
Speed and Voltage Selection for GALS Systems Based on
Voltage/Frequency Islands

Koushik Niyogi
Electrical and Computer Engineering

Carnegie Mellon University
Email: kniyogi@ece.cmu.edu

Diana Marculescu
Electrical and Computer Engineering

Carnegie Mellon University
Email: dianam@ece.cmu.edu

ABSTRACT
Due to increasing clock speeds and shrinking technologies, dis-
tributing a single global clock signal throughout a chip is be-
coming a difficult and challenging proposition. In this paper,
we address the problem of energy optimal local speed and volt-
age selection in frequency/voltage island based systems under
given performance constraints. Our results show that static
voltage and speed assignment can achieve up to 42 % savings
in total energy for various media and signal processing appli-
cations, while application specific dynamic approaches provide
up to 44 % energy savings in the case of MPEG-2 encoder
application, when compared to a single clocked system archi-
tecture.

1. INTRODUCTION
Achieving power efficiency has become an increasingly diffi-

cult challenge, especially in the presence of increasing die sizes,
higher clock speeds and variability driven design issues. To
cope with these challenges, a design style based on multiple
Voltage/Frequency Islands (VFIs) has been proposed recently
[1]. In addition to controlling better local clock skews and
allowing for local performance optimizations, a multiple VFI
design style may enable application-driven adaptation for bet-
ter energy efficiency. As proposed before [1], “listening islands”
may be designed for managing local speeds or voltages to match
prescribed performance limits, while minimizing energy costs.

In support of a frequency island design style, a globally asyn-
chronous, locally synchronous (GALS) approach may serve as
an intermediate step between fully synchronous and fully asyn-
chronous designs, while at the same time providing certain local
adaptation capabilities. In GALS designs, the system is par-
titioned into synchronous blocks which are asynchronous with
respect to each other. The speed and voltage of each block
can be customized or chosen so as to meet the performance re-
quirement of the logic, thereby making it an inherently energy
efficient architecture.

The GALS approach is attractive because it eliminates the
need for the careful design and fine tuning of a global clock
distribution network, while still allowing proven synchronous
design methodologies to be employed in the design of the indi-
vidual modules. Designing SOCs using a voltage island based
GALS paradigm also facilitates powering off an island com-
pletely, thus eliminating both leakage and active power, since
each synchronous module uses a local clock which is not shared
by other modules on the chip.

Contribution of this paper. This paper addresses the
problem of selecting voltage and speed levels for each island in a
VFI system, such that overall dynamic energy cost is minimized
under given performance (throughput or latency) constraints.
Two cases are considered: (i) static voltage and speed assign-
ment; and (ii) application adaptive, dynamic voltage and speed
assignment. Our problem formulation is applicable to general
topologies with and without feedback paths and is solved as

a constrained, non-linear optimization problem by using La-
grange minimization methods. We apply these methods to two
real applications (software defined radio and MPEG-2 encoder)
and demonstrate the energy savings which can be achieved by
designing such systems as voltage island based GALS systems
compared to a single clock system architecture.

The rest of the paper is structured as follows. Section 2
presents our assumptions related to the system architecture
and the component graph hierarchy used to model a GALS
system. The problem formulation for local voltage and speed
selection is described in Section 3, while the static and dy-
namic cases are presented in detail in Sections 4 and 5. Section
6 shows our experimental framework, application description
and results. Section 7 describes related work to our proposed
speed and voltage selection methods, while Section 8 concludes
the paper with some final remarks and directions for future re-
search.

2. SYSTEM ARCHITECTURE
To this end, we consider a system comprised of a number of

synchronous cores, IPs or processing elements (PEs)1 (homo-
geneous or heterogeneous) that can be assigned to a single VFI
(in other words, cores cannot belong to more than one VFI). A
VFI can consist of a single PE or, depending on the physical or
design considerations, may include a group of PEs. We assume
that power is supplied to the voltage islands from an off or
on chip source and can be controlled independently from any
other island. This may be achieved using either on-chip volt-
age regulators or multiple power grids [2]. Each VFI is assumed
to have a voltage level above a certain value Vmin and, since
our architecture is globally asynchronous, locally synchronous,
each local module or core is assumed to be clocked using a ring
oscillator controlled by the variable intra-island supply voltage
using a digital phased lock loop [3][4].

Cores are assumed to communicate through mixed-clock in-
terfaces or FIFOs [5] that enable the use of varying speeds
between communicating PEs (Figure 1).

