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Abstract: Flexible load is widely used in servo systems, and will cause nonlinear displacement and
vibration of the system and then cause speed fluctuations in the servo system motor. In order to
reduce the fluctuation of system velocity, a fuzzy adaptive vibration suppression strategy based on
pole assignment is proposed. Firstly, the dynamic model of the flexible-load system is established
by using the assumed mode method (AMM) and the Lagrange principle. Then, according to the
initial traditional PID parameters, the same real-part pole assignment method is used to improve it.
Next, a fuzzy adaptive rule is designed to adjust the PID parameters after pole assignment. Finally,
three different control strategies are applied to the servo-driven flexible-load system, three different
conditions with the variable as the length of the flexible load are selected for numerical simulation,
the output parameters of the system are obtained, and the errors are analyzed. The results show that
the fuzzy adaptive PID control strategy based on pole assignment proposed in this paper makes the
system have a higher working accuracy, and compared with the traditional PID control method and
the improved PID control method, the vibration suppression effect of the system is more obvious, and
the stability of the system can be increased by about 10%, which fully demonstrates the effectiveness
of the control strategy proposed in this paper.
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1. Introduction

In recent years, high-performance industrial robots have been widely used in many
high-end application fields such as aerospace exploration, aviation manufacturing, and
intelligent assembly [1,2]. In motion control systems such as industrial robots and aerospace
mechanism drives, the performance of robotic arms has been continuously improved.
The working area is expanded, thus the size of the operating mechanism is increased
continuously. In order to further reduce the load of the system, lightweight structural
materials with high deadweight ratios are usually selected to improve the running speed
and working efficiency [3–5]. However, these mechanical arms easily produce elastic
deformation and cause corresponding stress in the process of rotating motion. They have
typical flexible load characteristics, and can also be referred to as flexible load characteristics
for larger load mechanisms. Compared with the rigid load, the characteristics of the flexible
load will have a great impact on the motion control of the mechanism, which easily causes
low positioning accuracy and system instability caused by the resonance of the system [6–8].
Therefore, the study of servo system control can effectively suppress the elastic deformation
of the flexible load due to vibration and improve the stability of the system.

In order to realize the motion control of the servo-driven flexible-load system and
make the system reach a stable state, the system dynamics model should be established
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first. At present, many scholars have carried out relevant research, and the dynamic
modeling of flexible load mainly includes the hypothetical mode method and finite element
method. In [9–11], the flexible load is equivalent to the Euler–Bernoulli beam, ignoring
its axial and longitudinal deformation in the process of movement, but only considering
the transverse deformation. In [12–14], the assumed mode method is used to describe the
end deflection of flexible loads, and the Lagrange principle is used to establish its dynamic
equation. In [15–17], the finite element method is used to establish flexible load dynamic
models with complex shapes to improve the working accuracy of the system. In [18–21],
Hamilton’s principle is used to calculate the Hamilton function of the system, and the
system is modeled in the way of energy. The authors of [22,23] use the theory of mechanical
vibration to obtain the partial differential equation of the flexible manipulator, list the
vibration boundary conditions, and finally obtain the motion equation of the system.

The servo-driven flexible-load system is a complex nonlinear system with high cou-
pling, and the above modeling methods can accurately describe the dynamics of the system.
In the actual working process, the flexibility of the load will have an impact on the rotation
speed of the servo system [24,25]. Therefore, it is very important to study the control of
the servo-drive system. In the field of high-performance servo drives, the servo control
strategy is still dominated by the traditional PID adjustment [26,27]. Therefore, on the basis
of the traditional PID adjustment method, the appropriate state feedback is introduced to
suppress the resonance caused by the flexibility to the maximum extent. This research is of
great value. The authors of [28,29] use the pole assignment strategy to determine the control
system parameters and compensate for the arbitrary load torque of the system through
a feedforward controller with flexible load torque. The authors of [30] put forward the
neural network control with full state feedback and output feedback, which can effectively
suppress the elastic vibration of flexible beams. The authors of [31] proposed a robust
adaptive fault-tolerant control (FTC) based on radial basis function (RBF), which proved
the effectiveness of vibration suppression for rigid-flexible coupled robots under external
disturbance and unknown control direction. In [32], an adaptive fuzzy control method is
applied to the control of a single-link flexible joint robot, which ensures the stability of the
system.

