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Speed, Accuracy, and the Optimal Timing of Choices†

By Drew Fudenberg, Philipp Strack, and Tomasz Strzalecki*

We model the joint distribution of choice probabilities and decision 
times in binary decisions as the solution to a problem of optimal 
sequential sampling, where the agent is uncertain of the utility of 
each action and pays a constant cost per unit time for gathering 
information. We show that choices are more likely to be correct when 
the agent chooses to decide quickly, provided the agent’s prior beliefs 
are correct. This better matches the observed correlation between 
decision time and choice probability than does the classical drift-dif-
fusion model (DDM), where the agent knows the utility difference 
between the choices. (JEL C41, D11, D12, D83)

This paper studies the question of when early decisions are more likely to be 

correct in the classical setting of sequential information acquisition. We �nd, on 

average, agents are more likely to be correct when they decide sooner, even though 

when agents are forced to decide later they have more information. This mechanical 

effect is offset by two selection effects that come from the agent’s choice of stopping 

time. First, in a �xed decision problem, when the agent receives precise information 

the value of acquiring further information is low, and in this case the agent is both 

quick and accurate. Second, the agent is more likely to receive precise information 

in easy problems. As we show, the two selection effects combined always outweigh 

the mechanical effect of increased information, leading to decreasing accuracy over 

time.

We believe these effects are present in many economic choice problems, but we 

focus here on laboratory experiments, where decision time can be carefully mea-

sured. In these experiments, individuals are repeatedly faced with the same choice 

set and the observed choices are stochastic; individuals don’t always choose the 

https://doi.org/10.1257/aer.20150742
mailto:drewf@mit.edu
mailto:pstrack@berkeley.edu
mailto:tomasz_strzalecki@harvard.edu
https://doi.org/10.1257/aer.20150742


3652 THE AMERICAN ECONOMIC REVIEW DECEMBER 2018

same item from a given choice set, even when the choices are made only a few min-

utes apart.1 In addition, individuals don’t always take the same amount of time to 

make a given decision; response times are stochastic as well.

We restrict attention to the binary choice tasks that have been used in most neu-

roscience choice experiments, and suppose that the agent needs to choose between 

two items that we call left  (l)  and right  (r)  , and can decide how long to think about 

the choice. In this setting, we can ask how the probability of the correct choice var-

ies with the time taken to make the decision. Many such choice experiments �nd 

that accuracy decreases with decision time, in the sense that slower decisions are 

less likely to be correct (Swensson 1972, Luce 1986, Ratcliff and McKoon 2008).2

To explain this, we develop a new variant of the drift-diffusion model (DDM); 
other versions of the DDM have been extensively applied to choice processes in the 

neuroscience and psychology literatures.3 The speci�cation of a DDM begins with 

a diffusion process   Z t    that represents information the agent is receiving over time, 

and stopping boundaries   b  t  
l   and   b  t  

r  : the agent stops at time  t  if   Z t   ≥  b  t  
l   (in which 

case she chooses  l ) or   Z t   ≤ −  b  t  
r   (in which case she chooses  r ); otherwise the agent 

continues. Because the evolution of the diffusion depends on which choice is better, 

the model predicts a joint probability distribution on choices and response times 

conditional on the true state of the world, which is unknown to the agent.

Our �rst set of results relate the slope of an arbitrary symmetric boundary to 

the correlation between speed and accuracy; we show that observed accuracy will 

monotonically decrease over time in a �xed decision problem if and only if the 

stopping boundary is monotone decreasing. We then turn to our main focus, which 

is to propose and analyze the uncertain-difference DDM, which is an optimal stop-

ping problem where the agent is uncertain about the utilities  θ = ( θ   l ,  θ   r  )  of the two 

choices and pays a constant cost per unit time to observe Brownian signals of the 

true utilities. We further assume that the agent believes  θ  is bivariate normal.4 In 

this model an agent with a large sample and   Z t    close to zero will decide the utility 

difference is likely to be small, and so be more eager to stop than an agent with the 

same   Z t    but a small sample, who is less certain of her point estimates and so has a 

higher option value of continuing to sample.

Our main insight is that the speci�cation of the agent’s prior is an important 

determinant of the optimal stopping rule and thus of whether accuracy of a given 

agent increases or decreases with stopping time. In particular, we show that in the 

1 See Hey (1995, 2001); Camerer (1989); Ballinger and Wilcox (1997); Cheremukhin, Popova, and Tutino 
(2011). 

2 The choice experiments we reference elicit ordinal rankings of all of the items from the subjects before having 
them make a series of binary choices, and identify “correct” with “more highly ranked.” When these ordinal rank-
ings are not available, we would follow the revealed preference literature and say that the more-often-chosen item 
is the correct choice. This is consistent with the solution to the uncertain-difference DDM that we de�ne in this 
paper and also the perturbed utility representation of stochastic choice in Fudenberg, Iijima, and Strzalecki (2015). 

3 The DDM was �rst proposed as a model of choice processes in perception tasks, where the subjects are asked 
to correctly identify visual or auditory stimuli. For recent reviews see Ratcliff and McKoon (2008) and Shadlen 
et al. (2006). DDM-style models have also been applied to choice experiments, where subjects are choosing from a 
set of consumption goods presented to them: Roe, Busemeyer, and Townsend (2001); Clithero and Rangel (2013); 
Krajbich, Armel, and Rangel (2010); Krajbich and Rangel (2011); Krajbich et al. (2012); Milosavljevic et al. 
(2010); Reutskaja et al. (2011). 

4 Typically problems of sequential information acquisition cannot be solved in full generality, and instead vari-
ous sorts of functional forms and special assumptions are used. Many papers assume that there are only two possible 
states of the world and/or fully revealing signals. 
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uncertain-difference DDM it is optimal to have the boundary collapse to zero as time 

goes to in�nity, and moreover that it does so asymptotically at rate  1/t .5 However, 

even though the optimal stopping boundary must converge to zero, it need not be 

monotonically decreasing (which may suggest some caution in choosing “intuitive” 

functional forms) so we cannot predict that accuracy in repeated observations of the 

same choice problem must be monotone. Despite this, there is decreasing accuracy 

“in the aggregate”: an analyst who aggregates many decisions by an agent with the 

correct prior will see that accuracy declines with the time taken to make a decision. 

In addition, we show that when the agent can split its attention between the two 

alternatives, with the rate of learning proportional to the attention paid, it is optimal 

to pay equal attention to each alternative at each point in time, so that the solution is 

the same as in our original model, where the attention levels are implicitly required 

to be equal.

We then show that the functional form    b ̅  (t ) ∼ 1/(g + ht)  approximates the 

boundary and �ts very well numerically for large  t  , which lets us show that for large 

costs the boundary is essentially constant. Our �nal theoretical result shows that 

when the 
ow cost can vary arbitrarily with time, optimal stopping imposes essen-

tially no restrictions on the observed choice process.

To relate our results to the empirical literature, we show that the individual-level 

barrier of any DDM can be uniquely identi�ed from the data, and show that the 

approximately optimal boundary describes the behavior of more of the subjects than 

do either a constant boundary or one that is exponentially decreasing. Finally we 

show how to estimate the exact model using simulations of the distribution of stop-

ping times, but our limited data does not allow us to make a formal comparison of 

its �t with that of the exponential boundary.

One motivation for modeling the joint distribution of decision times and choices 

is that the additional information provided by decision times can let us rule out 

theories that predict similar choice patterns but fail to match the data on this richer 

domain. In addition, cross-individual variation in speed and accuracy on cognitive 

re
ection tasks (Frederick 2005) has been widely used to classify individuals as 

“impulsive” or “re
ective,” and more recently Baron et al. (2015) and Johnson, 

Tubau, and De Neys (2016) show that across individuals on a given task, people 

who respond more quickly are less likely to be correct. This pattern is predicted by 

our model if the impulsive agents have much higher sampling costs than the re
ec-

tive ones.6

The oldest and most commonly used version of the DDM (which we will refer to 

as simple DDM) speci�es the boundaries are constant and   Z t    is a Brownian motion 

with drift equal to the difference in utilities of the items. This speci�cation cor-

responds to the optimal stopping problem for a Bayesian agent who believes that 

5 The intuition that the boundary should converge to zero has been put forward both as a heuristic in various 
related models and as a way to better �t the data (see, e.g., Shadlen and Kiani 2013). In addition, Chernoff (1961) 
proves that boundaries collapse in a model we show is equivalent. Time-dependent stopping thresholds also arise 
if the cost, signal structure, or utility functions are time-dependent or if there is a �xed terminal date, see e.g., 
Rapoport and Burkheimer (1971), Drugowitsch et al. (2012), and Frazier and Yu (2007). 

6 In addition, there is a literature that uses reaction times and other observables to understand behavior in games: 
Costa-Gomes, Crawford, and Broseta (2001); Johnson et al. (2002); and Brocas et al. (2014). 
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there are only two states of the world corresponding to whether action  l  or action  r  

is optimal, pays a constant 
ow cost per unit of time.7

The constant stopping boundary of the simple DDM implies that the expected 

amount of time that an agent will gather information depends only on the current 

value of   Z t  ,  and not on how much time the agent has already spent observing the sig-

nal process, and that the probability of the correct choice is independent of the dis-

tribution of stopping times.8 In contrast, in many psychological tasks (Churchland, 

Kiani, and Shadlen 2008; Ditterich 2006) accuracy decreases with response time in 

the sense that reaction times tend to be higher when the agent makes the incorrect 

choice. For this reason, when the simple DDM is applied to choice data, it predicts 

response times that are too long for choices in which the stimulus is weak, or the 

utility difference between them is small. Various authors have extended the simple 

DDM to better match the data, by allowing more general processes   Z t    or boundaries   
b t    , see e.g., Laming (1968); Link and Heath (1975); Ratcliff (1978); and by allow-

ing the signal process to be mean-reverting (the decision �eld theory of Busemeyer 

and Townsend 1992, 1993; Busemeyer and Johnson 2004). However, with the 

exceptions cited in footnote 5, past work has left open the question of whether these 

generalizations correspond to any particular learning problem, and if so, what form 

those problems take.

Gabaix and Laibson (2005); Branco, Sun, and Villas-Boas (2012), and Ke, Shen, 

and Villas-Boas (2013) look at decisions derived from optimal stopping rules where 

the gains from sampling are exogenously speci�ed as opposed to being derived from 

Bayesian updating, as they are here; neither paper examines the correlation between 

decision time and accuracy. Vul et al. (2014) studies the optimal predetermined sam-

ple size for an agent whose cost of time arises from the opportunity to make future 

decisions; they �nd that for a range of parameters the optimal sample size is one.

Cerreia-Vioglio et al. (2018); Lu (2016); and Natenzon (forthcoming) study mod-

els with an exogenous stopping rule. They treat time as a parameter of the choice 

function, and not as an observable in its own right. The same is true of Caplin and 

Dean’s (2011) model of sequential search. Accumulator models such as Vickers 

(1970) specify an exogenous stopping rule; Webb (forthcoming) shows that the dis-

tribution of choices induced by these models is consistent with random utility.

I. Choice Processes and DDMs

A. Observables

Let  A = {l, r}  be the set of alternatives, which we will call left  (l )  and right  

(r ).  Let  T = [0,  +∞)  be the set of decision times—the times at which the agent 

is observed to state a choice. The analyst observes a joint probability distribution  

P ∈ Δ(A × T ) ; we call this a choice process. For simplicity we assume that  P  has 

full support so that in particular there is a positive probability of stopping in any 

7 Wald (1947) stated and solved this as a hypothesis testing problem; Arrow, Blackwell, and Girshick (1949) 
solved the corresponding Bayesian version. These models were brought to the psychology literature by Stone 
(1960), and Edwards (1965). 

8 Stone (1960) proved this independence directly for the simple DDM in discrete time. Our Theorem 1 shows 
that the independence is a consequence of the stopping boundaries being constant. 
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interval  [t, t + dt ] ,  and conditional probabilities are well de�ned; our working paper 

(Fudenberg, Strack, and Strzalecki 2015) does not make this assumption. We will 

decompose  P  as   p   i (t)  and  F(t),  where   p   i (t)  is probability of choosing  i ∈ A  con-

ditional on stopping at time  t  and  F(t) = P(A × [0, t ] )  is the cdf of the marginal 

distribution of decision times. It will also be useful to decompose  P  the other way, 

as   P   i   and   F   i (t ),  where   P   i  = P({ i} × T )  is the overall probability of choosing  i ∈ A  

at any time, and   F   i (t) = P({ i} × [0, t ] )/ P   i   is the cdf of time conditional on choosing  

i ∈ A .