We also assume that the allocation and mapping of various
processes or computational kernels of the application to PEs, as
well as the number and types of the communication links and
PEs have already been determined. In our system architecture,
we assume that the processes have already been scheduled on
their respective processing elements. Also, a bounded number
of storage cells are available in the asynchronous FIFOs used
between two communicating PEs.

3. PRELIMINARIES
We use a directed acyclic graph based model termed as com-

ponent graph for the collection of communicating cores. In a
component graph G(V, E), synchronous cores are modelled as
communicating processes that have associated communication

1Cores, IPs and PEs will be used interchangeably throughout the
paper.

1

(V4, F4)

(V1, F1)PE1

PE4
Tsource

1 2

4

5 6

7

8

3

Figure 1: A VFI-based Component graph

channels between them. We consider the case of general on-
chip topologies that may include directed acyclic graphs, but
also graphs with feedback loops. In general, a component graph
may consist of a set of Strongly Connected Components (SCCs)
which essentially include feedback loops between different cores
in the system. We focus mainly on periodic signal processing
applications implemented as a system on a chip and having real
time rate and deadline constraints.

3.1 Rate Derivation of a Component Node
Since a communication channel between two cores or PEs

has a bounded capacity, it is required that the output rate
of the producer and the input rate of the consumer should
match. Thus assuming tp is the number of tokens produced
by the producer, tc is the number of tokens consumed by the
consumer, Tp and Tc are the time periods of the producer and
consumer respectively, while the rate for each node (Rp, Rc) is
the reciprocal of the period, then:

tp/Tp = tc/Tc

Tc =
Tp ∗ tc

tp
(1)

Rc = 1/Tc (2)

For the sake of simplicity, we shall consider tp = 1 and tc = 1
henceforth in this paper. Each source process has a known
input rate given by R = 1/Tinput. The rate of an output node
as well as all intermediate nodes can thus be derived from the
rate of the source nodes. For example in Figure 1, if node 1
has a time period of 4 ms, by our above formulation, node 2
has the same time period. Since nodes 3 and 5 each consume
one token from node 2, they too must have a period of 4ms.

3.2 Rate Derivation of SCCs
We denote by SCC in a component graph a strongly con-

nected component in which every vertex has a path to all other
vertices. A group of nodes which form a strongly connected
component in the component graph would be represented as a
single supernode. If we assume that each node in a SCC starts
executing independently of each other, the time period of every
process in a SCC can be shown to be the same [6] and equal
to the maximum mean cycle ratio of the SCC, i.e.,

Ti = max
C∈SCCi

(
d(C)

|C|) (3)

where C is a cycle in the SCC, d(C) is the sum of the path
delays of the cycle, |C| is the number of the edges in cycle C,
and Ti is the average time period of the nodes in the SCC.
Let us consider the example from Figure 1. Processes 5, 6
and 7 form a SCC. Let the execution time of each node be
2ms. Since each node starts executing independently at time
0, nodes 5, 6 and 7 execute at timestamps {0,2,4,· · · }. Here
d(C)=2+2+2 =6ms and |C|=3. Thus the time period of the
supernode =6/3=2ms.

Thus, given the execution cycles of each node in the SCC, one
can use the above methodology to calculate the average rate of

execution of each node. The SCC can then be represented as
a single supernode with this execution rate.

3.3 Energy Consumption and Delay
The energy consumption per sample for every processing el-

ement in the component graph G(V, E) is given by:

Ei(Vi) = Ci ∗ Ni ∗ V 2
i + ci ∗ ni ∗ Vi ∗ exp(−Vt/k) (4)

where the first term corresponds to dynamic power and the
second term corresponds to static (leakage) power consumed
while core PEi is not actively executing a process. In more de-
tail, Ci is proportional to the switched capacitance of PEi, Ni

is the number of active execution cycles for PEi, ci is propor-
tional to the number of off-devices in PEi, ni is the number of
idle cycles for processing a sample, k is a technology dependent
constant, while Vi and Vt are the voltage supply and threshold
voltage for PEi, respectively [7]. 2

Since we use a globally asynchronous locally synchronous ar-
chitecture, a fraction of the total chip energy will be spent in
communication between the PEs. In this paper we do not deal
with the optimization of the communication energy consump-
tion and treat it as a constant lumped in each PE’s processing
latency.3

The cycle time for the PEi core in G(V, E) can be written
as:

τi(Vi) = Ki ∗ Vi

(Vi − Vt)α
(5)

where Ki and α are technology dependent parameters [8].
Thus from (5), we get the worst case execution time of a process
on PEi at voltage Vi as (Wi is the worst case number of cycles
for the process mapped on PEi):

WCETi(Vi) = Wi ∗ τi(Vi) = (Wi ∗ Ki ∗ Vi)/(Vi − Vt)
α (6)

4. STATIC VOLTAGE ASSIGNMENT
The static voltage assignment problem for a given component

graph can be stated as:
Given a component graph G(V, E) comprised of a set of pro-

cesses mapped on a set of processing elements (PEs), find the
optimal voltage and clock frequency to be assigned statically to
each PE such that the energy per operation is minimized and
rate and/or latency constraints are satisfied.