In this paper, the dynamic modeling of the servo-driven flexible-load system is firstly
carried out. According to [13,14], the AMM is used to equivalent the flexible load to the
Euler–Bernoulli beam, and then the Lagrange principle is used for dynamic modeling.
Compared with [26,27], the traditional PID control parameters are improved, and the same
real-part pole assignment method is used to adjust them, which improves the system
stability to a certain extent. Compared with [28,29], this paper proposes a fuzzy adaptive
control strategy on this basis to adjust the PID parameters after tuning, which has a more
significant effect on improving the stability of the system. The elastic deformation of the
flexible load and the variation of the output torque under three different working conditions
are obtained by simulation. The error of the output results when the variable is the length
of the flexible load is analyzed, and the effectiveness of the proposed fuzzy adaptive PID
control strategy based on pole assignment is verified by numerical simulation.

The rest of this paper is as follows: in Section 2, the dynamic modeling of the servo-
driven flexible-load system is carried out by using the AMM and Lagrange principle. In
Section 3, a fuzzy adaptive PID control strategy based on pole assignment is proposed. In
Section 4, the simulation results are given and the error analysis is carried out. Section 5
draws the conclusion.

2. Modeling of a Servo System with Flexible Load

There is a kind of flexible load widely in servo systems, such as space manipulators,
industrial robots, and so on. In order to facilitate the establishment of the mathematical
model of the flexible load driven by the motor, the system model should be simplified
and equivalent to the central rigid body–cantilever system. The cantilever is equivalent
to a flexible load, and the cantilever can be equivalent to a flexible link. Ignoring the
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transmission ratio of the system and the joint flexibility of the flexible arm, the servo-
driven single flexible-load system model as shown in Figure 1 was established. When
the system moves in a wide range, the flexural vibration of the flexible link is much more
obvious in the transverse direction than that in the longitudinal direction. As a result,
the longitudinal vibration can be ignored. Therefore, the influence of the longitudinal
deformation on the system motion is not considered under general circumstances. In the
modeling process, the flexible link is equivalent to the Euler–Bernoulli beam, which has the
following assumptions:

1. The shear deformation and axial deformation are ignored, and only the deformation
caused by transverse vibration is considered;

2. The transverse deformation is small deformation;
3. The beam is much longer than its cross-section size.

Figure 1. Schematic diagram of flexible load: (a) 3D model diagram; (b) schematic diagram of an
equivalent flexible connecting rod.

In Figure 1b, the static coordinate XsOsYs is established on the motor shaft and the
dynamic coordinate X1O1Y1 is established on the flexible connecting rod. TS is the elec-
tromagnetic torque of the motor; θs(t) represents the rotation angle of the servo motor
under the action of torque TS; δ(x, t) represents the deformation caused by the transverse
vibration of the flexible connecting rod, that is, the deflection of the cantilever beam at x;
and δ(x, t) is a two-dimensional function of the position x and time t of the load section.

According to the AMM, the deflection of the flexible connecting rod at x can be
obtained as shown in Equation (1):

δ(x, t) = ∑∞
i=1 φi(x)µi(t) = φTµ, (1)

where φi(x) is the modal shape function; µi(t) is the modal coordinate.
At the same time, according to the vibration theory, the partial differential equation

of the transverse vibration of the flexible load can be obtained after it is equivalent to the
Euler–Bernoulli beam, which is expressed as Equation (2):

∂2

∂x2

[
EI(x)

∂2δ(x, t)
∂x2

]
+ ρ(x)A(x)

∂2δ(x, t)
∂t2 = P(x, t), (2)

where EI(x) represents the flexural stiffness of the flexible load; ρ(x) represents the unit
line density of the flexible load; A(x) represents the unit cross-sectional area of the flexible
load; P(x, t) represents the distributed force acting on the flexible load.
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The flexible load can be regarded as a cantilever beam with one end free and one
end fixed. Ignoring the force and mass concentration at the end of the flexible load, the
boundary conditions can be obtained as follows:

δ(0, t) = 0
∂δ(0,t)