We let  p(t)  denote the probability of making the correct choice conditional on 

stopping at time  t . In perceptual decision tasks, the analyst knows which option 

is “correct.” In choice tasks, the agents’ preferences are subjective and may be 

unknown to the researcher. However, many experiments that measure decision time 

in choice tasks independently elicit the subjects’ rating of the items, and we will 

de�ne “correct” in these tasks to mean picking the item that was given a higher 

score. Moreover, when we estimate our uncertain-difference model in Section 

III, we will make the stronger assumption that these scores correspond to utility  

levels.9,10

DEFINITION 1: There is increasing accuracy when  p  is monotone increasing, 

decreasing accuracy when  p  is monotone decreasing, and constant accuracy when  

p  is constant.11

B. DDM Representations

DDM representations have been widely used in the psychology and neuroscience 

literatures (Ratcliff and McKoon 2008; Shadlen et al. 2006; Fehr and Rangel 2011). 
The two main ingredients of a DDM are the stimulus process   Z t    and a boundary 

 b(t) .
In the DDM representation, the stimulus process   Z t    is a Brownian motion with 

drift  δ  and volatility  α  √ 
_
 2   :

(1)   Z t   = δt + α  √ 
_
 2    B t   ,  

where   B t    is a standard Brownian motion, so in particular   Z 0   = 0 .12 In early appli-

cations of DDM such as Ratcliff (1978),   Z t    was not observed by the experimenter. 

In some recent applications of DDM to neuroscience, the analyst may observe sig-

nals that are correlated with   Z t   ; for example the neural �ring rates of both single 

9 In those experiments the rating task is done before the choice tasks. The literature �nds that in any given choice 
task agents are more likely to choose the item with the higher rating score, with the choice probability increasing 
in the score difference of the items. See, e.g., Krajbich, Armel, and Rangel (2010); Milosavljevic et al. (2010); 
Krajbich et al. (2012). 

10 In cases where the correct choices are not observable, one can use the modal choice as the de�nition of a 
correct choice. Here we mean the average choice frequency, aggregated over all decision times. Our working paper 
(Fudenberg, Strack, and Strzalecki 2015) proceeds along these lines. 

11 The online Appendix considers two additional, closely related, measures of how accuracy varies with time. 
12 Recall that standard Brownian motion is a process that starts at time 0, has continuous sample paths, and 

has independent normally distributed increments, meaning that   B t+s   −  B t    is distributed  N(0, s) . We normalize the 
volatility by   √ 

_
 2    to �t with our later interpretation of   Z t    as the difference in two signals. 
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 neurons (Hanes and Schall 1996) and populations of them (e.g., Ratcliff, Cherian, 

and Segraves 2003). In the later sections we interpret the process   Z t    as a signal about 

the utility difference between the two alternatives.

Following the literature, we focus on symmetric boundaries so that a boundary 

is a function  b :  ℝ +   → ℝ  , and assume that  δ > 0  if left is the correct choice and  

δ < 0  if right is the correct choice. De�ne the hitting time  τ ,

(2)  τ = inf { t ≥ 0 : |  Z t   | ≥ b(t ) },  

that is, the �rst time the absolute value of the process   Z t    hits the boundary.13 Let  

P(δ, α, b ) ∈ Δ(A × T )  be the choice process induced by  τ  and a decision rule that 

chooses  l  if   Z τ   = b(τ)  and  r  if   Z τ   = − b(τ) .14

DEFINITION 2: A choice process  P  has a DDM representation ( δ, α, b ) if  

P = P(δ, α, b) .

Simple DDMs are ones with constant boundaries. Hitting time models generalize 

DDM by not requiring that the signal process   Z t    is Brownian. The assumption that 

the process   Z t    is Brownian is an important one, as without it the model is vacuous.15

When the stopping time is given by an exogenous distribution that is independent 

of the signal process, the agent will have more information when it stops later, and 

so is more likely to make the correct decision. Endogenous stopping when the signal 

hits the boundary generates a selection effect that pushes the other way, as when the 

agent stops early the signals were relatively strong and thus relatively informative. 

Just how strong this selection is depends on the slope of the stopping boundary. 

The following theorem shows that a constant boundary is the case where these two 

effects exactly balance out.

THEOREM 1: Suppose that  P  has a DDM representation  (α, δ, b) . Then  P  dis-

plays increasing, decreasing, or constant accuracy if and only if  b(t)  is increasing, 

decreasing, or constant respectively.

The proof of this theorem is in the Appendix, as the proofs of all of the fol-

lowing results and claims except where noted. The intuition behind the proof is as   

13 There are boundaries for which there is a positive probability that  τ = ∞ . We consider only boundaries that 
lead the agent to stop in �nite time with probability 1. This property will be satis�ed in any model where the stop-
ping time comes from a statistical decision problem in which never stopping incurs an in�nite cost and the value 
of full information is �nite. 

14 Note that the parameter  α  can be removed here by setting   α ′   = 1,  δ ′   = δ /α,  and   b ′   = b / α . By a similar 
argument,  δ  can be assumed to be  − 1, 0,  or  1 . We nonetheless retain  α  and  δ  here as we will use them in the next 
section to distinguish between utility and signal strength. 

15 Fudenberg, Strack, and Strzalecki (2015) show that any choice process  P  has a hitting time representation 
where the stochastic process   Z t    is a pair of fully revealing Poisson signals with the appropriate time-varying arrival 
rates. Moreover, Jones and Dzhafarov (2014) show that any choice data can be matched realization-by-realization 
with a signal process that has linear paths and is deterministic in that trial but is allowed to vary in an arbitrary way 
from trial to trial. The most general diffusion model of Ratcliff (1978) also allows the starting point and drift to be 
variable. Its predictions are not vacuous since it retains the Gaussian structure, but the added degrees of freedom 
lack a natural interpretation. 



3657FUDENBERG ET AL.: SPEED, ACCURACY, AND TIMING OF CHOICESVOL. 108 NO. 12

follows: Suppose that  δ > 0  (so the correct action is  l  ) and that the process stopped 

at time  t . The odds that a correct decision is made in this situation are

(3)    
 p   l  (t)

 _ 
 p   r  (t)

   =   
Pr [  Z t   = b(t )  |  { τ = t} ∩ {|  Z t   | = b(t ) }]

    ______________________________    
Pr [  Z t   = − b(t )  |  { τ = t} ∩ {|  Z t   | = b(t ) }]

   ,  

where  {τ = t}  is the event that the process  Z  has not crossed the barrier before time  

t . From Bayes rule and the formula for the density of the normal distribution:

(4)    
Pr [  Z t   = b(t )  |  { |  Z t   | = b(t ) }]

   ______________________   
Pr [  Z t   = − b(t )  |  { |  Z t   | = b(t ) }]

   = exp (  
δb(t)

 _ 
 α   2 

  ) ,  

which is a decreasing function of  t  whenever  b  is. Moreover, a symmetry argument 

using the Brownian bridge shows that the conditioning event  {τ = t}  does not mat-

ter as it enters the numerator and denominator in (3) in the same way. Section IIIC 

shows how to use (4) to identify the boundary from the data.

One way to generate decreasing or increasing accuracy with a constant boundary 

is to allow random initial positions for the signal process, a stochastic delay before 

the �rst possible response, and/or random drift, as in Ratcliff and Smith (2004), but 

that model does not have a foundation in optimal learning theory. Section II derives 

the stopping boundary from optimal learning, and shows how this leads to decreas-

ing accuracy.

C. Aggregate DDM Representations

In many settings with human subjects, analysts will have few observations of a 

given individual facing exactly the same choice problem, and will need to aggregate 

data of the same individual across problems to estimate choice probabilities. If the 

decisions in each trial are made by a DDM, and the drift  δ  varies from trial to trial, 

we say that the aggregate data is an average DDM.

DEFINITION 3: Choice process  P  has an average DDM representation if 

 P =  ∫    
 
  P(δ, α, b ) dμ(δ)  , where  μ  is normal with mean 0, and variance 2  σ  0  

2  . 16

Averaging over trials with different drifts creates an additional selection effect 

beyond the one that occurs when the value of the drift is �xed: When the distribu-

tion over  δ  is also normal, and the boundary  b  does not increase too quickly, the 

selection effect implies that in trials where the agent chose quickly, the drift was 

probably larger than usual, so the agent received sharper signals and is more likely 

to be correct.

16 We set the variance to be  2 σ  0  
2   to match the case we consider later where the agent sees two independent 

signals. 
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PROPOSITION 1: Suppose P has an average DDM representation and that 

 b(t ) ⋅  ( σ  0  
−2  + t α   −2  )   −1/2   is non-increasing in  t . Then for all  d > 0  and  0 < t <  t ′   ,

  Pr [ | δ  | < d | τ = t]  < Pr [ | δ  |  < d | τ =  t ′  ] . 

The next result shows that the combination of this selection effect and the one that 

comes from endogenous stopping is suf�cient to imply that accuracy decreases with 

decision time even when the boundary is not decreasing, at least when the distribu-

tion of drifts is normally distributed.

THEOREM 2: Suppose that  P  has an average DDM representation  P( μ 0   , α, b)  , 
where  δ  is normal with mean 0 and variance   σ  0  

2  . Then  P  displays increasing, 

decreasing, or constant accuracy if and only if  b(t ) ⋅  (  σ  0  
−2  + t α   −2  )   −1/2   is increas-

ing, decreasing, or constant in  t , respectively.

II. Optimal Stopping

A. Statement of the Model

Both the simple DDM used to explain data from perception tasks and our uncer-

tain-difference DDM are based on the idea of sequential learning and optimal stop-

ping. As we will see, the models differ only in their prior, but this difference leads 

to substantially different predictions. In the learning model, the agent doesn’t know 

the true utilities,  θ = ( θ   l ,  θ   r  ) ∈  ℝ   2   , but has a prior belief about them   μ 0   ∈ Δ( ℝ   2 ) . 
The agent observes a two-dimensional signal   ( Z  t  

i  ) t∈ ℝ +      for  i ∈ {l, r}  which as in 

the DDM has the form of a drift plus a Brownian motion; in the learning model we 

assume that the drift of each   Z   i   is equal to the corresponding state, so that

(5)  d Z  t  
i  =  θ   i dt + α d B  t  

i  

where  α  is the noisiness of the signal and the processes  { B  t  
i   }  are independent.17 The 

signals and prior lie in a probability space  (Ω, Pr,  {  t   } t∈ ℝ +     ),  where the information   
 t    that the agent observed up to time  t  is simply the paths   {  Z  s  

i   } 0≤s<t  .  We denote 

the agent’s posterior belief about  θ  given this information by   μ t   . Let   X  t  
i  =  E  μ t      θ   

i   
= E [ θ   i  |   t  ]   be the posterior mean for each  i = l, r . As long as the agent delays the 

decision she has to pay 
ow cost, which for now we assume to be constant  c > 0 .18 

(Section IIF explores the implications of time varying cost.) The agent’s problem is 

17 This process is also studied by Natenzon (forthcoming) to study stochastic choice with exogenously forced 
stopping times; he allows utilities to be correlated, which can explain context effects. 

18 In our model only the expected difference in utility between the options matters, and not the absolute level. In 
many models the cost of delay takes the form of discounting. This is not a good assumption for the lab experiments 
we discuss, where rewards are received at the end of the session, and each decision takes only a few seconds. The 
discounting speci�cation would make the problem harder, because the stopping boundary will depend on beliefs 
about the levels of the two options as well as on their difference. Our intuition is that this should lead to earlier 
stopping when the expected levels of both choices are high. 
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to decide which option to take and at which time. Waiting longer will lead to more 

informed and thus better decisions, but also entails higher costs. What matters for 

this decision is the difference between the two utilities, so a suf�cient statistic for 

the agent is

   Z t    ≔  Z  t  
l  −  Z  t  

r  = ( θ   l  −  θ   r  ) t + α  √ 
_
 2    B t   , 

where   B t   =   1 ___ 
 √ 

_
 2  
   ( B  t  

1  −  B  t  
2  )  is a Brownian Motion. Note that the signal is more infor-

mative (its drift is larger compared to the volatility) when  |  θ   l  −  θ   r  |  is large, while 

close decisions generate a less informative signal.

When the agent stops, it is optimal to choose the option with the highest poste-

rior expected value; thus, the value of stopping at time  t  is   max i=l, r    X  t  
i  . The agent 

decides optimally when to stop: she chooses a stopping time  τ  , i.e., a function  

τ : Ω → [0,  +∞]  such that  {τ ≤ t} ∈   t    for all  t ; let    be the set of all stopping 

times. Hence, the problem of the agent at  t = 0  can be stated as

(6)   max  
τ∈

     E [ max  
i=l, r

     X  τ  
i   − cτ] . 