More formally, this can be stated as a non-linear optimiza-
tion problem. Let P =< P1, P2, ..., Pm > be the set of simple
forward paths from the source S of the component graph to the
output or sink node T. For simplicity, we assume that the com-
ponent graph has a single source node and a single sink node.
However, the formulation can be easily extended to multiple
source multiple sink process graphs, whereby we will have cor-
responding response time and rate constraints for each source
and sink pair.

The performance (rate and latency) constrained energy min-
imization problem can thus be formulated as:

Minimize
∑

i∈V in G(V,E)

Ei(Vi) (7)

where Ei(Vi) is the energy consumed per sample in node i of
the component graph, such that the following rate and latency
constraints, respectively, are satisfied:

WCETi(Vi) ≤ Ti, ∀i ∈ V in G(V, E) (8)

2We assume that all cores have been implemented in the same tech-
nology and have a fixed threshold voltage. Techniques that involve
both supply voltage and threshold voltage selection are not consid-
ered in this paper.
3We assume that the interconnect is kept at the highest voltage
available on chip and is not subject to voltage scaling.

2

and ∑
i∈Pj

WCETi(Vi) ≤ D, ∀Pj ∈ P (9)

In equation (8), Ti is the time period constraint of each node,
while in (9), Vi is the voltage of the ith node and D is the
deadline of the system. Nodes which do not lie on a forward
path from the source to the sink node do not affect the latency
of the system.

Let us start by defining throughput constrained system and
latency constrained real time systems. A throughput constrained
system is dominated by its rate constraint as given in equation
(8). Thus, as long as each node in the component graph satis-
fies its rate constraint, the system will always satisfy its end to
end response time or latency. A latency constrained system, is
dominated by its response time constraint as given by equation
(9). In a simple throughput constrained system, we are given
the input processing rate and/or individual rate constraints for
each node in the component graph. We obtain a minimum en-
ergy configuration by setting the voltage of each node in the
component graph such that it satisfies equation (8). This en-
sures that there is no slack for each processing element. For a
simple latency constrained system, since the total energy of the
system is minimized by “just” meeting the deadline constraint
D, we can use Lagrange Multipliers to obtain a minimum en-
ergy configuration as shown in the subsection below.

4.1 Latency Constrained Systems
Let E =

∑
i∈V in G(V,E) Ei(Vi), which is the total energy

consumed per sample in a system of n cores each having an
individual voltage Vi, be the objective function. Each path
Pj(j = 1, · · · , m) in the set of simple forward paths in the
graph is associated with a constraint equation as formalized in
(9). Let there be m forward paths in the component graph G.
Let Vi be the voltage of node i in component graph G and Nj be
the number of nodes in the jth path of the graph. Then path
constraints Cj(j = 1, · · · , m) are functions of the individual
voltages of the nodes in the path. Thus:

Cj = (
∑

i∈Pj

Wi.Ki.Vi
(Vi−Vt)α) − D = 0, j = 1, · · · , m (10)

Thus, for E to be minimized, we need:

∂E/∂Vi =

m∑
j=1

λj(∂Cj/∂Vi), i = 1, · · · , n (11)

where the co-efficients λ1, · · · , λm are called Lagrange mul-
tipliers. The above system of equations has (n+m) variables
and (n+m) equations and can be solved using MATLAB or
iterative techniques. Let us consider the example of Figure 1.
We have two forward paths {1,2,3,4,8} and {1,2,5,6,8}. Node
7 does not affect the processing latency and so is not a part of
the equations. Thus the constraint equations are given by :
C1 = WCET (V1)+W CET (V2)+WCET (V3)+W CET(V4)+WCET (V8)−D = 0

C2 = WCET (V1)+W CET (V2)+WCET (V5)+W CET(V6)+WCET (V8)−D = 0

The Lagrange equations are given by
∂E/∂V1 = λ1.∂C1/∂V1 + λ2.∂C2/∂V1

...
∂E/∂V8 = λ1.∂C1/∂V8 + λ2.∂C2/∂V8

Substituting the values of E (equations (4) and (7)) and C1

and C2, we have (7+2) equations containing (7+2) variables
which can be solved to get values for V1, . . . , V8 (except V7 as
explained earlier) . Instead of a generalized component graph,
if we consider only a linear pipeline with a single source-to-sink
path, we get the following interesting result which we present
as a lemma. We later use this result in simple pipelined appli-
cations in our experimental section.