∂x = 0

EI(x) ∂2δ(l,t)
∂x2 = 0′

EI(x) ∂3δ(l,t)
∂x3 = 0

(3)

If the flexible load is assumed to be uniform and the external force is ignored, that is,
EI(x), ρ(x), and A(x) can be represented by constant values, namely EI, ρ, and A, and the
distributed force is P(x, t) = 0. Next, the vibration mode shape function φi(x) is solved,
and Equation (2) can be arranged as follows:

∂2

∂x2

[
EI

∂2δ(x, t)
∂x2

]
+ ρA

∂2δ(x, t)
∂t2 = 0, (4)

Using the method of separation of variables to solve, substituting Equation (1) into
Equation (4), Equation (5) can be obtained as:

EIφ′′′′(x)µ(t) + ρAφ(x)µ′′′′(t) = 0, (5)

Equation (5) is changed into Equation (6), and it can be obtained that:

..
µ(t)
µ(t)

= − EI
ρA
·φ
′′′′
(x)

φ(x)
, (6)

In Equation (6), the left side is only related to t and the right side is only related to x,
so it can only be equal to a constant. This constant is denoted as −ω2, and Equation (7) can
be obtained: {

d2µ(t)
dt2 + ω2µ(t) = 0

EIφ
′′′′
(x)−ω2ρAφ(x) = 0

, (7)

Finally:

φ′′′′(x)− ω2ρA
EI

φ(x) = φ′′′′(x)− α4φ(x) = 0, (8)

Therefore, the modal function and frequency of flexural vibration of flexible load
are determined according to the above equation, and the characteristic equation can be
obtained, as shown in Equation (9):

φi

(
eλx
)

, (9)

Then, the characteristic root of this equation can be solved by the characteristic Equa-
tion (9), as shown in Equation (10): 

λ4 − α4 = 0
λ1,2 = ±α ,
λ3,4 = ±iα

(10)

Therefore, the modal function φ(x) can be expressed as Equation (11):

φi(x) = Ψ1eαx + Ψ2e−αx + Ψ3eiαx + Ψ4e−iαx, (11)

The above equation can be transformed into Equation (12):

φi(x) = Ψ1 sin αx + Ψ2 cos αx + Ψ3shαx + Ψ4chαx, (12)
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In Equation (12), the boundary conditions can be used to solve the integration constants
Ψ1, Ψ2, Ψ3, and Ψ4.

According to Equation (7), the solutions of modal coordinate µ(t) and lateral vibration
displacement δ(x, t) of flexible load are obtained, which are expressed as Equations (13)
and (14):

µ(t) = H sin (ωt +ϕ), (13)

δ(x, t) = R sin (ωt +ϕ), (14)

In Equation (14), R can be expressed as in Equation (15):

R = χ1 sin αx + χ2 cos αx + χ3shαx + χ4chαx, (15)

Among them, χi(i = 1, · · · , 4), ω and ϕ are undetermined coefficients, which can be
determined according to the initial and boundary conditions of vibration. Meanwhile, the
frequency equation can be obtained according to the boundary conditions, as shown in
Equation (16):

cos αl + chαl = −1, (16)

The natural frequency of the flexible load is shown in the following equation:

ωi = α2
i

√
EI
ρA

, (17)

The modal function corresponding to ωi can be expressed as Equation (18):

φi(x) = chαix− cos αix− ζi(shαix− sin αix), (18)

In Equation (18), the expression of ζi is shown in Equation (19):

ζi =
shαil − sin αil
chαil + cos αil

, (19)

where αi is the eigenvalue of the flexible load, which is the root of Equation (16), and its
solution is expressed in Equation (20):

αi =
2i− 1

l
π(i = 1, 2, · · ·), (20)

Therefore, the first three-order eigenroot values of the flexible load can be calculated,
as shown in Table 1 below.

Table 1. Eigenroot values of the first three orders of flexible loads.