19

Before analyzing this maximization problem, we note that its solution is identical 

to a regret-minimization problem posed by Chernoff (1961), in which the agent’s 

objective is to minimize the sum of his sampling cost  cτ  and his ex post regret, 

which is the difference between the utility of the object chosen and the utility of 

the best choice. When the agent stops, he picks the object with the higher expected 

utility, so his expected regret for any stopping time  τ  is  E [− 1 { X  τ  
l  ≥ X  τ  

r  }    ( θ   
r  −  θ   l  )   +  −  

1 { X  τ  
r  > X  τ  

l  }    ( θ   
l  −  θ   r  )   + ] ,  and his objective function is

  Ch(τ ) ≔ E [−  1 { X  τ  
l  ≥ X  τ  

r  }    ( θ   
r  −  θ   l  )   +  −  1 { X  τ  

r  > X  τ  
l  }    (  θ   

l  −  θ   r  )   +  − cτ] . 

Let  κ = max ( θ   l ,  θ   r  );  if the agent knew the value of each choice from the start he 

would obtain this payoff.

PROPOSITION 2: 

 (i) For any stopping time  τ ,

  Ch(τ ) = E [max {  X  τ  
l   ,  X  τ  

r   } − cτ]  − κ. 

 (ii) Therefore, these two objective functions induce the same choice process.

The proof is in the online Appendix. To gain some intuition for this result, 

recall that the agent’s expected payoff in our model when stopping at a �xed 

time  t  is  E [max  {  X  t  
l  ,  X  t  

r  } − ct] .  Now suppose we treat  κ  as a known constant 

and subtract it from the agent’s payoff, yielding  E [max  {  X  t  
l  ,  X  t  

r  } − ct]  − κ  , 

19 Following the literature,  in cases where the optimum is not unique,  we assume that the agent stops the �rst 
time she at least weakly prefers to do so. That is we select the min imal optimal stopping time .
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which is equal to  − ct  if the agent makes the ex-post optimal choice and equal to 

 − ct − (max ( θ   l ,  θ   r  ) − min ( θ   l ,  θ   r  ))  when he makes a mistake. The proof con-

sists of treating  κ  as a random variable and using iterated expectations and the 
fact that  τ  is a stopping time to show that the expected value of this mistake is 

 E [−  1 { X  τ  
l  ≥ X  τ  

r  }    ( θ   
r  −  θ   l  )   +  −  1 { X  τ  

r  > X  τ  
l  }    (  θ   

l  −  θ   r  )   + ] . 
Chernoff and following authors in the mathematical statistics literature have 

focused on the behavior of the optimal boundary for very small and very large  values 

of  t,  and have not characterized the full solution. We have not found any results on 

increasing versus decreasing accuracy in this literature, nor any comparative statics, 

but we make use of Bather’s (1962) asymptotic analysis of the Chernoff model in 

what follows. Our characterization of the solution to equation (5) contributes to the 

study of the Chernoff problem by establishing non-asymptotic properties.

B. Certain Difference

In the simple DDM the agent’s prior is concentrated on two points:  ( θ H  ,  θ L  )  and 

 ( θ L  ,  θ H  )  , where   θ H   >  θ L  .  The agent receives payoff   θ H    for choosing  l  in state  ( θ H  ,  θ L  )   
or  r  in state  ( θ L  ,  θ H  )  and   θ L    for choosing  r  in state  ( θ H  ,  θ L  )  or  r  in state  ( θ L  ,  θ H  )  , so 

she knows that the magnitude of the utility difference between the two choices is 

 |  θ H   −  θ L   |  , but doesn’t know which action is better. We let   μ 0    denote the agent’s prior 

probability of  ( θ H  ,  θ L  ) .
This model was �rst studied in discrete time by Wald (1947) (with a trade-off 

between type I and type II errors taking the place of utility maximization) and by 

Arrow, Blackwell, and Girshick (1949) in a standard dynamic programming setting. 

The solution is essentially the same in continuous time.

THEOREM 3 (Shiryaev 1969, 2007): With a binomial prior, there is  k > 0 , 

such that the minimal optimal stopping time is   τ ˆ   = inf  { t ≥ 0 : |  l t   | = k}  , where 

  l t   = log (  
Pr [θ =  θ l   |   t  ]   ________  
Pr [θ =  θ r   |   t  ] 

  )  . Moreover, when   μ 0   = 0.5  , the optimal stopping time has 

a DDM representation with a constant boundary  b :

   τ ˆ   = inf { t ≥ 0  :  |  Z t   | ≥ b} . 20

The simple DDM misses an important feature, as the assumption that the agent 

knows the magnitude of the payoff difference rules out cases in which the agent is 

learning the intensity of her preference. Intuitively, one might expect that if   Z t    is 

close to zero and  t  is large, the agent would infer that the utility difference is small 

and so stop. This inference is ruled out by the binomial prior, which says that the 

agent is sure that he is not indifferent. We now turn to a model with a Gaussian prior 

which makes such inferences possible.

20 This is essentially Theorem 5 of Shiryaev (2007). In his mod el the drift depends on the sign of the utility 
difference,  but not on its magnitude; his proof extends straight forwardly to our case.
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C. Uncertain-Difference DDM

In the uncertain-difference DDM, the agent’s prior   μ 0    is independent for each 

action and normally distributed, with prior means   X  0  
i    and common variance ,  σ  0  

2  . 
Given the speci�cation of the signal process (5), the posterior   μ t    is  N(  X  t  

i  ,  σ  t  
2  ) , where

(7)   X  t  
i  =   

 X  0  
i    σ  0  

−2  +  Z  t  
i   α   −2 
  ____________  

 σ  0  
−2  + t α   −2 

   and  σ  t  
2  =   1 _ 

 σ  0  
−2  + t α   −2 

   . 

Moreover, these equations describe the agent’s beliefs at time t conditional on 

any sequence of the signal process up to t, so in particular they describe the agent’s 

beliefs conditional on not having stopped before t.

Note that the variance of the agent’s beliefs decreases at rate  1 / t  regardless of the 

data she receives.

De�ne the continuation value  V  as the expected value an agent can achieve by 

using the optimal continuation strategy if her posterior means are  ( x   l ,  x   r  )  at time  t  , 

the initial variance of the prior is   σ  0  
2   , and the noisiness of the signal is  α :

  V(t,  x   l ,  x   r , c,  σ 0  , α) ≔  sup  
τ≥t

    E [max {  X  τ  
l   ,  X  τ  

r   } − c (τ − t) | t,  x   l ,  x   r ,  σ 0  , α] . 

Lemma 2 in the Appendix establishes a number of useful properties of  V  , includ-

ing that it is increasing and Lipschitz continuous in   x   l   and   x   r  , and non-increasing 

in  t . This leads to the following theorem, which characterizes the agent’s optimal 

stopping rule.

THEOREM 4 (Characterization of the Optimal Stopping Time): Let   k   ∗  (t, c,  σ 0   , α )  
= min  { x ∈ ℝ :  0 = V(t, −x, 0, c,  σ 0   , α ) }.  Then

 (i)   k   ∗   is well de�ned.

 (ii) Let   τ   ∗   be the minimal optimal strategy in (6). Then

   τ   ∗  = inf { t ≥ 0  : |  X  t  
l  −  X  t  

r  | ≥  k   ∗  (t, c,  σ 0  , α)}. 

 (iii)   k   ∗  (t, c,  σ 0  , α)  is strictly positive, strictly decreasing in  t  , and 

  lim t→∞    k   ∗  (t, c,  σ 0  , α) = 0 . Moreover, it is Lipschitz continuous with con-

stant at most  2 α   −2   σ  t  
2   k   ∗  .

 (iv) If   X  0  
l   =  X  0  

r    , then for   b   ∗  (t, c,  σ 0  , α) ≔  α   2   σ  t  
−2   k   ∗  (t, c,  σ 0  , α)  we have

   τ   ∗  = inf { t ≥ 0 : |  Z  t  
l  −  Z  t  

r  | ≥  b   ∗  (t, c,  σ 0   , α ) }. 

 (v)   k   ∗  (t, c,  σ 0  , α)  and   b   ∗  (t, c,  σ 0  , α)  are pointwise non-increasing in  c .
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COROLLARY 1:

 (i) As c increases the agent decides earlier, in the sense of �rst-order stochastic 

dominance.

 (ii) The probability of making the correct choice is non-increasing in  c  condi-

tional on stopping at any time  t  for all  t,  θ   l  ,  θ   r . 

The boundary   k   ∗   is given by the smallest difference in posterior means that makes 

the continuation value equal to the expected value of stopping, which is the higher 

of the two posterior means at the time the agent stops; this higher value can be set 

to zero due to the shift invariance of the normally distributed posterior beliefs. Part 

(ii) of Theorem 4 describes the optimal strategy   τ   ∗   in terms of stopping regions for 

posterior means   X  t  
l  −  X  t  

r  : it is optimal for the agent to stop once the expected utility 

difference exceeds the threshold   k   ∗  (t, c,  σ 0   , α) . Intuitively, if the difference in means 

is suf�ciently high it becomes unlikely that future signals will change the optimal 

action, and thus it is optimal to make a decision immediately and not incur addi-

tional cost. The proof of this follows from the principle of optimality for continuous 

time processes.

Note that the optimal strategy depends only on the difference in means and not 

on their absolute levels. However, it also depends on other parameters, in particular 

the prior variance. For example, if  l  and  r  are two houses with a given utility differ-

ence  δ =  θ   l  −  θ   r   , we expect the agent to spend, on average, more time here than 

on a problem where  l  and  r  are two lunch items with the same utility difference  δ . 

This is because we expect the prior belief of the agent to be domain-speci�c and in 

particular, the variance of the prior,   σ  0  
2   , to be higher for houses than for lunch items.

To gain intuition for why   k   ∗   is decreasing and asymptotes to zero, consider 

the agent at time  t  deciding whether to stop now or to wait  dt  more seconds and 

then stop. The utility of stopping now is   max i=l, r    X  t  
i  . If the agent waits, she will 

have a more accurate belief and so be able to make a more informed decision, 

but she will pay an additional cost, leading to an expected change in utility of 

  ( E t    max i=l, r    X  t+dt  
i   −  max i=l, r    X  t  

i )  − cdt . Because belief updating slows down as 

shown in (6), the value of the additional information gained per unit time is decreas-

ing in  t  , which leads the stopping boundaries to shrink over time; the boundaries 

shrink all the way to  0  because otherwise the agent would have a positive subjective 

probability of never stopping and incurring an in�nite cost.21 Part (v) of Theorem 4 

says that   k   ∗   is pointwise non-increasing in  c ; this is because   k   ∗   is de�ned with refer-

ence to the agent’s value function, and the value function is non-increasing in  c . This 

directly implies Corollary 1(i). Corollary 1(ii) follows from Theorem 1.

Part (iv) of Theorem 4 describes the optimal strategy   τ   ∗   in terms of stopping 

regions for the signal process   Z t    ≔  Z  t  
l  −  Z  t  

r  .22 This facilitates comparisons with 

the certain-difference DDM, where the process of beliefs lives in a different space 

21 In the certain difference DDM, the agent believes she will stop in �nite time with probability 1 even though the 
boundaries are constant, because the agent knows that the absolute value of the drift of   Z t    is bounded away from 0. 

22 When   X  0  
l   ≠  X  0  

r    , the optimal strategy can be described in terms of asymmetric boundaries for the signal 

 process:     b 
¯

   t   =  α   2  [−k(t) σ  t  
−2  − ( X  0  

l   −  X  0  
r   )  σ  0  

−2  ]  and    b ̅  (t) =  α   2  [k(t)  σ  t  
−2  − ( X  0  

l   −  X  0  
r   )  σ  0  

−2  ] . 
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and is not directly comparable. One way to understand the difference between these 

two models is to consider the agent’s posterior beliefs when   Z t   ≈ 0  for large  t . In 

the certain difference model, the agent interprets the signal as noise, since according 

to her prior the utilities of the two alternatives are a �xed distance apart, so the agent 

disregards the signal and essentially starts anew. This is why the optimal boundaries 

are constant in this model. On the other hand, in the uncertain difference model the 

agent’s interpretation of   Z t   ≈ 0  for large  t  is that the two alternatives are nearly 

indifferent, which prompts the agent to stop the costly information gathering pro-

cess and make a decision right away. This is why the optimal signal boundary   b   ∗   col-

lapses to zero in the uncertain difference model. Note though that Theorem 4 does 

not assert that   b   ∗   is globally decreasing, and indeed it need not be. This is because 

the map from signals to posterior means also depends on the amount of evidence, as 

shown by formula (7).
Bather (1962, example i) and Drugowitsch et al. (2012) study a similar prob-

lem where the agent knows the utility difference (that is,  δ = 1  or  δ = − 1 ) but 

is uncertain about the signal intensity (that is, the drift is  λδ  for some unknown  

 λ > 0 ). Bather (1962) shows that the stopping boundary converges to zero and 

asymptotically decreases at the rate  1/ √ 
_
 t   . Here too the boundaries collapse to zero 

because when   Z t   ≈ 0  for large  t  the agent thinks he is unlikely to learn more in the 

future. Drugowitsch et al. (2012) use numerical methods to argue that the stopping 

boundaries converge to zero and to relate accuracy to the stopping boundary, which 

is an analog of our equation (4) for this model. In our model there are two reasons 

for the boundary to decline over time: as data accumulate additional data is less 

likely to lead to much change in beliefs, and if a decision hasn’t been made after a 

long time the two choices are probably about as good. When the utility difference is 

known only the �rst of these reasons applies, so we expect the boundary to decrease 

more slowly.