Lemma: For the static voltage assignment for latency con-
strained systems, in a single source-to-sink path, to achieve
minimum energy, the voltages assigned to the PEs are such
that the ratios of the energy and delay of each processing node
are equal.

Proof: Assume a linear pipeline of n nodes case where each
node in the pipeline produces and consumes a single data item.
From equation (9), we get the following inequality:

n∑
i=1

WCETi =
n∑

i=1

(Wi ∗ Ki ∗ Vi)/(Vi − Vt)
α) ≤ D (12)

For latency constrained systems, we can show that the total
energy is minimized when the PEs in the pipeline are designed
such that the total worst case execution time of the entire
pipeline equals the deadline D, i.e.,

∑n
i=1 WCETi = D. Ap-

plying the Lagrange minimization method, we get the following
relation between the voltages of the PEs:

C1.V1.(V1−Vt)
1+α

K1.(V1(1−α)−Vt)
= C2.V2.(V2−Vt)

1+α

K2.(V2(1−α)−Vt)
= · · · Cn.Vn.(Vn−Vt)

1+α

Kn.(Vn(1−α)−Vt)

(13)
If we consider τi(Vi) to be proportional to V 1−α

i , i.e., Vt <<
Vi, we get the following relation:

C1.V
(1+α)
1

K1
=

C2.V
(1+α)
2

K2
= · · · = Cn.V

(1+α)
n

Kn
(14)

or:
C1.V 2

1
K1.V 1−α

1
=

C2.V 2
2

K2∗V 1−α
2

= · · · =
Cn.V 2

n

Kn∗V 1−α
n

(15)

This implies:
E1
D1

= E2
D2

= · · · = En
Dn

(16)

where Ei, Di are the energy and delay per sample for the ith

PE.
�

To get a simple closed form expression for each voltage value,
substituting (14) in (12) we get the following assignment of

voltages using ηi = Ci/Ki and τi(Vi) ∝ V
(1−α)
i :

Vi =

(
(W1.K1.(η1/ηi)

α−1
1+α +···+Wn.Kn.(ηn/ηi)

α−1
1+α)

D

) 1
α−1

(17)

4.2 Static Voltage Assignment Algorithm
So far we have investigated the throughput and latency con-

straint cases separately. Most applications are characterized
by both throughput and latency constraints. Using the above
results and discussion, we present the following algorithm to
statically assign an optimal voltage and frequency to the set of
PEs so as to minimize the energy of the system, under both rate
and latency constraints. StaticVFAssign is an algorithm to
assign voltages to each core in our VFI islands in the presence
of both throughput and deadline constraints. We design for the
worst case execution time of each node in the component graph.
We assume that the WCETs and switched capapcitances of the
processes are known apriori through static profiling on the core.
We first solve for the rate constraints as shown in steps 2 and
3. If the voltages obtained satisfy the deadline constraint, the
static allocation algorithm stops. Otherwise, the system is a la-
tency constrained system. Step 6 calculates the voltages based
on the latency constraints only. If the voltages obtained for
any of the nodes from this step violates the rate constraint, we
ramp up its voltage (step 7). We fix the voltages of these nodes
in equation (9). The paths in which, none of the nodes have
their voltages ramped up, also have their node voltages fixed
since they just meet the deadline D and thus minimize slack.
To distribute the extra slack in the other paths, we incremen-
tally decrease deadline D by an user defined amount δD, and

3

Algorithm StaticVFAssign
Inputs: Component Graph G; Deadline D; Source rate R

discrete voltage levels V1 · · · Vs; Wi ∀ i ∈ G
Outputs: Voltages V1, · · · , Vn for cores PE1, · · · , PEn

1. Represent each SCC in G as a supernode.
2. For source rate R, derive execution rates Ri for each node i in
G. Rate of each node in SCC=derived rate of supernode
3. Solve for the rate constrained system using Eqs (7) and (8) to
get (V1r , · · · , Vnr).
4. Calculate the latency for the critical path (Tcritical) in G using
voltages obtained from step 3.
5. If Tcritical > D goto step 6

else
Map Vir from step 3 to discrete levels {V1, · · · , Vs}
return mapped voltages and exit

6. Solve for latency constrained system using Eqs (7) and (9) to
get (V1l, · · · , Vnl).
7. For all nodes i ∈ G

if (Vil < Vir)
Vil = Vir

Fix the values of Vis in Eq (9) with these Vil values
else do nothing

8. Repeat {
Dnew = D − δD /* new deadline */
Solve for latency constrained system using Eqs (7)
and (9) and Dnew to get new (V1l, · · · , Vnl).