The Characteristic Root αi α1 α2 α3

The Values 1.875 4.694 7.855

The motion of the flexible load in the horizontal plane can be regarded as a large range of
rigid body motion superimposed on a small range of elastic deformation motion. Therefore,
the vector of any point on the flexible load can be expressed as shown in Equation (21):

rT = [X, Y]{
X = x cos θs(t)− δ(x, t) sin θs(t),
Y = x sin θs(t) + δ(x, t) cos θs(t)

(21)

Therefore, the kinetic energy of the flexible load can be obtained as:

T =
1
2

ρA
∫ 1

0

.
rT .

rdx =
1
2

ρA
∫ 1

0

(
.

X
2
+

.
Y

2
)

dx, (22)
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In Equation (22),

.
rT .

r =
(

x2 + δ2(x, t)
) .

θ
2
s (t) +

(
∂δ(x, t)

∂t

)2
+ 2x

.
θ

2
s (t)

∂δ(x, t)
∂t

, (23)

Assuming that the flexible load moves in the horizontal plane, its potential energy is
generated only by elastic deformation, so its elastic potential energy can be obtained as:

V =
1
2

EI
∫ 1

0

∂2δ(x, t)
∂x2 dx, (24)

According to the Lagrange equation, the kinetic energy and potential energy of the
flexible load are substituted into it, and the dynamic equation of the system can be obtained:

d
dt

(
∂T

∂
.

qi

)
− ∂T

∂qi
+

∂V
∂qi

= Qi, (25)

where qi(1, 2, · · · , n + 1) represents the mechanical angle θs of the motor and the ith mode
coordinate µi(t) of the flexible load, and Qi represents the generalized force exerted by the
system. Therefore, Equation (26) can be obtained:

d
dt

(
∂T

∂
.
θs(t)

)
− ∂T

∂θs(t)
+ ∂V

∂θs(t)
= Ts

d
dt

(
∂T

∂µi(t)

)
− ∂T

∂µi(t)
+ ∂V

∂µi(t)
= 0

, (26)

By rearranging Equation (26) and removing the nonlinear term, Equation (27) can be
obtained: {

ρA
..
θs(t)

∫ l
0 x2dx + ρA ∑∞

i=1
..
µi(t)

∫ l
0 xφidx = Ts

∑∞
i=1

..
µi(t) + ρA

..
θs(t)

∫ l
0 xφidx + Ωi ∑∞

i=1 µi(t) = 0
, (27)

Finally, Equation (27) is reorganized into Equation (28):{ ..
θs(t)Ia + FT

ai
..
µi(t) = Ts

..
µi(t) + 2ξΩi

.
µi(t) + Ω2

i µi(t) +
..
θsFai = 0

, (28)

In Equation (28), ξi is the damping coefficient matrix of each vibration mode, and
Equations (29)–(34) are established:

µi(t) = [µ1(t) µ2(t) · · · µn(t)], (29)

Ia = ρA
∫ l

0
x2dx, (30)

Fai =
∫ l

0
ρAxφi(x)dx, (31)

Fa = [Fa1 Fa2 · · · Fan]
T, (32)

Ω2
i = diag

(
ω2

1 , ω2
2 , · · · , ω2

n

)
, (33)

θm(t) = θs(t) + ∑n
i=1 Faiµi(t), (34)

In Equation (34), θm(t) is the end position of the flexible load.
If only the first mode of the system vibration is considered, the modal coupling

coefficient vector Fa and the resonant frequency matrix Ω will be scalars, and finally, the
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simplified dynamic equation of the servo-driven flexible-load system can be obtained, as
shown in Equation (35):{ ..

θs(t)Ia + FT
a1

..
µ1(t) = Ts

..
µ1(t) + 2ξΩ1

.
µ1(t) + Ω2

1µ1(t) +
..
θsFa1 = 0

, (35)

Therefore, the equation of the state of the system can be expressed as:


.
θs.

µ(t)
..
θs..

µ(t)

=


0 0 1 0
0 0 0 1

0 − Ω2
1FT

a1
FT

a1Fa1−Ia
0 − 2Ω1ξFT

a1
FT

a1Fa1−Ia

0 Ω2
1Ia

FT
a1Fa1−Ia

0 2IaΩ1ξ

FT
a1Fa1




θs
µ(t)

.
θs.