To obtain a sharper characterization of the optimal boundary, we use space/time 

change arguments and basic facts about optimization problems to show that the 

functions   k   ∗   and   b   ∗   have to satisfy the conditions stated in Lemma 2 and Lemma 3 

of the Appendix. The conditions provide useful information about the identi�cation 

of the parameters of the model, and about how the predictions of the model change 

as the parameters are varied. Moreover, they are an important underpinning for the 

rest of the results in this section.

PROPOSITION 3: The optimal stopping boundary for the uncertain DDM has   
b   ∗  (t )  ⋅  σ t    non-increasing in  t  , so by Theorem 2, the average DDM with prior   μ 0    and 

boundary function   b   ∗   has non-increasing accuracy.23

Proposition 3 implies that the analyst will observe decreasing accuracy when a 

single �xed agent faces a series of decisions with utilities  ( θ   r  ,  θ   l  )  that are distributed 

according to the agent’s prior. Moreover, the proof shows that decreasing accuracy 

even holds when the agent’s prior is not symmetric, i.e.,   X  0  
l   ≠  X  0  

r   .24 This implies that 

23 Note that if   b   ∗   is decreasing in  t  , then by Theorem 1, for each realization of  δ  the induced choice probabilities  
P(δ, α,  b   ∗  )  display decreasing accuracy. 

24 Here  P  does not admit an average DDM representation as the upper and lower barrier are not symmetric. 
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as long as the prior is correct, decreasing accuracy will hold for the average  P  for each 

agent in a given experiment. In addition, we expect that decreasing accuracy should 

hold at least approximately if the agent’s beliefs are approximately correct, but we 

have not shown this formally. Moreover, decreasing accuracy can hold even across 

experiments as long as the distributions of the states are close enough. That is, while 

we expect decreasing accuracy to hold within a given class of decision problems, it 

need not hold across classes with different prior variances. Similarly, decreasing accu-

racy can hold across subjects as long as their boundaries are not too different; though 

agents with very different costs should be expected to behave differently.

D. Approximations for Large  t  and c

To gain more insight into the form of the optimal policy, we study an approxima-

tion    b ̅    to the optimal boundary   b   ∗   that has a simple and tractable functional form. 

Using the results of Bather (1962) on the asymptotic behavior of the boundary, 

we show that    b ̅    approximates the solution well for large  t,  and that the boundary is 

approximately constant when  c  is large. Let

    b ̅  (t, c,  σ 0  , α) =   1 ____________  
2c(  σ  0  

−2  +  α   −2  t)
   . 

PROPOSITION 4: There are constants  η, T > 0  such that for all  t > T ,

   |  b ̅  (t, c,  σ 0  , α)  −  b   ∗  (t, c,  σ 0  , α)|  ≤   
η
 ____________  

 ( σ  0  
−2  +  α   −2  t)   5/2 

   . 

Bather’s result assumes that the agent has an improper prior with zero prior pre-

cision. Our proof of Proposition 4 (in the online Appendix) uses several of the res-

caling arguments in Lemma O.2 (in the online Appendix) to adapt his result to our 

setting. One important implication of Proposition 4 is that   b   ∗   asymptotes to zero at 

rate  1/t .

We show now that for large  c  the initial portion of the boundary   b   ∗   is approxi-

mately    1 __ 
2c

    , so that the agent decides immediately if  |  X  0  
l   −  X  0  

r   | >  σ  0  
2 /2c α   2  .

PROPOSITION 5 (The Initial Position of the Boundary): For any  α,  σ 0    there is a 

constant  η  independent of  c  such that

   | b   ∗  (0, c,  σ 0  , α)  −   1 _ 
2c

  |  ≤    
η
 _ 

 c   4/3 
   .

E. Endogenously Divided Attention

We now consider a simple model of endogenous attention, where the agent can 

devote variable amounts of attention to each signal, and costlessly change these 

weights at any time. Speci�cally, at every point in time  t  the agent can choose atten-

tion levels  (  β  t  
l  ,  β  t  

r  )  which in
uence the signals   Z  t  
1  ,  Z  t  

2   given by

  d  Z  t  
i  =   ( β  t  

i )    1/2
   θ   i  dt + d B  t  

i  . 
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We assume that attention levels are always positive   β  t  
l  ,  β  t  

r  ≥ 0,  and that the 

total amount of attention is bounded by two, i.e.,   β  t  
l  +  β  t  

r  ≤ 2. 25 Note that this is 

 identical to the model analyzed before (with  α = 1 ) if the agent pays equal atten-

tion to the two signals, i.e.,   β  t  
l  =  β  t  

r  = 1  for all  t ≥ 0 .

The posterior distribution the agent assigns to the utility   θ   i   of alternative  i  at time  

t  is Normal with mean   X  t  
i   and variance   ( σ  t  

i  )   2   where

   X  t  
i  =   

 ( σ  0  
i   )   −2   X  0  

i   +  ∫ 
0
  t    β  s  

i   d Z  s  
i  
  _______________  

 ( σ  0  
i   )   −2  +  ∫ 

0
  t    β  s  

i   ds
   and  ( σ  t  

i  )   2  =   1 ____________  
 ( σ  0  

i   )   −2  +  ∫ 
0
  t    β  s  

i   ds
   . 

The variance of the posterior belief about the difference   θ   l  −  θ   r   is given by the sum 

of the variances of   θ   l   and   θ   r   , i.e.,   v t    ≔  ( σ  t  
l  )   2  +  ( σ  t  

r  )   2  .

THEOREM 5 (Endogenous Attention):

 (i) The posterior variance   v t    at every point in time  t ≥ 0  is minimized by setting   
β  s  

r  =  β  s  
l   = 1  at every point in time  s .

 (ii) It is optimal to set   β  t  
l  =  β  t  

r  = 1  at every point in time  t .

Note that the theorem does not say that it is optimal to give equal attention to both 

signals if the agent has paid unequal attention in the past, as then the agent might 

want to pay more attention to the signal with the higher posterior variance. Instead, 

the proof shows that the equal attention policy minimizes the posterior variance at 

every point in time and thus maximizes the speed of learning. A more general result 

in Section 2 of the online Appendix shows that its conclusion extends as stated to the 

case where the signal technology is  d Z  t  
i  = (  β  t  

i )   γ/2   θ   i  dt + d B  t  
i   for  0 < γ < 1 . The 

proof also shows that when  γ > 1  , the most ef�cient way for the agent to allocate 

equal attention to each signal is to oscillate or “chatter” very quickly between them; 

the limit policy is again equal attention to each signal over any interval of time.

A more realistic model might add an adjustment cost for changing attention. In 

some cases it is also more natural to assume that the agent can only pay attention 

to one signal at a time, as in a number of recent papers on related optimal stopping 

problems. Liang, Mu, and Syrgkanis (2017) study the choice between signals when 

only one signal can be observed at a time, allowing for multiple dimensions of 

 normally distributed uncertainty and correlated normal signals. They characterize 

the relationship between the dynamically optimal attention policy and the myopic 

one that always selects the signal that maximizes the expected payoff from making 

a choice immediately.

Che and Mierendorff (2016) study a model with a known utility difference 

between the two choices and perfectly revealing Poisson signals. Ke and Villas-

Boas (2016) study endogenous attention in a multi-object choice stopping problem 

when each choice has two possible values and the agent can only pay attention to 

one signal at a time. Hébert and Woodford (2016) combine optimal stopping and 

25 The normalization of the attention budget to two allows us to relate the attention model to the previous model. 
All our results generalize to arbitrary attention budgets. 
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optimal information gathering when the agent can choose from a very general class 

of signals, and relate the solution to that of a static rational-inattention problem.26

F. Nonlinear Cost

In deriving the DDM representation, we have so far assumed that the cost of 

continuing per unit time is constant. We have seen that in the uncertain-difference 

model, the optimal boundary decreases. One would expect that the boundary could 

increase if costs decrease suf�ciently quickly. This raises the question of which 

DDM representations can be derived as a solution to an optimal stopping problem 

when the cost is allowed to vary arbitrarily over time. The next result, whose proof 

is in the online Appendix, shows that for any boundary there exists a cost function 

such that the boundary is optimal in the learning problem with normal or binomial 

priors.27 Thus optimal stopping on its own imposes essentially no restrictions on the 

observed choice process; the force of the model derives from its joint assumptions 

about the evolution of beliefs and the cost function.

THEOREM 6: Consider either the certain or the uncertain-difference DDM. 

For any �nite boundary  b  and any �nite set  G ⊆  ℝ +    there exists a cost function 

 d :  ℝ +   → ℝ  such that  b  is optimal in the set of stopping times  T  that stop in  G  with 

probability one:

 inf{t ∈ G : |   Z t    | ≥ b(t)} ∈   arg max  
τ ∈

     E[max  { X  τ  
1 ,  X  τ  

2 }   − d(τ)].

III. Empirical Analysis

In this section we relate our theoretical results to data from Krajbich, Armel, and 

Rangel (2010); we thank them for sharing it with us. In this experiment, 39 subjects 

were asked to refrain from eating for 3 hours before the experiment started. They 

were told they would be making a number of binary choices between food items, 

and that at the end of the experiment they would be required to stay in the room with 

the experimenter for 30 minutes while eating the food item that they chose in a ran-

domly selected trial.28 Before making their choices, subjects entered liking ratings 

for 70 different foods on a scale from −10 to +10.

First we report a test of whether in individual-level data the boundary is con-

stant, and then the results of �tting the exact model to data on each individual using 

26 Woodford (2014) is also related, but instead of allowing optimal stopping constrains the stopping rule to have 
constant boundaries. 

27 In particular, there is a cost function such that the exponentially decreasing boundaries in Milosavljevic et al. 
(2010) are optimal, and a cost function that leads to constant accuracy. The proof of this result is based on Kruse 
and Strack (2015, forthcoming). 

28 There were 100 trials per subject. Food items that received a negative rating in the rating phase of the exper-
iment were excluded from the choice phase but subjects were not informed of this. The items shown in each trial 
were chosen pseudo-randomly according to the following rules: (i) no item was used in more than six trials; (ii) 
the difference in liking ratings between the two items was constrained to be �ve or less; (iii) if at some point in 
the experiment (i) and (ii) could no longer both be satis�ed, then the difference in allowable liking ratings was 
expanded to seven, but these trials occurred for only �ve subjects and so were discarded from the analyses. 



3667FUDENBERG ET AL.: SPEED, ACCURACY, AND TIMING OF CHOICESVOL. 108 NO. 12

a numerical computation of the optimal stopping boundary. We also compare the 

relative �t of an approximately optimal boundary and the exponential boundary 

used in Milosavljevic et al. (2010). Section IIIC shows that the parameters are point 

identi�ed.

A. Individual-Level Analysis of the Slope of the Boundary

Here we show how to estimate the slope of subjects’ boundaries under differ-

ent functional form assumptions. First, we look at the functional form   b ̃  (t) =   1 ____ 
g + ht

    

for  g > 0  and  h ≥ 0 . This functional form, unlike the exactly optimal bound-

ary, nests the approximate boundary    b ̅    of Proposition 4 (by setting  g ≔ 2c σ  0  
−2   and 

 h ≔ 2c α   −2  ) and also nests the simple DDM case of a constant boundary (by setting  

h ≔ 0 ). We show that for all but  3  out of  39  subjects  h  is signi�cantly different from 

0 at the  3  percent signi�cance level. By Theorem 1, this implies that except for those 

outliers, all subjects display decreasing choice accuracy over time.