9. } until {Vil > Vi,min and Vil < Vi,max}
10. Map (V1l, · · · , Vnl) to discrete levels {V1, · · · , Vs} and return

Table 1: Algorithm for Static Voltage Assignment

solve for the voltages of the remaining nodes iteratively until
we reach the highest possible deadline less than D which sat-
isfies the equations. The final voltages are mapped to the set
of discrete voltage levels (V1, · · · , Vs, s < n) assuming a finite
number of voltage levels are available. This algorithm ensures
a solution even though there might not be an optimal solution
satisfying the exact throughput and latency constraints.

5. DYNAMIC VOLTAGE SCALING
Each individual processing element in our architecture is a

locally synchronous module operating with its own clock and
either being a single VFI or sharing a VFI with another syn-
chronous module, depending on physical floorplanning of the
system on a chip. This facilitates dynamic voltage/frequency
scaling in each synchronous local module using a DC-DC volt-
age regulator and a variable delay ring oscillator maintaining
the local clock of the VFI and controlled by the voltage regu-
lator. In this section we examine a few strategies to perform
dynamic voltage scaling in a network of PEs under throughput
and latency constraints.

Prediction Based Intranode DVS
The results shown in the previous section for static voltage
assignment given latency constraints, would hold good in the
case of a system where an oracle has pre-existing knowledge of
the number of run time cycles used in each PE for processing
each sample of the application under consideration. In such
a case, for simple forward paths, instead of the result shown
in equation (17) we would need to use the actual number of
cycles per sample to get the following voltage assignment for
each PE, as follows:

Vi =

(
(A1.K1.(η1/ηi)

α−1
1+α +···+An.Kn.(ηn/ηi)

α−1
1+α)

D

) 1
α−1

(18)

where Ai = actual number of cycles ≤ Wi. The variation
in the number of run time cycles may occur due to the data
dependent behavior of the process executing on the PE. In real
life examples such as a mpeg encoder or decoder, the variabil-
ity in the processing of several modules such as motion esti-
mation, motion prediction and IDCT/DCT can be utilized to
ramp down the voltage of the corresponding processing ele-

ment, thereby saving energy.
However, an oracle based dynamic voltage assignment is un-

realistic in all practical applications since we do not have prior
knowledge of the processing time of each sample in a PE. Based
on some training data such as the number of cycles required by
the PE to process past samples, we may predict the workload
requirement of the PE for the next sample and scale the local
voltage accordingly. Such a scheme would be very useful in ap-
plications where the workload is mostly average case instead of
worst case. Prediction schemes may vary from a simple moving
average estimate to least mean square predictive filters [9].

Our approach to dynamic voltage scaling is a prediction
based one. DynamicVFAssign shows our dynamic voltage
scaling algorithm for real time applications with throughput
and latency constraints running on a VFI based framework.
The decision to change the voltage of a node is taken locally at
intervals of N cycles. Each node predicts the execution cycles
of the next sample based on the previous predicted and actual
cycles and an user defined factor ρ (0 < ρ <= 1) and scales
its voltage accordingly. If there is a misprediction, we assign a
penalty factor for the next sample and force it to run at a higher
voltage to meet our constraints. Each node maps its voltage
to available discrete voltage levels (V1, · · · , Vs, s < n). Though
a prediction based algorithm may create some constraint vio-
lations for very bursty traffic, these may be tolerated by a soft
real time system.

In some applications such as a MPEG encoder, some of the
PEs may be inactive for a significant number of cycles depend-
ing on the input data. In such cases, the power supply of the is-
land may be switched off, saving significant static power. Static
power minimization, however, is not the focus of this paper.
Also, ideally in a latency constrained system, the assignment
of optimal voltages would need a global decision strategy, as
shown in equation (18). The hardware costs associated with a
global controller makes it imperative to design a local/clustered
solution which is the direction of future work.

