Speed Dating despite Jammers

Dominik Meier
Yvonne-Anne Pignolet
Stefan Schmid
Roger Wattenhofer

Distributed
Computing Group

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Wireless Networks

Radio Communication

- Find communication partner (device discovery)
- Concurrent transmissions disturb each other (Interference)

Device discovery under jamming attacks

Adversarial Interference: Jamming

Device Discovery

Adversarial Interference: Jamming

Adversarial Interference: Jamming

Model: Device Discovery Problem

2 devices

- Want to get to know each other

- m channels
- Listen/send on 1 channel in each time slot
m

Adversary

- Always blocks t channels
- t < m
- Worst case

Goal:

Algorithm that lets the devices find each other quickly, regardless of t

$$
\text { Quality: } \quad \rho:=\max _{t} \frac{E[\text { algo discovery time } \mid t \text { unknown] }}{E[\text { best discovery time } \mid t \text { known }]}
$$

Algorithms

Randomized Algorithms

Represented by probability distribution over channels:

- choose channel i with probability p_{i}

Advantages

- Simple
- Independent of starting time
- Stateless
- Robust against adaptive adversaries

E[best discovery time | t known]

Best Algorithm

 In each time slot- if $t=0$
- if t < $\mathrm{m} / 2$
- else

E[discovery time knowing $t]= \begin{cases}1 & \text { if } t=0 \\ 4 t & \text { if } t<m / 2 \\ m^{2} /(m-t) & \text { else }\end{cases}$
$\mathrm{t}>0$: Why uniform distribution?

Easy! What if we don't know t?
Why channel in [1,2t]?
2 t minimizes discovery time

E[discovery time NOT knowing t]

Example Algo $_{\text {Random }}$
 In each time slot
 - choose channel uniformly at random

$\mathrm{E}\left[\right.$ time $\left.\mathrm{Algo}_{\text {Random }}\right]=\mathrm{m}^{2} /(\mathrm{m}-\mathrm{t})$
choose $\mathrm{t}=0$
$\rho_{\text {Random }}=m$

$$
\rho:=\max _{t} \frac{E[\text { algo discovery time } \mid t \text { unknown }]}{E[\text { best discovery time } \mid t \text { known }]}
$$

Example Algo_{3}

In each time slot

- with prob $1 / 3$
- with prob $1 / 3$
- with prob 1/3

$$
\begin{aligned}
& \text { choose channel } 1 \\
& \text { choose randomly in }[1, \sqrt{ } \mathrm{~m}]
\end{aligned}
$$

$$
\text { choose randomly in }[1, \mathrm{~m}]
$$

\approx estimate $t=0$
\approx estimate $t=\sqrt{ } \mathrm{m} / 2$
\approx estimate $t=m / 2$

$$
\begin{gathered}
\text { choose } t=\sqrt{ } \mathrm{m} \\
\rho_{3}=O(\sqrt{ } \mathrm{~m})
\end{gathered}
$$

E[discovery time NOT knowing t]

Example Algo $_{\text {log } m}$

In each time slot

- with prob $1 / \log m$ choose channel 1
- with prob 1/log m choose randomly in [1,2]
\approx estimate $t=0$
\approx estimate $t=1$
- with prob 1/log m choose randomly in [1,2^i]
- with prob 1/log m choose randomly in [1,m]
\approx estimate $t=2^{\wedge}(\mathrm{i}-1)$
\approx estimate $t=m / 2$

Optimal Algorithm?

General algorithm

Given probability distribution p, where $p_{1} \geq p_{2} \geq \ldots \geq p_{m} \geq 0$ In each time slot

- choose channel i with probability p_{i}

$$
\begin{aligned}
& \mathrm{E}[\text { algo discovery time } \mid t]=1 / \sum_{i=t+1}^{m} p_{i}^{2} \\
& \rho:=\max _{\mathrm{t}} \frac{\mathrm{E}[\text { algo discovery time } \mid \mathrm{t} \text { unknown }]}{\mathrm{E}[\text { best discovery time } \mid \mathrm{t} \text { known }]}
\end{aligned}
$$

$$
\frac{E[\text { algo discovery time } \mid t \text { unknown }]}{E[\text { best discovery time } \mid t \text { known }]}= \begin{cases}1 / \sum_{i=1}^{m} p_{i}^{2} & \text { if } t=0 \\ 1 /\left(4 t \sum_{i=t+1} p_{i}^{2}\right) & \text { if } t<m / 2 \\ (m-t) /\left(m_{i=t+1}^{2} \sum_{i} p_{i}^{2}\right) & \text { else }\end{cases}
$$

Optimal Algorithm?

General algorithm

Given probability distribution p, where $p_{1} \geq p_{2} \geq \ldots \geq p_{m} \geq 0$ In each time slot

- choose channel i with probability p_{i}

Optimization problem
$\min \rho^{*}$ s.t.
$t=0 \quad 1 / \rho^{*}=\quad \sum_{i} p_{i}{ }^{2}$
m
$1 \leq t \leq m / 2$
$1 / \rho^{*}=2 t=\overline{\chi+}+p_{i}{ }^{2}$
m
$t>m / 2$

$$
1 / \rho^{*}=m^{2}{ }_{i} z^{t}+p_{i}^{2} /(m-t)
$$

Simulations: Worst Case Jammer

Simulations: Random Jammer

Case Study: Bluetooth vs Microwave

OPT much better than Bluetooth

Lessons

- Interference can prevent discovery
- uniformly random algorithm not always best solution

- best expected discovery time

$$
E\left[\text { Algo }_{\text {opt }}\right]= \begin{cases}\mathrm{O}\left(\log ^{2} \mathrm{~m}\right) & \text { if } \mathrm{t}=0 \\ \mathrm{O}\left(\mathrm{t} \log ^{2} \mathrm{~m}\right) & \text { if } \mathrm{t}<\mathrm{m} / 2 \\ \mathrm{O}\left(\mathrm{~m}^{2} \log ^{2} \mathrm{~m} /(\mathrm{m}-\mathrm{t})\right) & \text { else }\end{cases}
$$

- price for NOT knowing t: $\rho^{*}=\Theta\left(\log ^{2} \mathrm{~m}\right)$

That's it...

THAnK YOU!