µ(t)

+


0 0 0 0
0 0 0 0

− 1
FT

a1Fa1−Ia
0 0 0

Fa1
FT

a1Fa1−Ia
0 0 0




Ts
0
0
0

 (36)

According to the state equation of the system, the transfer function of the system can
be obtained as:

ωs(s)
Ts(s)

=
1
s
· 1

Ia −
F2

a1
s2+2ξΩ1s+Ω2

1

, (37)

Therefore, the transfer function of the motor angle to the system can be obtained as:

θs(s)
Ts(s)

=
s2 + 2ξΩ1s + Ω2

1(
Ia − FT

a1Fa1
)
s4 + 2IaξΩ1s3 + IaΩ2

1s2
, (38)

Further, according to Equations (34) and (38), the end position of flexible load can be
expressed as:

θm(t) = θs(t) + Faiµi(t), (39)

3. System Control Policy and Parameter Tuning
3.1. Design of Servo System Controller Considering Speed Loop

In a servo system, there are three loops for motor control, which are the speed loop,
position loop, and current loop. When adjusting the system, the traditional method is to
use a PID controller to adjust. When the PID controller is adjusting the servo system, the
control bandwidths of the current loop and the speed loop are quite different. Additionally,
the system bandwidth of the current loop is usually much larger than the flexible mode
frequency. Therefore, it is considered that the current loop has completed the adjustment
task when the speed loop is adjusted. Therefore, the influence of the current loop in the
servo system is ignored and regarded as constant 1, so that only the influence of the speed
loop is considered.

If only the first mode is considered, the following standard form control block diagram
of the system speed loop can be obtained when the PI controller is used to adjust the system
speed loop, as shown in Figure 2.

Figure 2. Standard form block diagram of speed loop of a traditional PI control system.
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Without considering the influence of friction factors, the closed-loop transfer function
of the system when the PI controller is used for adjustment can be obtained from the system
transfer function of Equation (38), as shown in Equations (40)–(42):

ωs

ωR
=

(
k′P0s + k′I0

)(
s2 + 2Ω1ξs + Ω2

1
)

M
, (40)

M =
(

Ia − F2
a1

)
s4 + 2IaΩ1ξs3 + IaΩ2

1s2 +
(
k′P0s + k′I0

)(
s2 + 2Ω1ξs + Ω2

1

)
, (41)

In Equations (40) and (42), M is Equation (41), expressed as the denominator form of
Equation (40), where k′P0 represents the proportional link parameter in the PI controller; k′I0
represents the integral link parameter in the PI controller.

In this paper, the Ziegler–Nichols method is firstly used to determine the initial
traditional PID parameters, and then the pole assignment method is used to adjust the
traditional PI parameters. By referring to the method proposed in [29], Equation (41) is
rewritten into the form of Equation (42):(

Ia − F2
a1
)
s4 + 2IaΩ1ξs3 + IaΩ2

1s2 +
(
k′P0s + k′I0

)(
s2 + 2Ω1ξs + Ω2

1
)
=(

Ia − F2
a1
)(

s2 + 2ξ∗21 ω∗a s + ω∗2a
)(

s2 + 2ξ∗22 ω∗b s + ω∗2b
)
,

(42)

Make:
1

Ia − F2
a1

= N, (43)

By combining Equation (42) with Equation (43), Equation (44) can be obtained as
follows:

s4 +
(
k′P0 + 2IaΩ1ξ

)
Ns3 +

(
2k′P0Ω1ξs + k′I0 + IaΩ2

1
)
Ns2 +

(
k′P0Ω2

1 + 2k′I0Ω1ξ
)
Ns + k′I0Ω2

1N
=
(
s2 + 2ξ∗21 ω∗a s + ω∗2a

)(
s2 + 2ξ∗22 ω∗b s + ω∗2b

) (44)

where the natural frequencies of poles are expressed as ω∗a and ω∗b ; the damping coefficients
of the poles are expressed as ξ∗1 and ξ∗2. Thus, after ignoring the damping coefficient ξ of
the system, the expressions of the proportional link parameter k′P0 and the integral link
parameter k′I0 are:

k′P0 =
2ξ∗1ω∗a + 2ξ∗2ω∗b

N
, (45)

k′I0 =
ω∗a ω∗b
NΩ2

1
, (46)