Algorithm DynamicVFAssign
Inputs: Component Graph G; Deadline D; Source rate R

discrete voltage levels V1, · · · , Vs; Wi ∀ i ∈ G
Outputs: Voltages V1, · · · , Vn at time t
1. Let Predi(current)=current predicted cycles, Ai(current)=
current actual cycles, Predi(prev)= previous predicted cycles,
Ai(prev)=previous actual cycles
2. For all nodes i ∈ G

Predi(current) = Wi

Set initial voltage to Vi(static) from StaticVFAssign
3. Repeat at every N cycles ∀ i ∈ G

Predi(current) = ρ ∗ Predi(prev) + (1 − ρ) ∗ Ai(prev)

Set Vi = Vi(static) ∗ (Predi(current)/Wi)∗ penalty factor
Map Vi s.t Vi ∈ {V1 · · ·Vs }
If(Predi(current) < Ai(current))

Set penalty factor> 1 for next sample
Run (Ai(current) − Predi(current)) cycles at Vmax

4. until (source is idle)

Table 2: Algorithm for Dynamic Voltage Scaling

6. EXPERIMENTAL RESULTS
In this section we describe a couple of case studies on real

life applications which can be implemented as heterogenous
multiprocessor system on a chip applications. To this end, we
perform our experiments on Myrmigki [10], a publicly avail-
able cycle accurate processor simulator, modifed to support
multiprocessor power and performance modeling, and ADS,
an ARM simulator [11]. Although the presented results tar-
get a system architecture comprised of homogeneous cores, our
results are equally applicable for heterogenous systems. Myr-
migki currently models the Hitachi SH architecture, specifically

4

the SH3 (60 Mhz, 3.3V). For the ARM simulator, we use an
ARM7TDMI core running at 133Mhz (1.6 V).

The first application under consideration is software radio,
which is partitioned into five components - source, low pass fil-
ter (LPF), demodulator (DEMOD), equalizer (EQ). Each com-
ponent is implemented as a stand alone application executing
on a single processor. The source state generates samples at a
fixed rate which are sent to the LPF node through a point to
point communication channel. In order to provide a better uti-
lization of available cores, we have built a more refined version
of the software radio in which the EQ stage is further parti-
tioned into ten stages (Figure 2) which receive samples in round
robin manner implementing a pipeline. Our baseline model is a

Figure 2: Software Radio with pipelined equalizer stage

single clock multiprocessor architecture having a single global
clock and voltage supply. We compare this baseline case with a
multiple VFI architecture in which each core running a different
process is a locally synchronous module with its own voltage
supply. We perform experiments with different rate and dead-
line constraints using our static voltage assignment algorithm.
We compare the energy savings per sample against the baseline
case. Since software radio does not show any data dependent
processing time variations, we only perform static voltage as-
signment experiments to prove the viability of a multiple VFI
based GALS architecture. The experimental results of run-

Figure 3: Software Radio static voltage allocation

Software Radio: 6 Voltage levels(3.3,2.9,2.5,2.1,1.7,1.3)(V)
LPF Demod Equalizer(10) Sink

Cycles 61494 33086 463193 32736
1 KHz (3.3,60) (2.1,38) (2.5,45) (2.1,38)
1KHz,13ms (3.3,60) (2.5,45) (2.5,45) (2.5,45)
1KHz,12ms (3.3,60) (2.9,52) (2.9,52) (2.9,52)
1KHz,10ms (3.3,60) (3.3,60) (3.3,60) (3.3,60)

Table 3: Voltage-frequency(V,MHz) assignments for nodes

ning a partitioned software radio on Myrmigki are shown in
Figure 3. In the baseline case, we run the modules on thirteen
60 Mhz, 3.3 V SH3 cores for an input 1 Khz signal. Applying
our static voltage assignment algorithm, we determine the volt-
age at which each core should run with the given input rate and
deadline constraints based on the worst case execution cycles of
each module. Myrmigki has a built-in instruction level energy
estimator which we use to calculate the switched capacitance
per node. Since SH3 is a simple five stage RISC architecture
and the instruction mix of each process of the software radio
are almost identical, we get equal switched capacitance/cycle

Figure 4: Partitioned MPEG-2 Encoder

values for each node (0.00124 µF/cycle). We record energy sav-
ings of up to 42% if we assume that a core can choose from an
infinite number of voltage levels. Assuming six discrete voltage
levels per node leads to as much as 40% savings per sample.
Our experiments (Figure 3) include a simple rate constraint
(1 Khz) as well as rate and latency constraints (10-13 ms).
Table 3 shows the worst case execution cycles and the static
voltage/frequency assignments per node based on latency and
deadline constraints. We observe that energy savings are less
as the deadline decreases due to more stringent restrictions on
a PE in the system. The strictest deadline is obtained by run-
ning each node at its maximum frequency, i.e, 60 Mhz in this
case.