More speci�cally, the distribution of   Z t    is determined by  δ  and  α  , where  α  is 

the volatility of   Z t    and the drift  δ  equals the difference in reported ratings. This 

distribution and the parameters  (g, h)  of the boundary determine the joint distribu-

tion of stopping time and choices. We used Monte Carlo simulations with 1 million 

random paths to compute the distribution of hitting times, and then combined this 

with formula (4) for the choice probabilities as a function of stopping time to com-

pute the likelihood function and found the maximum using a gradient descent algo-

rithm, both for the unrestricted parameters  ( α   ∗ ,  g   ∗ ,  h   ∗ )  and the restricted parameters 

 ( α   † ,  g   † )  when  h  is set equal to 0. The results are shown in Table 1 in the online 

Appendix.29

The same methodology can be applied to any functional form of the boundary. 

For example, we look at the two-parameter exponentially decreasing boundary  

   ̌  b  (t) = g exp (−ht)  , which was used by Milosavljevic et al. (2010) to �t to data 

from eight subjects. We �t their model to the data of Krajbich, Armel, and Rangel 

(2010), see Table 2 in the online Appendix. We found that   b ̃    �ts better (had higher 

likelihood) for 30 of the 39 subjects, see Table 3 of the online Appendix. Fitting 

these two functional forms has exactly the same computational cost; see online 

Appendix for the details.

B. Individual-Level Analysis Using the Exact Boundary

Finally, we estimated the exact model at the individual level using the exact 

boundary. The additional computational step here is numerically solving for the 

optimal boundary as a function of the parameters. But since the simulations need to 

be done many times for each parameter con�guration, and the computation of the 

optimal boundary only needs to be done for a single parameter con�guration (as 

shown by Lemma O.4 in the online Appendix, which follows from Lemma 3 in the 

29 The simulations took about a week to run in parallel on a cluster. The online Appendix has a detailed descrip-
tion of our numerical methods. 
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Appendix), the difference in computational cost was negligible.30 Here we �nd that 

there is substantial heterogeneity between the subjects. Figure 1 presents the histo-

grams of the marginal distributions of  α  ,  c  , and   σ 0    across all subjects. (Table 4 in the 

online Appendix lists parameter estimates subject by subject.)
Figure 1 also plots the estimated cost for each subject along with that subject’s 

average stopping time. As it shows, the dispersion in costs explains a substantial 

fraction of the variation in times.

While Proposition 3 proves that the accuracy of an optimizing agent with the cor-

rect prior is decreasing over time when averaged over decision problems, the accu-

racy of the agent’s choice need not be decreasing for a �xed decision problem when 

the stopping boundary is not monotone. This is the case for example for the optimal 

boundary when  σ = 1.8, c = 0.02, α = 2,  which is �rst increasing and then decreas-

ing; (which provides the best �t for subject 45, see Figure 3 in the online Appendix.) 
However, Figure 3 in the online Appendix suggests that the estimated boundaries are 

indeed monotonically decreasing for all but two subjects. Theorem 1 then implies 

that if those subjects had the correct prior they should display decreasing accuracy. 

30 We computed the boundary by imposing a large �nite terminal time, discretizing time and space on a �ne 
grid, and solving backwards. Computations in Matlab and Python yielded numerically identical results. This com-
putation takes less than two hours on a (vintage 2014) laptop, which is a negligible computation cost compared to 
the Monte Carlo simulations of the distribution of stopping times. 
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However, as shown in Table 5 of the online Appendix, there were 7 subjects whose 

mean decision time was higher for correct choices. None of these differences was 

signi�cant. In fact, there were only 12 subjects for whom we can reject (at the  5 per-

cent  level) the null hypothesis of equal mean time for correct and incorrect decisions, 

and all of these subjects were quicker when they were correct. The fact that many 

subjects do not display a statistically signi�cant decrease in accuracy over time could 

be due to the small sample size for incorrect decisions.

The likelihoods (Table 3 in the online Appendix) suggest that the optimal 

boundary �ts as well as the exponential one. However, the likelihood functions are 

 relatively 
at, and we used different methods to �t the two models (gradient ascent 

versus grid search) so a more serious comparison would require another, larger, 

dataset. We hope that the simulation tools that we provide in the online Appendix 

will help subsequent researchers explore this issue.

C. Identi�cation

For the estimation results to have meaning, the model must be identi�ed. The 

following proposition shows that this is the case for a general boundary and in par-

ticular for the three kinds of boundaries we estimated.

PROPOSITION 6: Fix  δ  and suppose that the analyst observes a DDM choice 

process  P . There exists unique  α > 0  and a unique function  b  such that 

 P = P(δ, α, b) . In addition,

 (i) If  b(t) =  b ̃  (t; g, h) =   1 ____ 
g + ht

    for some  g, h ≥ 0  , then  g  and  h  are unique.

 (ii) If  b(t) =  b ˆ  (t; g, h) = g exp (−ht)  for some  g, h ≥ 0  , then  g  and  h  are 

unique.

 (iii) If  b(t) =  b   ∗  (t;  σ 0  , c, α)  for some  c,  σ 0   ≥ 0  , then  c  and   σ 0    are unique.

The proof is in the online Appendix. In outline, the ratio of choice probabilities 

identi�es  b(t)/ α   2   , which lets us use the expected stopping time to identify  α  (closed 

form expressions for  α  and  b  can be found in the proof). This makes the proofs of 

clauses 1 and 2 relatively straightforward; we use our asymptotic characterization 

of the optimal boundary to prove clause 3. In our estimation and the above identi-

�cation result we assume that the analyst knows  δ  , and in particular that it equals 

the difference in the numerical ratings. Including an additional parameter that mul-

tiplies that difference leads to a model that is not identi�ed.

IV. Conclusion

The recent literature in economics and cognitive science uses drift-diffusion 

models with time-dependent boundaries. This is helpful in matching observed prop-

erties of reaction times, notably their correlation with chosen actions, and in par-

ticular a phenomenon that we call speed-accuracy complementarity, where earlier 

decisions are better than later ones. In Section I we showed that the monotonicity 
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properties of the boundary characterize whether the observed choice process dis-

plays  speed-accuracy complementarity, or the opposite pattern of a speed-accuracy 

tradeoff. This ties an observable property of behavior (the correlation between reac-

tion times and decisions) to an unobservable construct of the model (the boundary). 
This connection is helpful for understanding the qualitative properties of DDMs; it 

may also serve as a useful point of departure for future quantitative exploration of 

the connection between the rate of decline of the boundary and the strength of cor-

relation between reaction times and actions.

In Section II we investigated the DDM as a solution to the optimal sequential sam-

pling problem, where the agent is unsure about the utility of each action and is learning 

about it as time passes, optimally deciding when to stop. We studied the dependence 

of the solution on the nature of the learning problem and also on the cost structure. In 

particular, we proposed a model in which the agent is learning not only about which 

option is better, but also by how much. We showed that the boundary in this model col-

lapses to 0 at the rate  1/t,  and that it is pointwise decreasing in  c.  We also showed that 

any boundary could be optimal if the agent is facing a nonlinear cost of time.

Our analysis provides a precise foundation for DDMs with time-varying bound-

aries, and establishes a set of useful connections between various parameters of the 

model and predicted behavior, thus enhancing the theoretical understanding of the 

model as well as making precise its empirical content. We hope these results will 

be a helpful stepping stone for further work. Indeed, subsequent to our paper, Bhui 

(2018) ran an experiment more closely designed to �t our model. In his experiment, 

each subject faces a screen with some dots moving to the right, some moving to 

the left, and some moving randomly. The subject has to decide whether more are 

moving to the right or to the left. The payoff is proportional to the number of dots 

moving in the chosen direction (the coherence), so here the right choice is observ-

able by the analyst, as is the payoff difference, in contrast to the data we use, where 

we have to assume that reported scores are the same as utility. Consistently with 

our model, he �nds that quicker decisions are more accurate. He also �nds that the 

approximately optimal boundary   b ̃    �ts his data better than does the classic model 

with constant boundaries.

We expect the forces identi�ed in this paper to be present in other decisions 

involving uncertainty: not just in tasks used in controlled laboratory experiments, 

but also in decisions involving longer time scales, such as choosing an apartment 

rental, or deciding which papers to publish as a journal editor.

Appendix: Proofs

A. Proof of Theorem 1

Let  f :  ℝ +   →  ℝ +    be the density of the distribution of stopping times, and 

 g :  ℝ +   × ℝ →  ℝ +    be the density of   Z t    , i.e.,

  g(t, y) =   ∂ _ 
∂ y

   Pr [ Z t   ≤ y | δ, α]  =   ∂ _ 
∂ y

   Pr [δt + α  √ 
_
 2    B t   ≤ y | δ, α] 

 =   ∂ _ 
∂ y

   Pr [  
 B t   _ 
 √ 

_
 t  
   ≤   

y − δt
 _ 

α  √ 
_
 2    √ 

_
 t  
  ]  = ϕ (  

y − δt
 _ 

α  √ 
_

 2t  
  )  ,
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where  ϕ(x) =   1 _ 
 √ 
_

 2π  
    e   − x   2 /2   is the density of the standard normal. By Bayes’ rule:

  p   l (t) = Pr[  Z t   = b(t) | τ = t, δ, α ]  =   
g(t, b(t)) Pr [ τ = t |  Z t   = b(t), δ, α]

   _________________________  
f (t)

  ,

 p   r (t) = Pr[  Z t   = − b(t) | τ = t, δ, α ] =   
g(t, −b(t)) Pr[τ = t |  Z t   = − b(t), δ, α]

   ____________________________  
f (t)

  . 

It follows from   Z 0   = 0  and the symmetry of the upper and the lower barrier that

(A1)  Pr[τ = t |  Z t   = b(t), δ, α ]  = Pr[τ = t |  Z t   = − b(t), −δ, α ] ,  

because for any path of  Z  that ends at  b(t)  and crosses any boundary before  t  , the 

re
ection of this path ends at  − b(t)  and crosses some boundary at the same time.

The induced probability measure over paths conditional on   Z t   = b(t)  is the same 

as the probability of the Brownian Bridge.31 The Brownian Bridge is the solution 

to the SDE  d Z s   = −   
b(t )  − Z

 _____ t − s    ds + αd B s    and notably does not depend on the drift  δ  , 

which implies that

(A2)  Pr[ τ = t |  Z t   = − b(t), −δ, α ]  = Pr[τ = t |  Z t   = − b(t), δ, α] .

Thus, by (A1) and (A2) we have that    
 p   l  (t)
 ___ 

 p   r  (t)
   =   

g(t, b(t))
 _______ 

g(t, −b(t))
   = exp (  

δb(t)
 ___ 

 α   2 
  )  . ∎

B. Proof of Proposition 1

In this proof we use the notation introduced in Section IIC. Note that 

  Z t   =  Z  t  
l  −  Z  t  

r   and  δ =  θ   l  −  θ   r  . The outside observer knows that if the agent stopped 

at time  t  then the absolute value of the difference in posterior means,  |  X  t  
l  −  X  t  

r  |,  is 

equal to  k(t) . Conditional on this information  | δ  |  = |  θ   l  −  θ   r  |  is folded Normal 

distributed, with mean  k(t)  and variance  2 σ  t  
2   , i.e.,

(A3)  Pr [| δ |  < d | τ = t]  = Pr [ θ   l  −  θ   r  ∈ (−d, d ) | τ = t,  |  X  τ  
l   −  X  τ  

r   | = k(τ)]  

  =   1 _ 
 √ 
_

 2π  
    ∫ 

  k(t)−d
 ____ 

 √ 
_
 2   σ t  
  
  

  k(t)+d
 ____ 

 √ 
_
 2   σ t  
  
    e   − y   2 /2   dy 

 =   1 _ 
 √ 
_

 2π  
    ∫ 

β(t)−  d
 ___ 

 √ 
_
 2   σ t  
  
  

β(t)+  d
 ___ 

 √ 
_
 2   σ t  
  
    e   − y   2 /2   dy ,

31 See, e.g., Proposition 12.3.2 of Dudley (2002) or Exercise 3.16 of Revuz and Yor (1999). 
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where  β(t) ≔ k(t) /( √ 
_
 2    σ t   ) . As  b(t)  σ t    is non-increasing  β(t) = k(t)/( √ 

_
 2    σ t   )  

is non-increasing. As  β(t)  and   σ t    are non-increasing it suf�ces to show that (A3) 
decreases in  β  and  σ  to prove that (A3) increases in  t :

   ∂ _ 
∂ β

   [  1 _ 
 √ 
_

 2π  
    ∫ 

β−  d ___ 
 √ 

_
 2  σ
  
  

β+  d ___ 
 √ 

_
 2  σ
  
    e   − y   2 /2   dy]  

 =   1 _ 
 √ 
_

 2π  
   [exp {−   1 _ 

2
     (β +   d _ 

 √ 
_
 2   σ

  )    
2

 }  − exp {−   1 _ 
2
     (β −   d _ 

 √ 
_
 2   σ

  )    
2

 } ]  < 0,

  ∂ _ 
∂ σ

   [  1 _ 
 √ 
_

 2π  
    ∫ 

β−  d ___ 
 √ 

_
 2  σ
  
  

β+  d ___ 
 √ 

_
 2  σ
  
    e   − y   2 /2   dy]  

 = −   d _ 
2  √ 

_
 π    σ   2 

   [exp {−   1 _ 
2
     (β +   d _ 

 √ 
_
 2   σ

  )    
2

 }  + exp {−   1 _ 
2
     (β −   d _ 

 √ 
_
 2   σ

  )    
2

 } ]  < 0.  ∎

C. Proof of Theorem 2

In this proof we use the notation introduced in Section IIC, i.e., 

  X t   = E [δ |  ( Z s   ) s≤t   ] ,   σ  t  
2  =   1 _ 

2
   E [  (δ −  X t   )   

2  |  (  Z s   ) s≤t   ] . As we show in Section IIC, the 

posterior beliefs about  δ  conditional on stopping at time  t  when   Z t   = b(t)  are nor-

mal with mean   X t    and variance  2 σ  t  
2 . 

