perplexity evaluations were

performed using the SRILM toolkit [103]. The perplexity of

the four LMs ranged from 275 to 774 (see [66]), depending on

which corpus of held-out text materials was used. We consid-

ered an interpolated LM by computing a new LM out of the two

components using different interpolation weights. For this test,

we used the smaller Old (using the Gutenburg text archives and

CCT) and larger ALL language models from above. Table IX

summarizes results, where the Baseline represents the original

LM using BN data. The WER does not seem to be impacted

much by LM improvements. For speech retrieval, however, the

recovery of rare content words are more likely to influence sta-

tistical information retrieval than WER. Using the Term Error

Rate (TER), which has been suggested to be a more effective

performance measure for speech retrieval applications [39]

and represents the difference between two word histograms

(i.e., recognition result and correct transcription), we see that

the large overall LM interpolated with the small old text LM

improves perplexity and TER for the older time blocks, whereas

for more recent time blocks, the modern BN (i.e., Baseline)

model is better. This seems to suggest that focusing has an

important effect for the speech transcripts as well as for the

LM accuracy. The differences among the decades are due

mostly to different recording methods and media as discussed

in Section II. Further discussions concerning interpolated LMs

and the NGSW are found in [66].

VIII. SUMMARY AND CONCLUSION

In this study, we have addressed a number of advances in

establishing spoken document retrieval for a new National

Gallery of the Spoken Word (NGSW). We first discussed an

overview of the audio stream content of the NGSW with sample

audio files. Next, we presented the SpeechFind system, which

is an experimental online spoken document retrieval system for

an historical archive with 60 000 hr of audio recordings from

the last century. We introduced the SDR system architecture

and focused on audio data transcription and information re-

trieval components. A number of issues regarding copyright

assessment and metadata construction were discussed for the

purposes of a sustainable audio collection of this magnitude.

We considered a new segmentation performance criterion

called the Fused Error Score (FES) and evaluated three features

as alternatives to traditional MFCCs. We saw that a combined

feature set improves segmentation performance by 19.2%

over traditional MFCC-based BIC. We also evaluated these

advances using a recently developed CompSeg segmentation

method using DARPA Hub4 and NGSW audio corpora. Next,

we considered transcript generation for a portion of the NGSW

corpus and novel model adaptation using structure maximum

likelihood eigenspace (SMLEM) mapping, which resulted in a

relative 21.7% improvement over a BN-trained baseline speech

recognition system. Information retrieval over automatic tran-

scripts was considered by combining document expansion

(DE) and query expansion (QE) using blind relevance feedback

(BRF) and parallel blind relevance feedback (PBRF), which

improves average returned document precision from a baseline

of 42.17% to 50.59%. Advanced parameter-embedded water-

marking and set-membership filtering-based fidelity criterion

was proposed, with evaluations showing robustness to corre-

lated noise attacks, as well as additive noise, MP3 conversion,

jitter attack, and cropping.

SpeechFind was established as an experimental platform to

perform SDR from historical archives. In the future, the system

will be improved in a number of ways. First, the quality of

automatic speech transcripts can be boosted by improving the

baseline modeling through retraining of time-specific acoustic

models. Recent work suggests that period specific language

modeling can also help improve transcript generation [66].

Future work will include further integration of the model adap-

tation technologies, especially adapting the acoustic models

for varied background noises and speakers, and adjusting the

language models when topics and decades change dramatically.

Moreover, richer information such as accent, stress, emotion,

and speaker identification contained in spoken segments could

also be extracted and used to guide retrieval tasks. An example

was shown for accent classification using audio sequences
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from Nixon and Kissinger. Further progress in SDR could

benefit from improving IR performance. In our task, reliable

document categorization could be achieved with the help

of metadata associated with some spoken documents, (i.e.,

so-called EAD extended archive descriptor files used in library

archive services), which narrows a search and, hence, improves

the retrieval precision. Presently, SpeechFind tracks and dis-

plays EAD metadata, but research has yet to be performed to

determine the weight balance given to information contained

within EAD versus that obtained from transcript IR. In addition,

a statistical retrieval framework incorporating the uncertainty

of automatic transcripts is another interesting research topic,

which would help improve user search performance.
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