As a second application, we have implemented a MPEG-2
video encoder using ARM7TDMI cores for our simulation. The
encoder is broken down into six components namely the mo-
tion estimator, motion predictor, DCT and quantization block,
IDCT and inverse quantization block, the variable length en-
coding block and the sink. Each component is modeled as
a separate process on an ARM7TDMI core. We are able to
pipeline the processing of macroblocks in this architecture,
though at the start of a new frame, the DCT and IDCT stages
have to be flushed requiring some extra buffering between the
pipeline stages. This is because a macroblock in a new frame
needs the processed data from the previous frame. As in the
software radio case, our baseline architecture is a single clock
domain architecture (133MHz, 1.6 V), which we compare against
multiple voltage/frequency GALS architecture. We perform
static voltage/speed assignment based on input rate and dead-
line constraints, and find out the energy savings per macroblock
processed using static worst case time analysis. The maximum
frame processing rate in this system is 3.5 frames/second be-
cause we use a slow (133MHz) core. Figure 5 shows the en-
ergy savings compared to the single clock domain architecture
for a YUV movie (99 macroblocks per frame) based on both
static and dynamic voltage assignment with infinite and lim-
ited (6) voltage levels. In the graph, VFI-static+dyn(INF)
refers to oracle based DVS with infinite voltage levels, while
VFI-pred+dyn refers to prediction based DVS using 6 discrete
voltage levels. Table 4 shows the worst case execution cycles
and the static voltage/frequency assignments per node based
on latency and deadline constraints. Since MPEG videos show
a lot of variability in processing time depending on the type of
frame being processed, we also perform prediction based dy-
namic voltage scaling on each processor as described in Section
6 (DynamicVFAssign). The prediction decision is taken at the
start of processing of a new macroblock at each node. We per-
form DVS over a period of 50 frames. Our experiments with
6 discrete voltage levels show no rate violations (per frame)
and a maximum of 3% deadline violations per macroblock for
very stringent deadline constraints (40ms/macroblock). As
the results show, we get around 5-13% savings for the static
case over the baseline architecture and a further 30-35% sav-
ings through dynamic voltage scaling. As expected, the savings
decrease with stringent latency constraints. However, we see
that even though our static energy savings decrease sharply,
the DVS based savings remain high. This is because most

5

Figure 5: MPEG Encoder energy savings for carphone.yuv

MPEG Encoder: 6 Voltage levels(1.6,1.4,1.2,1.0,0.85,0.65)(V)
ME Pred DCT VLC IDCT Sink

Cycles/MB 101282 16722 370060 43222 351259 3188
3.5f/s 0.65,54 0.65,54 1.6,133 0.65,54 1.6,133 0.65,54
3.5f/s,58ms 0.85,70 0.85,70 1.6,133 0.85,70 1.6,133 0.85,70
3.5f/s,50ms 1.0,83 1.0,83 1.6,133 1.0,83 1.6,133 1.0,83
3.5f/s,40ms 1.6,133 1.6,133 1.6,133 1.6,133 1.6,133 1.6,133

Table 4: Voltage-frequency(V,MHz) assignments for nodes

macroblocks require far less processing time than the worst
case execution cycles based on which we do our static design.

7. RELATED WORK
GALS systems have been studied in detail by Chapiro in

his thesis [12]. His work covers metastability issues in GALS
systems and outlines a stretchable clocking strategy which pro-
vides a mechanism for asynchronous communication.

In a GALS based system, the synchronous modules have to
communicate with each other asynchronously which may lead
to metastability issues. Chelcea and Nowick [5] use mixed clock
FIFOs as a low latency asynchronous communication mech-
anism between synchronous blocks. Mutterbasch et al. [4]
have implemented asynchronous wrappers around synchronous
blocks. They have used this methodology to design and fabri-
cate an asynchronous multi-point interconnect system consist-
ing of several GALS modules.

Dynamic Voltage Scaling schemes have been widely stud-
ied and implemented. In [3], an example of dynamic voltage
scaling in a system with self-timed circuits is presented. The
difference in pipeline stage latencies has been explored for low-
ering the power requirements at the system level [13]. In [14],
a novel modelling and simulation environment is presented for
multiple clock, dynamic voltage single core systems. Luo et
al. address the problem of static and dynamic voltage scaling
of multi-rate periodic task graphs and aperiodic tasks in dis-
tributed real time embedded systems in [15]. While they pri-
marily solve a scheduling problem on multiple PEs, we focus
on architecting voltage island based pre-mapped systems based
on rate and deadline constraints. Finally, Chandrakasan et al.
[16] present an approach to minimize the energy consumption
per data sample in variable DSP systems by adaptively min-
imizing the supply voltage for each sample using a variable
speed processor.