If the agent stops at time  t  when   Z  t  
l  −  Z  t  

r  = b(t ) ,  then the conditional means   X  t  
l  ,  

X  t  
r   satisfy   X  t  

l    −  X  t  
r  = b(t)  α   −2   σ  t  

2  ≡ k(t ) ,  and the probability that the agent picks  l  

when  r  is optimal is

 Pr [  θ   l   <  θ   r  |  X  t  
l  −  X  t  

r  = k(t ) ] = Pr [(  θ   l  −  θ   r  )  − (  X  t  
l  −  X  t  

r  ) ≤ − k(t) |  X  t  
l  −  X  t  

r  =  k   ∗ (t)] 

  = Pr [  
( θ   l  −  θ   r  ) − ( X  t  

l  −  X  t  
r  )
  _________________  

 √ 
_
 2    σ t  

   ≤ −   
k(t)

 _ 
 √ 

_
 2    σ t  

   |  X  t  
l  −  X  t  

r  = k(t)]  = Φ (−   1 _ 
 √ 

_
 2  
   k(t)  σ  t  

−1 ) . 

Note that since the beliefs depend only on the endpoint and not on the whole path, 

we have

   Pr [  θ   l  <  θ   r  |  X  t  
l  −  X  t  

r  = k(t ) ]  

    = Pr[  θ   l  <  θ   r  |  X  t  
l  −  X  t  

r  = k(t ) and |  X  s  
l   −  X  s  

r  | < k(s) for all s < t] .

By the symmetry of the problem, the probability of mistakenly picking  r  instead of  

l  is the same. ∎

D. The Value Function

We use the following representation of the posterior process in the uncertain-dif-

ference model.
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LEMMA 1: For any  t > 0 ,

   X  t  
i  =  X  0  

i   +  ∫ 
0
  
t

      α   −1  _  
 σ  0  

−2  + s α   −2 
    d W  s  

i    ,

where   W  s  
i    is a Brownian motion with respect to the �ltration information of the 

agent.

PROOF:

This follows from Theorem 10.1 and equation 10.52 of Liptser and Shiryaev 

(2001) by setting  a = b = 0  and  A = 1, B = α . ∎

De�ne the continuation value as the expected value an agent can achieve by using 

the optimal continuation strategy if she believes the posterior means to be  ( x   l ,  x   r  )  
at time  t  and the variance of her prior equaled   σ  0  

2   at time 0 and the noisiness of the 

signal is  α :

  V(t,  x   l ,  x   r , c,  σ 0  , α) ≔  sup  
τ≥t

     E (t,  x   l ,  x   r ,  σ 0  , α)   [max {  X  τ  
l   ,  X  τ  

r   } − c (τ − t)] . 

LEMMA 2: The continuation value  V  has the following properties:

 (i)   E (t,  x   l ,  x   r ,  σ 0  , α)   [ max  {  θ   l  ,  θ   r  } ]  ≥ V(t,  x   l  ,  x   r  , c,  σ 0   , α )  ≥ max  {  x   l  ,  x   r  }. 

 (ii)  V(t,  x   l  ,  x   r  , c,  σ 0   , α )  − β = V(t,  x   l  − β,  x   r  − β, c,  σ 0   , α)  for every  β ∈ ℝ. 

 (iii) The function  V(t,  x   l  ,  x   r  , c,  σ 0   , α )  −  x   i   is decreasing in   x   i   for  i ∈ {l, r} .

 (iv)  V(t,  x   l  ,  x   r  , c,  σ 0   , α)  is increasing in   x   l   and   x   r . 

 (v)  V(t,  x   l  ,  x   r  , c,  σ 0   , α)  is Lipschitz continuous in   x   l   and   x   r  .

 (vi)  V(t,  x   l  ,  x   r  , c,  σ 0   , α)  is non-increasing in  t .

 (vii)  V(t,  x   l  ,  x   r  , c,  σ 0   , α )  = V(0,  x   l  ,  x   r  , c,  σ t   , α)  for all  t > 0 .

Proof of Lemma 2

In this proof we equivalently represent a continuation strategy by a pair of stop-

ping times  (  τ    l  ,  τ    r  )  , one for each alternative.

PROOF OF (i):
For the lower bound, the agent can always stop immediately and get   x   l   or   x   r  . For 

the upper bound, the agent can’t do better than receiving a fully informative signal 

right away and picking the better item immediately.
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PROOF OF (ii):
Intuitively, this comes from the translation invariance of the belief process  X . To 

prove the result formally, �x a continuation strategy  ( τ     l ,  τ     r  ) . Recall that by Lemma 1 

we can represent   X t    as   X  t  
i  =  X  0  

i   +  ∫ 
0
  t      α   −1  _______ 
 σ  0  

−2  + s α   −2 
    d W  s  

i    and thus  ( τ     l ,  τ     r  )  can be inter-

preted as a mapping from paths of the Brownian motion  ( W   l  ,  W   r  )  into stopping 

times. As such we can de�ne the strategy as a function of the Brownian motion  W  

without explicit reliance on the belief process  X  and its starting value. The expected 

payoff when using the strategy  ( τ     l ,  τ     r  )  equals

   E [ 1 { τ    l ≤ τ    r   }    X   τ    l   
l   +  1 { τ    l > τ     r  }    X   τ    r   

r   − c (min {  τ    l ,  τ     r  } − t)  |  X  t  
l  =  x   l  − k,  X  t  

r  =  x   r  − k] 

    = E [ 1 { τ    l ≤ τ    r   }   ( ∫ 
t
   τ   

 l       α   −1  _  
 σ  0  

−2  + s α   −2 
    d W  s  

l   +  x   l  − k)  

 +  1 { τ    l > τ    r   }   ( ∫ 
t
  
 τ    r 
      α   −1  _  
 σ  0  

−2  + s α   −2 
    d W  s  

r  +  x   r  − k)  − c (min {  τ    l ,  τ    r  } − t)  ] 

      = E [ 1 { τ    l ≤ τ    r  }    X   τ    l   
l   +  1 { τ    l > τ    r  }    X   τ    r   

r   − c (min {  τ    l  ,  τ    r  } − t)   |  X  t  
l  =  x   l  ,  X  t  

r  =  x   r ]  − k . 

Since  V  is de�ned as the supremum over all continuation strategies  (   τ    l ,  τ     r   )  the result 

follows.

PROOF OF (iii):
The expected difference between stopping at time  t  with option  l  and using the 

continuation strategy  ( τ     l  ,  τ     r  )  is

 E [ 1 { τ    l ≤ τ    r  }    X   τ    l   
l   +  1 { τ    l > τ    r  }    X   τ   r   

r   − c (min {  τ    l ,  τ    r  } − t)   |  X  t  
l  =  x   l ,  X  t  

r  =  x   r ]  −  x   l 

= E [ 1 { τ    l ≤ τ    r }   ( X   τ    l   
l   −  x   l  ) +  1 { τ    l > τ    r  }   ( X   τ    r   

r   −  x   l  ) − c (min { τ    l ,  τ    r  } − t)  |  X  t  
l  =  x   l ,  X  t  

r  =  x   r ] 

= E [ 1 { τ    l ≤ τ    r  }   ∫ 
t
   τ   

 l      α   −1  _  
 σ  0  

−2  + s α   −2 
   d W  s  

l   +  1 { τ    l > τ    r  }   ( X   τ   r   
r   −  x   l  ) − c (min { τ    l ,  τ    r  } − t)  |  X  t  

l  =  x   l ,  X  t  
r  =  x   r ]  .

Note that the �rst part is independent of   x   l   , and  ( X   τ    r   
r   −  x   l  )  is weakly decreasing in   x   l  . 

As for every �xed strategy  ( τ    l ,  τ    r  )  the value of waiting is decreasing, the supremum 

over all continuation strategies is also weakly decreasing in   x   l .  Thus it follows that 

the difference between continuation value  V(t,  x   l ,  x   r , c,  σ 0  , α)  and value of stopping 

immediately on the �rst arm   x   l   is decreasing in   x   l   for every  t  and every   x   r  . Intuitively, 

because the valuations of the objects are independent, increasing the belief about 1 

arm has no effect on the expected value of the other. If there were only 1 choice, 

then  V(x )  − x  would be constant and equal to 0; because the agent might take the 

other arm the impact of higher signals is “damped” and so  V − x  is decreasing 

in  x . 
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PROOF OF (iv):
The expected value of using the continuation strategy  ( τ   l  ,  τ   r  )  equals

 E [ 1 { τ    l ≤ τ    r  }    X   τ    l   
l   +  1 { τ    l > τ    r  }    X   τ    r   

r   − c (min {  τ    l ,  τ    r  } − t)  |  X  t  
l  =  x   l  ,  X  t  

r  =  x   r ] 

  = E [ 1 { τ    l ≤ τ    r  }   ( ∫ 
t
   τ   

 l      α   −1  _  
 σ  0  

−2  + s α   −2 
    d W  s  

l   +  x   l )  +  1 { τ    l > τ    r  }   X   τ    r   
r   − c (min {  τ    l ,  τ    r  } − t)  |  X  t  

l  =  x   l ,  X  t  
r  =  x   r ] 

  = E [ 1 { τ    l ≤ τ    r  }    ∫ 
t
   τ   

 l       α   −1  _  
 σ  0  

−2  + s α   −2 
    d W  s  

l   +  1 { τ    l > τ    r  }    X   τ    r   
r   − c (min {  τ    l ,  τ    r  } − t)   |  X  t  

l  =  x   l  ,  X  t  
r  =  x   r ] 

 +  x   l  E [ 1 { τ    l ≤ τ    r  }   |  X  t  
l  =  x   l  ,  X  t  

r  =  x   r  ] , 

which is weakly increasing in   x   l  . Consequently, the supremum over all continuation 

strategies  ( τ    l ,  τ    r  )  is weakly increasing in   x   l  . By the same argument it follows that  

V(t,  x   l  ,  x   r  , c,  σ 0   , α)  is increasing in   x   r .

 PROOF OF (v):
To see that the value function is Lipschitz continuous in   x   l   and   x   r   with constant 

1, note that changing the initial beliefs moves the posterior beliefs at any �xed time 

linearly and has no effect on the cost of stopping at that time. Thus, the supremum 

over all stopping times can at most be linearly affected by a change in initial belief. 

To see this explicitly, observe that

    |V(0,  x   l ,  x   r , c,  σ 0  , α)  − V(0,  y   l ,  x   r , c,  σ 0  , α)| 

 =  |  sup  
τ
    E [max { x   l  +  ∫ 

0
  
τ
      α   −1  _  
 σ  0  

−2  + s α   −2 
    d W  s  

1 ,  x   r  +  ∫ 
0
  
τ
      α   −1  _  
 σ  0  

−2  + s α   −2 
    d W  s  

2 }  − c(τ)] 

    −  sup  
τ
    E [max  { y   l  +  ∫ 

0
  
τ
      α   −1  _  
 σ  0  

−2  + s α   −2 
    d W  s  

1 ,  x   r  +  ∫ 
0
  
τ
      α   −1  _  
 σ  0  

−2  + s α   −2 
    d W  s  

2 }  − c(τ)] | 
 ≤  | sup  

τ
    E [max  { x   l  +  ∫ 

0
  
τ
      α   −1  _  
 σ  0  

−2  + s α   −2 
    d W  s  

1 ,  x   r  +  ∫ 
0
  
τ
      α   −1  _  
 σ  0  

−2  + s α   −2 
    d W  s  

2  } 

     − max  {  y   l  +  ∫ 
0
  
τ
      α   −1  _  
 σ  0  

−2  + s α   −2 
    d W  s  

1 ,  x   r  +  ∫ 
0
  
τ
      α   −1  _  
 σ  0  

−2  + s α   −2 
    d W  s  

2  }  ] |  ≤ |  y   l  −  x   l  |. 