Therefore, Equations (47)–(50) hold, where the position of the zero pole of the system
is limited by Equations (49) and (50):

ω∗2a ω∗2b =
k′I0Ω2

1
N

, (47)

2ξ∗1ω∗a + 2ξ∗2ω∗b =
k′P0
N

, (48)

2ξ∗1ω∗a ω∗2b + 2ξ∗2ω∗b ω∗2a =
k′P0Ω2

1
N

, (49)

ω∗2a + ω∗2b + 4ξ∗1ξ∗2ω∗a ω∗b =
k′I0 + IaΩ2

1
N

, (50)

3.2. The Same Real-Part Pole Assignment Method Is Used to Set PI Parameters

The closed-loop transfer function of the system has the same damping coefficient,
that is, the pole assignment method with the same real part. As shown in Figure 3, in the
distribution of zero and the pole of this pole assignment method, let the four poles have
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the same real part, so that the zero position ξ∗1 and ξ∗2 can move along the dashed path of
−ξ∗1ω∗a = −ξ∗2ω∗b .

Figure 3. Zero pole distribution diagram of the same real-part pole assignment method.

Substituting −ξ∗1ω∗a = −ξ∗2ω∗b into Equations (49) and (50), we can obtain:

ω∗2a + ω∗2b = 2Ω2
1, (51)

(
ω∗2a + Ω2

1(2ξ∗1 − 1)
)2

= Ω4
1

(
4ξ∗41 − 4ξ∗21 +

F2
a1

Ia − F2
a1

)
, (52)

So, the expressions for ω∗a and ω∗b are:
ω∗a = Ω1

√
1− 2ξ∗21 +

√
4ξ∗41 − 4ξ∗21 +

F2
a1

Ia−F2
a1

ω∗b = Ω1

√
1 + 2ξ∗21 −

√
4ξ∗41 − 4ξ∗21 +

F2
a1

Ia−F2
a1

, (53)

According to Equation (53), the expressions of parameters k′P and k′I can be obtained
as: 

k′P = 4
(
Ia − F2

a1
)
ξ∗1Ω1

√
1− 2ξ∗21 +

√
4ξ∗41 − 4ξ∗21 +

F2
a1

Ia−F2
a1

k′I =
(
Ia − F2

a1
)√

1−
(

2ξ∗21 −
√

4ξ∗41 − 4ξ∗21 +
F2

a1
Ia−F2

a1

)2
, (54)

3.3. Fuzzy Adaptive Control Strategy Combined with Pole Assignment

The flexible load will produce lateral vibration in the process of rotation. Lateral
vibration will cause elastic deformation of the flexible load. This elastic deformation will
affect the output of the servo drive system. In order to improve the stability of the system
and reduce the rotation speed fluctuation and output displacement error, this paper adopts
a fuzzy adaptive tuning PID control strategy based on pole assignment. This control
strategy can track and adjust the PID parameters of the system in real time. Firstly, the
traditional parameters of PID controllers are determined by the Ziegler–Nichols method.
Then, the pole assignment method with the same real part is used to improve the traditional
PI parameter. The approximate range of parameters is optimized and the overshoot of the
system is reduced. Finally, the fuzzy control rules of the system are formulated. Based
on the PI parameters adjusted by the same real-part pole assignment method, the PID
controller parameters are improved. Through the fuzzy rules, the PID parameters of
the controller are dynamically adjusted online in real time. Moreover, the input of the
flexible-load servo system is compensated adaptively by the feedback mechanism.
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When designing the fuzzy adaptive controller, the speed error e and the error change
rate ec of the flexible load motor side are taken as the input variables. Then, the fuzzy results
∆kP, ∆kI, and ∆kD are obtained as output variables after fuzzy reasoning through fuzzy
rules. Finally, ∆kP, ∆kI, and ∆kD are used to adjust the improved PID control parameters,
as shown in Equation (55) below, and the exact results of the output variables are obtained
by defuzzification. Thus, the control block diagram of the flexible-load servo system is
shown in Figure 4. 

kP = k′P + ∆kP
kI = k′I + ∆kI ,

kD = k′D0 + ∆kD

(55)

where k′P and k′I are the parameters improved by using the same real-part pole assignment
method, and k′D0 is the traditional controller parameters obtained by the Ziegler–Nichols
method.