In [17], Peh et al. try to optimize both communication and
processor energy consumption by scaling voltages of the com-
munication links. In [18], Dhillon et al. propose an optimum
methodology for assigning supply and threshold voltages to
modules in a CMOS circuit to minimize energy consumption.
We model our problem at the level of application specific mod-
ules mapped onto a processing element as opposed to voltage
assignment to circuit level modules in this paper. Also, appli-
cation level variability in processing time allows us to perform
dynamic voltage/frequency scaling which is absent in the anal-
ysis in the afore mentioned paper.

8. CONCLUSIONS
This paper addresses the problem of selecting voltages and

speeds for voltage/frequency islands in a globally asynchronous,
locally synchronous systems. The problem of both rate and
latency constrained systems is considered and a practical solu-
tion for static and application adaptive, dynamic voltage and
speed scaling is provided. As a direction for future work, an
interesting problem in dynamic voltage scaling of latency con-
strained systems is to partition the computation of dynamic
voltages for the processing elements among several local lis-
tening islands controlling a group of processing elements. In
addition, extensions that include joint supply and threshold
voltage assignment can be considered and are the objective of
future work.

9. REFERENCES
[1] D.E. Lackey, P.S Zuchowski, T.R Bednar, D.W. Stout, S.W Gould,

and J.W Cohn. Managing power and performance for
system-on-chip designs using volatge islands. Proceedings of
IEEE/ACM International Conference on Computer Aided
Design, November 2002.

[2] IBM Blue Logic Cu-08 voltage islands.
http://www.ibm.com/chips/products/asics/products/v island.html.

[3] Lars S. Nielson, Cees Niessen, Jens Spars, and Kees Van Berkel.
Low-power operation using self timed circuits and adaptive scaling
of the supply voltage. IEEE Transactions on Very large Scale
Integration (VLSI) Systems, 2(4):391–397, December 1994.

[4] J. Muttersbach, T. Villiger, and W. Fichtner. Practical design of
globally asynchronous locally synchronous systems. Proceedings of
International Symposium on Advanced Research in
Asynchronous Circuits and Systems, April 2000.

[5] T. Chelcea and S.M. Nowick. A low latency fifo for mixed-clock
systems. Proceedings of IEEE Computer Society Workshop on
VLSI, April 2000.

[6] Ali Dasdan. Rate Analysis of Embedded Systems. PhD thesis,
University of Illinois at Urbana Champagne, 1998.

[7] J.Adam Butts and Gurindar Sohi. A static power model for
architects. Proceedings of International Symposium on
Microarchitecture, December 2000.

[8] C. Hu. Devices and Technology Impact on Low Power
Electronics, Low Power Design Methodolgies. Kluwer Academic
Publishers, 1996.

[9] A. Sinha and A. Chandrakasan. Dynamic voltage scaling using
adaptive filtering of workload traces. Proceedings of International
Conference of VLSI Design, January 2001.

[10] Myrmigki cycle accurate simulator. www.myrmigki.org.

[11] ARM Developer Suite.
http://www.arm.com/products/DevTools/ADS.html.

[12] D.M. Chapiro. Globally Asynchronous Locally Synchronous
Systems. PhD thesis, Stanford University, 1984.

[13] G. Qu, D. Kirovski, M. Potkonjak, and M. B. Srivastava. Energy
minimization of system pipelines using multiple voltages.
Proceedings of IEEE International Symposium on Circuits and
Systems, May 1999.

[14] Anoop Iyer and Diana Marculescu. Power efficiency of voltage
scaling in multiple clock, multiple voltage cores. Proceedings of
IEEE/ACM International Conference on Computer Aided
Design, November 2002.

[15] Jiong Luo and Niraj Jha. Static and dynamic variable voltage
scheduling algorithms for real time heterogenous distributed
embedded systems. Proceedings of IEEE/ACM International
Conference on Computer Aided Design, November 2000.

[16] A. Chandrakasan, V. Gutnik, and T. Xanthopolous. Data driven
signal processing: An approach for energy efficient computing.
Proceedings of International Symposium on Low Power
Electronics and Design, August 1996.

[17] LS Peh and Niraj K. Jha. Simultaneous dynamic voltage scaling of
processors and communication links in real time distributed
embedded systems. Proceedings of IEEE Design Automation and
Test in Europe, March 2003.

[18] Y.V. Dhillon, A.U. Diril, A. Chatterjee, and H.S. Lee. Algorithm
for achieving minimum energy consumption in cmos circuits using
mutiple supply and threshold voltages at the module level.
Proceedings of IEEE/ACM International Conference on
Computer Aided Design, November 2003.

6