PROOF OF (vi):
We show that  V(t,  x   l ,  x   r , c,  σ 0  , α)  is decreasing in  t . Note that by Doob’s optional 

sampling theorem for every �xed stopping strategy  τ ,

 E [max {  X  τ  
l   ,  X  τ  

r   } − cτ |  X t   = ( x   l ,  x   r  )]  = E [max {  X  τ  
l   −  X  τ  

r   , 0} +  X  τ  
r   − cτ |  X t   = ( x   l ,  x   r  )] 

  = E [max {  X  τ  
l   −  X  τ  

r   , 0} − cτ |  X t   = ( x   l ,  x   r  )]  +  x  t  
r  . 
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De�ne the process   X t   ≔  X  t  
l  −  X  t  

r   , and note that

(A4)   X t   =  X  t  
l  −  X  t  

r  =  X  0  
l   −  X  0  

r   +  ∫ 
0
  
t

      α   −1  _  
 σ  0  

−2  + s α   −2 
   (d W  s  

l   − d W  s  
r )  

 =  X  0  
l   −  X  0  

r   +  ∫ 
0
  
t

      √ 
_
 2    α   −1  _  

 σ  0  
−2  + s α   −2 

   d  W ̃   s   ,  

where   W ̃    is a Brownian motion. De�ne a time change as follows: Let  q(k)  solve 

 k =  ∫ 
0
  
q(k)

    (   √ 
_
 2    α   −1  _______ 

 σ  0  
−2  + s α   −2 

  )    
2

  ds.  This implies that  q(k) =   k  α   2   σ  0  
−2  _____ 

2  σ  0  
2  − k

   . De�ne 

 ψ(t) =   2  σ  0  
2  t
 ______ 

 α   2   σ  0  
−2  + t

   . By (Theorem 1.6, chapter V of Revuz and Yor 1999) 

  W s   ≔  ( X q(s)  ) s∈[0, 2 σ  0  
2 ]    is a Brownian motion and thus we can rewrite the problem as

 V(t,  x   l ,  x   r , c,  σ 0  , α) =   sup  
τ≥ψ(t)

   E [max { W τ    , 0} − c(q(τ) − q(ψ(t))) |  W ψ(t)   =  x   l  −  x   r ]  +  x   r 

 =   sup  
τ≥ψ(t)

   E [max { W τ    , 0} − c  ( ∫ ψ(t)  
τ
     q ′  (s) ds)  |  W ψ(t)   =  x   l  −  x   r ]  +  x   r 

 =   sup  
τ≥ψ(t)

   E [max { W τ   , 0} − c ( ∫ ψ(t)  
τ
      2  α   2  _ 

 (2  σ  0  
2  − s)   2 

   ds)  |  W ψ(t)   =  x   l  −  x   r ]  +  x   r . 

Next, we remove the conditional expectation in the Brownian motion by adding the 

initial value

 V(t,  x   l ,  x   r , c,  σ 0  , α) =   sup  
τ≥ψ(t)

   E [max {  W τ   +  ( x   l  −  x   r ) , 0} − c ∫ ψ(t)  
τ
      2 α   2  _ 

 (2 σ  0  
2  − s)   2 

    ds]  +  x   r . 

De�ne   τ ˆ   = τ − ψ  and without loss of generality let   x   l  <  x   r   , then

 V(t,  x   l ,  x   r , c,  σ 0  , α) =  sup  
 τ ˆ   ≥0

    E [max {  W τ   − |  x   l  −  x   r  |, 0} − c  ∫ ψ(t)  
ψ(t)+ τ ˆ  

     2 α   2  _ 
 (2 σ  0  

2  − s)   2 
    ds]  + max {  x   l ,  x   r  }; 

because the current state is a suf�cient statistic for Brownian motion we have

 V(t,  x   l ,  x   r , c,  σ 0  , α) =  sup  
 τ ˆ   ≥0

    E [max {  W τ   − |  x   l  −  x   r  |, 0} − c  ∫ 
0
  
 τ ˆ  
     2 α   2  _____________  
 (2 σ  0  

2  − s − ψ(t))   2 
    ds]  + max {  x   l ,  x   r  }. 

Note that for every �xed strategy  τ  the cost term is increasing in  t  and  ψ(t)  and thus  

V(t,  x   l ,  x   r , c,  σ 0  , α) − max  {  x   l  ,  x   r  }  is non-increasing.

PROOF OF (vii):
Note that Lemma 1 implies that for any  t <  t ′   ,

   X   t ′    
i   =  X  t  

i  +  ∫ 
0
  
 t ′  −t

      α   −1   ________________  
( σ  0  

−2  +  α   −2  t)  +  α   −2  s
    d W  t+s  

i     ,
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where   W  s  
i    is a Brownian motion with respect to the �ltration information of the 

agent. Thus, if the agent starts with a prior at time 0 equal to    ( X 0  ,  σ  0  
2  )  , then her 

belief at time   t ′    is exactly the same as if she started with a prior at  t  equal to   ( X t  ,  σ  t  
2 )  

where   σ  t  
−2  =  σ  0  

−2  +  α   −2  t . Thus,  V(t,  x   l ,  x   r , c,  σ 0  , α) = V(0,  x   l ,  x   r , c,  σ t  , α) . ∎

E. Proof of Theorem 4

Part 4 of the Theorem follows from simple algebra. We prove the remaining parts 

below. Note that part 3d is proved using Lemma 3, which relies only on parts 1–3c 

of Theorem 4.

1.   k   ∗   is well de�ned.—De�ne the function  k  implicitly by   k   ∗  (t) ≔ min  { x ∈ ℝ :  0  
= V(t, −x, 0, c,  σ 0  , α)} . To see that the set above is nonempty for all  t  , suppose 

toward contradiction that there is some  t  for which  V(t, −x, 0, c,  σ 0  , α) > 0  for all  

x > 0 . As  V  nonincreasing by Lemma 2, it follows that  V( t ′  , −x, 0, c,  σ 0   , α) > 0  

for all   t ′   < t .32 Fix   t ′   < t ; this implies that the agent never stops between   t ′    and  t  , 

which implies that he incurs a sure cost of  (t −  t ′  ) c . An upper bound for his value of 

continuing at  t  is given by part (i) of Lemma 2. But   lim x→∞    E ( t ′  ,−x, 0,  σ 0  , α)  max  {  θ   l ,  θ   r  } 
= 0  , a contradiction. Since  V  is continuous in  x  by part (v) of Lemma 2, the mini-

mum is attained.

2. Characterization of the optimum by   k   ∗  .—Note that due to the symmetry of 

the problem  V(t,  x   l ,  x   r , c,  σ 0  , α) = V(t,  x   r ,  x   l , c,  σ 0  , α).  Without loss of generality 

suppose   x   l  ≤  x   r  . As   X t    is a Markov process, the principle of optimality33 implies 

that the agent’s problem admits a solution of the form  τ = inf  { t ≥ 0 :  max i=l, r    X  t  
i  

≥ V(t,  X  t  
l ,  X  t  

r  , c,  σ 0  , α)} . Thus, it is optimal to stop if and only if

  0 = V(t,  x   l ,  x   r , c,  σ 0  , α)  − max {  x   l ,  x   r  } = V(t,  x   l ,  x   r , c,  σ 0  , α)  −  x   r  

 = V(t,  x   l  −  x   r , 0, c,  σ 0  , α). 

As   x   l  −  x   r  ≤ 0  ,  V  is monoto ne increasing in the second argument (by Lemma 2, 

part (iv), and  V(t,  x   l  −  x   r , 0, c,  σ 0  , α) ≥ 0  we have

 {0 = V(t,  x   l  −  x   r , 0, c,  σ 0   )} = {  x   l  −  x   r  ≤ −  k   ∗  (t)} = { |  x   l  −  x   r  | ≥  k   ∗  (t ) }. 

Hence the optimal strategy equals   τ   ∗  = inf  { t ≥ 0 : |  X  t  
l  −  X  t  

r  | ≥  k   ∗  (t)}. 

3a. Monotonicity.—Recall that by Lemma 2 the value function  V  is non-increas-

ing in  t . Suppose that  t <  t ′   ; then

 0 = V(t, − k   ∗  (t, c,  σ 0  , α), 0, c,  σ 0    α)  ≥ V( t ′  , − k   ∗  (t, c,  σ 0  , α), 0, c,  σ 0  , α). 

32 If  t = 0  , then use part (vii) of Lemma 2 to shift time. 
33 Our model does not satisfy condition (2.1.1) of Peskir and Shiryaev (2006) because for some stopping times 

the expected payoff is  − ∞  , but as they indicate on p. 2 the proof can be extended to our case. 
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By Lemma 2,  V( t ′  , − k   ∗ (t, c,  σ 0  , α ), 0, c,  σ 0  , α ) ≥ 0  , so  0 = V( t ′  , − k   ∗  (t, c,  σ 0  , α ), 
0, c,  σ 0  , α) . Hence,

  k   ∗  (t, c,  σ 0  , α) ≥ inf { x ∈ ℝ :  0 = V( t ′  , −x, 0, c,  σ 0  , α)} =  k   ∗  ( t ′  , c,  σ 0  , α). 

3b. Positivity.—The payoff of the optimal decision rule is at least as high as the 

payoff from using the strategy that stops at time  Δ  for sure. Because the information 

gained over a short time period  Δ  is of order   ϵ   1/2   and the cost is linear, it is always 

worth buying some information when the expected utility of both options is the 

same. To see this formally, suppose that   x   l  =  x   r  = x,  and note that

 V(t, x, x, c,  σ 0  , α) − x =  sup  
τ
    E [max {  W τ   , 0} −  ∫ 

0
  
τ
     2c α   2  _____________  
 (2 σ  0  

2  − s − ψ(t))   2 
    ds] 

 ≥ E [max {  W ϵ   , 0} −  ∫ 
0
  
ϵ
     2c α   2  _____________  
 (2 σ  0  

2  − s − ψ(t))   2 
    ds] 

 =  ∫ 
0
  
∞

   z   1 _ 
 √ 
_

 2πϵ  
    e   −   z   

2  _ 
2ϵ    dz −  ∫ 

0
  
ϵ
     2c α   2  _____________  
 (2 σ  0  

2  − s − ψ(t))   2 
    ds

 ≥  √ 
_

   ϵ _ 
2π     −   2c α   2  ϵ  ______________  

 (2 σ  0  
2  − ψ(t)  − ϵ)   2 

  

 ≥  √ 
_

   ϵ _ 
2π     −   2c α   2 ϵ  ______________  

 (2 σ  0  
2  − ψ(t) −  ϵ ̃  )   2 

   

for all �xed   ϵ ̃   ∈ [ϵ, 2  σ  0  
2  − ψ(t)) . As the �rst term goes to zero with the speed of 

square root while the second term shrinks linearly we get that  V(t, x, x, c,  σ 0  , α) − 
max  { x, x} > 0  for some small  ϵ > 0  and thus the agent does not stop when her 

posterior mean is the same on both options.

3c. Zero limit.—Let   k   ∗  (s, c,  σ 0  , α) ≥  K   ∗  > 0  for all  s ≥ t . Consider the time  

t  history where   X  t  
l  =  X  t  

r  . The probability that the agent never stops (and thus pays 

in�nity costs) is bounded from below by the probability that the process   X   l  −  X   r   
stays in the interval  [− K   ∗ ,  K   ∗  ]  ,

 Pr [  sup  
s∈[t,∞)

   |  X  s  
l   −  X  s  

r  | < k(s, c,  σ 0  , α) |  X  t  
l  =  X  t  

r ]  ≥ Pr [  sup  
s∈[t,∞)

   |  X  s  
l   −  X  s  

r  | <  K   ∗  |  X  t  
l  =  X  t  

r  ] . 