Figure 4. Control block diagram of a flexible-load servo system. (a) Block diagram of traditional
PID control method. (b) Block diagram of pole assignment improved PID control method. (c) Block
diagram of fuzzy adaptive PID control method.
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The fuzzy adaptive tuning PID controller used in this paper is a two input and three
output controller, where the input variables are e and ec, and the output variables are ∆kP,
∆kI, and ∆kD. The fuzzy domain of the input and output variables of the fuzzy controller
is set as [–6, 6], the input error domain is set as [−0.1, 0.1], the error change rate domain is
set as [−0.3, 0.3], and the actual output controller domain is set as [−0.6, 0.6]. However, in
the design of a fuzzy controller, these five parameters cannot be directly identified, so these
five parameters should be fuzzified, as shown in Equation (56):

e, ec, ∆kP, ∆kI, ∆kD =
[
NB NM NSZO PS PM PB

]
, (56)

P stands for positive definite and N for negative definite. B, M, and S are large,
medium, and small, respectively. In particular, ZO stands for zero.

In this paper, the Gaussian function is chosen as the membership function of the input
and output of the fuzzy controller. The number of fuzzy sets for each input variable is
seven, and there are two input variables. Therefore, 49 fuzzy rules correspond to output
variables and can be obtained. Thus, the fuzzy rule inference relation diagram can be
designed, as shown in Figure 5. The fuzzy control rules of output variables are shown in
Tables 2–4.

Figure 5. Fuzzy rule inference relation diagram of ∆kP, ∆kI, and ∆kD. (a) Fuzzy rule inference relation
diagram of ∆kP. (b) Fuzzy rule inference relation diagram of ∆kI. (c) Fuzzy rule inference relation
diagram of ∆kD.

Table 2. Fuzzy rule control table of ∆kP.

ec/e PB PM PS ZO NS NM NB

PB NB NB NM NM NM ZO ZO
PM PB ZO PM PM ZO ZO NS
PS PB PM PM PM PS PS NS
ZO NM NM NS ZO PS PS PM
NS NS NS ZO PS PS PM PM
NM NS ZO PS PS PM PB PB
NB ZO ZO PS PM PM PB PB
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Table 3. Fuzzy rule control table of ∆kI.

ec/e PB PM PS ZO NS NM NB

PB PB PB PM PS PS ZO ZO
PM PB PB PM PM PS ZO ZO
PS PB PM PS PS ZO NS NM
ZO PM PS NS PS PS ZO ZO
NS PM PS PS ZO PS ZO ZO
NM ZO ZO NS NS NM NB NB
NB ZO NS NS NM NM NB NB

Table 4. Fuzzy rule control table of ∆kD.

ec/e PB PM PS ZO NS NM NB

PB PB PS PS PS PM PB PB
PM PB PB PS PS PM PM PB
PS ZO ZO NS NS ZO ZO ZO
ZO ZO NS NS ZO NS NS ZO
NS ZO NS NS NS NM NM ZO
NM ZO NS NS NM NB NS PS
NB PS NM NB NB NB NS PS

4. Numerical Simulation Analysis of the System

For the flexible-load servo drive system, the fuzzy adaptive control method combined
with pole assignment is used to adjust the controller parameters in real time. In order to
study the control characteristics of the system, three different load conditions are selected
for numerical simulation. The errors of output angle and output torque under the same
working condition are analyzed. The flexible load parameters under three different working
conditions are shown in Table 5 below.

Table 5. Flexible load parameters in 3 cases.