By the time change argument used in Section IE this equals the probability that a 

Brownian motion   ( W t   ) t∈ ℝ +      leaves the interval  [−K, K]  in the time from  ψ(t)  to  2 σ  0  
2   ,

 Pr [  sup  
s∈[t,∞)

   |  X  s  
l   −  X  s  

r  | <  K   ∗  |  X  t  
l  =  X  t  

r ]  = Pr [  sup  
s∈[ψ(t), 2 σ  0  

2 ]
   |  W s   | <  K   ∗ (s)] . 

This probability is non-zero. Thus, there is a positive probability the agent incurs 

in�nite cost. Because the expected gain is bounded by the full information payoff, 

this is a contradiction.
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3d. Lipschitz continuity of   k   ∗   in  t .—Let   λ ϵ   =   (1 + ϵ α   −2   σ  0  
2 )    −1/2

  < 1  and note 

that by de�nition   λ ϵ    σ 0   = σ(ϵ) . We can thus use equations (A6), (A7), and (A9) to 

get

  k   ∗  (ϵ, c,  σ 0  , α) =  k   ∗  (0, c, σ(ϵ), α) =  λ ϵ    k   
∗  (0, c λ  ϵ  

−3 ,  σ 0   )  ≥  λ  ϵ  
4   k   ∗  (0, c,  σ 0   , α). 

As a consequence we can bound the difference between the value of the barrier at 

time zero and at time  ϵ  from below,

(A5)   k   ∗  (ϵ, c,  σ 0  , α )  −  k   ∗  (0, c,  σ 0  , α)  ≥  [  (1 + ϵ α   −2   σ  0  
2 )    −2

  − 1]  k   ∗  (0, c,  σ 0   , α )  

 ≥ − 2 α   −2   σ  0  
2  ϵ  k   ∗  (0, c,  σ 0   , α),  

where the last inequality follows from convexity of the function  

ϵ ↦   (1 + ϵ α   −2   σ  0  
2 )    −2

  − 1 . Since   k   ∗   is nonincreasing in  t  , the upper bound is zero. 

Thus, by equation (A6), inequality (A5), and then equation (A6) again, we have:

 0 ≥  k   ∗  (t + ϵ, c,  σ 0  , α) −  k   ∗ (t, c,  σ 0  , α) =  k   ∗  (ϵ, c,  σ t  , α) −  k   ∗  (0, c,  σ t  , α)

 ≥ −2 α   −2   σ  t  
2  ϵ  k   ∗  (0, c,  σ t  , α)

  = − 2 α   −2   σ  t  
2  ϵ  k   ∗  (t, c,  σ 0   , α)

 ≥ − 2 α   −2   σ  0  
2  ϵ  k   ∗  (t, c,  σ 0   , α), 

where the last inequality follows since   σ t    is decreasing in  t . Hence, the function is 

Lipschitz with constant at most  2 α   −2   σ  0  
2   k   ∗  (0, c,  σ 0  , α) .

5.   k   ∗   and   b   ∗   pointwise decreasing.— V(t, −x, 0, c,  σ 0  , α)  is non-increasing in  c  as 

the decision maker with a lower  c  can always use the same strategy to guarantee 

himself a strictly higher value. Thus

   k   ∗  (t, c,  σ 0  , α) = min { x ∈ ℝ : 0 = V(t, −x, 0, c,  σ 0  , α)} 

is pointwise non-increasing in  c . Since   b   ∗  (t, c,  σ 0  , α) =  α   2   σ  t  
−2   k   ∗  (t, c,  σ 0   , α)  it fol-

lows that   b   ∗   is non-increasing in  c .  ∎

PROOF OF COROLLARY 1:

For part (i), notice that since  b  falls at every  t  , each sample path stops at least as 

soon when cost increases, which implies �rst-order stochastic dominance. To prove 

part (ii), recall that, as we argued in the proof of Theorem 1 the ratio of the probability 

of picking  l  divided by the probability of picking  r  conditional on making a decision 

at time  t  is given by    
 p   l  (t)
 ___ 

 p   r  (t)
   = exp (  

4 [  θ   l  −  θ   r  ] b(t)
  _________ α  )  . Hence, as   b   ∗ (t)  is decreasing in  c  , 

so is the probability of making the correct choice conditional on stopping at time  t . ∎
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F. Additional Lemma

LEMMA 3: The optimal solution   k   ∗  (t, c,  σ 0  , α)  to problem (6) satis�es:

(A6)   k   ∗  (t, c,  σ 0  , α) =  k   ∗  (0, c,  σ t  , α) for all t ≥ 0,

(A7)  k   ∗  (0, c, λ σ 0  , α) = λ  k   ∗  (0, c λ   −3 ,  σ 0  , α) for all λ > 0,

(A8)  k   ∗  (t, c,  σ 0  , λα) = λ  k   ∗  (t,  λ   −1 c,  λ   −1  σ 0  , α) for all t, λ > 0,

(A9)  k   ∗  (0, λc,  σ 0  , α) ≥  λ   −1   k   ∗  (0, c,  σ 0  , α) for all λ > 0. 

PROOF:

Equations (A6) and (A7) are a simple consequence of the time-rescaling 

Lemma O.2 in the online Appendix. Equation (A8) simply follows from dividing  V   

by  α . Equation (A9) follows because having more information is always better. The 

details can be found in the online Appendix. ∎

G. Proof of Proposition 3

When   X  0  
l   =  X  0  

r   ,   δ ≕   θ   l  −  θ   r   has a normal distribution with mean 0, so by 

Theorem 2 it suf�ces to show that   k   ∗  (t, c,  σ 0  , α)  σ  t  
−1  =  k   ∗  (0, c,  σ t  , α)  σ  t  

−1   is  

decreasing in  t . From equation (A6) we have that   k   ∗   is strictly monotone in   σ 0    so 

the partial derivative exists almost everywhere and at the points of differentiability 

   ∂ __ ∂  σ t  
   [ k   ∗  (0, c,  σ t  , α)  σ  t  

−1 ]  =  k  σ  
∗   (0, c,  σ t  , α)  σ  t  

−1  −  k   ∗  (0, c,  σ t  , α)  σ  t  
−2  . We will now show  

that this is equal to  − 3c k  c  
∗  (0,  σ t  , c, α)  σ  t  

2   , which is nonnegative. To see that, we 

show that   k  σ  
∗   (0, c,  σ 0   , α)  σ 0   = − 3c k  c  

∗  (0, c,  σ 0   , α )  +  k   ∗  (0, c,  σ 0   , α) . Set   β ϵ    σ 0    
=  σ 0   + ϵ ⇒  β ϵ   = 1 + ϵ/ σ 0   . Inserting in equation (A7) gives

  k   ∗  (0, c,  σ 0    β ϵ  , α) =  k   ∗  (0, c,  σ 0   + ϵ, α) =  β ϵ    k   
∗  (0, c  β  ϵ  

−3 ,  σ 0  , α)

⇔  k   ∗ (0, c,  σ 0   + ϵ, α) −  k   ∗  (0, c,  σ 0  , α) =  k   ∗  (0, c  β  ϵ  
−3 ,  σ 0  , α) −  k   ∗  (0, c,  σ 0  , α) +   ϵ _  σ 0  

    k   ∗  (0, c  β  ϵ  
−3 ,  σ 0  , α). 

Dividing by  ϵ  and taking the limit  ϵ → 0  yields

       k  σ  
∗   (0, c,  σ 0  , α) =  k  c  

∗  (0, c,  σ 0  , α) c [ lim  
ϵ→0

      
 β  ϵ  

−3  − 1
 _ ϵ  ]  +   1 _  σ 0      k   

∗  (0, c,  σ 0  , α)

 =  k  c  
∗  (0, c,  σ 0  , α) c [− 3]    ∂  β ϵ   _ 

∂ ϵ
   +   1 _  σ 0      k   

∗  (0, c,  σ 0  , α)

 = −  k  c  
∗  (0, c,  σ 0  , α) c   3 _  σ 0     +   1 _  σ 0      k   

∗  (0, c,  σ 0   , α)

 ⇔  k  σ  
∗   (0, c,  σ 0  , α)  σ 0    = − 3 c  k  c  

∗  (0, c,  σ 0  , α) +  k   ∗  (0, c,  σ 0  , α). 
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Note that even   X  0  
l   ≠  X  0  

r   ,  the agent will still use the same boundary in belief space, 

which implies that his conditional probability of making the correct choice will be 

the same. ∎

Proof of Theorem 5.—The posterior variance on the difference is   
v t   =   ( σ  t  

l )    2  +   ( σ  t  
r )    2  =   1 _______ 

  ( σ  0  
i  )    −2

  +  y  t  
l 
   +   1 _______ 

  ( σ  0  
i  )    −2

  +  y  t  
r 
     , where   y  t  

i  =  ∫ 
0
  t   ( β  s  

i  )  ds  measures the 

total attention the agent has spent on alternative  i ∈ {l, r} .
We �rst consider the auxiliary problem of minimizing the posterior variance 

at some �xed time  t . At each point in time  s  the agent optimally exhausts 

the total attention budget of two,   β  t  
s  +  β  s  

r  = 2 . We claim that the agent can 

minimize the posterior variance   v t    by paying equal attention to the 2 signals   
β  t  

l  =  β  t  
r  = 1 . To see this, note that,   y  t  

l  +  y  t  
r   is bounded by  2t :

   y  t  
l  +  y  t  

r  ≤  ∫ 
0
  
t

     max  
 β   l ,  β   r ,  β   l + β   r ≤2

    β   l  +  β   r  ds =  ∫ 
0
  
t

   2 ds = 2t. 

Hence, we consider the the problem

     min  
( y  t  

l ,  y  t  
r )
     1 _ 
  ( σ  0  

i  )    
−2

  +  y  t  
l 
   +   1 _  

  ( σ  0  
i  )    

−2
  +  y  t  

r 
  

subject to

   y  t  
l  +  y  t  

r   = 2t. 

As the objective function is concave in   y  t  
l   and   y  t  

r   it follows that the solu-

tion to the above problem satis�es   y  t  
l  =  y  t  

r  = t . As this is achievable by 

  β  t  
l  =  β  t  

r  = 1  this means that the policy which pays equal attention minimizes the 

posterior variance at time any time  t  simultaneously. Denote the resulting time path 

of the posterior variance by    v ̃   t   .
The last step is to show that minimizing the posterior variance at each time is 

optimal. We are thus left to argue that for any stopping strategy  τ  according to which 

the agent takes a decision between the two objects it is better always if the posterior 

variance is lower. The remainder of the proof argues that this is indeed true and 

learning quicker is bene�cial to the agent. Fix an attention strategy  β  and denote by   
E   β  [ ⋅ ]  the associated expectation operator, and by   E    β   ⁎   [ ⋅ ]  the expectation operator 

associated with the limiting case where the agent switches attention instantaneously 

between the two objects. The optimal stopping policy  τ  is a solution to

(A10)   sup  
τ
     E   β  [max {  X  τ  

l   ,  X  τ  
r   } − cτ]  =  sup  

τ
     E   β  [max {  X  τ  

l   −  X  τ  
r   , 0} − cτ]  +  X  0  

r   .

By the Dambis, Dubins, Schwarz Theorem (see, e.g., Theorem 1.6, chapter 

V of Revuz and Yor 1999) there exists a Brownian motion   ( B ν   ) ν∈[0,  σ  0  
2 ]    such that 

  X  t  
l  −  X  t  

r  =  B  σ  0  
2 − v t     ; this a time change where the new scale is the posterior variance. 
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Furthermore, we can de�ne the stochastic process   ϕ ν   ≔ inf  { t :  σ  0  
2  −  v t   ≥ ν} . By 

equation (A10) the value of the agent is given by

   sup  
τ
     E   β  [max {  X  τ  

l   −  X  τ  
r   , 0} − cτ]  +  X  0  

r   =  sup  
ν
    E [max { B ν  , 0} − c ϕ ν  ]  +  X  0  

r  . 

As the posterior variance   v t    is greater than the minimal posterior variance    v ̃   t    we 

have that   ϕ ν   ≥   ϕ ̃   ν   ≔ inf  { t :  σ  0  
2  −   v ̃   t   ≥ ν} . It follows from   ϕ r   ≥   ϕ ̃   r    that the value 

when using the attention strategy  β  is smaller that the value achieved in the limit 

when the agent constantly switches attention between the two signals,

   sup  
τ
     E   β  [max { X  τ  

l   ,  X  τ  
r   } − cτ]  =  sup  

ν
    E [ B ν   − c ϕ ν  ]  +  X  0  

r   

 ≤  sup  
ν
    E [max { B ν  , 0} − c  ϕ ̃   ν  ]  +  X  0  

r  

  =  sup  
τ
     E    β   ⁎   [max {  X  τ  

l   ,  X  τ  
r   } − cτ] .  ∎
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