Determinants Condition 1 Condition 2 Condition 3

Flexible load length l/m 0.4 0.6 0.8
Flexural stiffness of a flexible load EI/Nm2 400 400 400

Line density of flexible load ρA/kg/m2 5 3.333 2.5
Modal coupling coefficient Fai/kg1/2m 0.455 0.6826 0.9101

Inertia of a flexible load Jl/kgm2 0.1067 0.24 0.427
Modal frequencies of flexible loads ωi/rad/s 196.5294 106.9771 69.4836
Characteristic roots of the mode function β1 1.875 1.875 1.875

Moment of inertia of motor Jm/kgm2 0.36 0.72 1.28
Torsional stiffness ks/Nm/rad 405 405 405

According to the flexible loads under three different conditions in the table, three
different control strategies are used, namely, traditional PID, pole assignment method to
improve PID, and fuzzy adaptive PID. The sinusoidal function is used as the input signal
for numerical simulation, and the simulation results are shown in Figures 6–8. Figures 6–8
show the speed, angle, elastic deformation, and torque output by the flexible load side of
the servo system under three working conditions.
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Figure 6. The output curve of the flexible load side in case 1: (a) the output speed; (b) the output
angle; (c) output elastic deformation; (d) the output torque.

Figure 7. The output curve of the flexible load side in case 2: (a) the output speed; (b) the output
angle; (c) output elastic deformation; (d) the output torque.
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Figure 8. The output curve of the flexible load side in case 3: (a) the output speed; (b) the output
angle; (c) output elastic deformation; (d) the output torque.

Figure 6a,b show the fluctuations of the system speed and angle, respectively. It
can be seen that under the condition of working condition 1, the control strategy of PID
is improved by using the traditional PID and pole assignment method alone, and the
fluctuation of system output is relatively drastic. When the working time is about 10 s, the
system output still has a large fluctuation. Compared with the simulation results, after using
the same real-part pole assignment method to improve the PID control strategy, the output
fluctuation of the system will be reduced, but the reduction amplitude is not obvious. After
the fuzzy adaptive method is used to adjust the PID parameters, the fluctuation amplitude
of the system output is obviously reduced, and the stability of the system is improved.

Figure 6c,d show the elastic deformation of the flexible load and the fluctuation of
the load end torque. It can be seen that with the extension of working time, using the
traditional PID control strategy, the deformation of the flexible load and the load end torque
will continue to increase. This can not make the system tend to a stable state, and will
eventually lead to the overall system imbalance and the decline of working accuracy. When
the pole assignment improved PID control strategy and fuzzy adaptive tuning improved
PID control strategy are used, the deformation of the flexible load and the torque fluctuation
at the load end decrease steadily. These two methods are effective to improve the stability
of the system. By comparing the two effective methods, it can be clearly seen from the
figures that the latter has the advantages of faster response speed, smaller volatility, and
more stability than the former, and the improvement effect of the system stability is more
obvious.

Similarly, as shown in Figures 7 and 8, the output results of working conditions 2 and 3
have the same trend as that of working condition 1. It is shown that the fuzzy adaptive
tuning PID control strategy combined with pole assignment has a good effect on the
adjustment of the flexible-load servo control system. This control strategy can effectively
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suppress the system speed and torque fluctuations caused by vibration and reduce the
system angle error and the elastic deformation of the load end.

We perform a longitudinal comparison of the output results under three different
working conditions. As shown in subfigures (a) and (b) in Figures 6–8, under the same load
mass, with the increase of the flexible load length, the fluctuations of the system output
speed and angle gradually increase. In particular, in subfigures (c) and (d) of Figures 6–8,
the elastic deformation and output torque of the flexible load increase more obviously.

The output angle error of the flexible-load servo system is obtained after three kinds
of control strategies are applied and three kinds of conditions are simulated, respectively.
The error distribution is shown in Figure 9. Figure 9a is the absolute error statistical index
of the system output angle, and Figure 9b is the variance diagram of the system output
angle. It can be seen that in the three working conditions, when the traditional PID control
strategy is used, the absolute error value and variance value of the system output angle are
the largest when the flexible load length is the longest, and the maximum value is 0.144 and
0.704, respectively. When the fuzzy PID control strategy is adopted and when the flexible
load length is the smallest, the absolute error value and variance value of the system output
angle are the smallest, which are 0.034 and 0.549, respectively.

Figure 9. Error statistical index: (a) absolute error statistics index; (b) statistical index of variance.

As shown in Figure 9a, it can be seen from the high and low trend of the bar chart
that under three different circumstances, the absolute error of the system output angle is
improved most obviously by the fuzzy adaptive PID control method, and the improvement
degree can reach about 10% on average. When the same control method is used to control
the flexible-load system under three different working conditions, the comparison shows
that the error change rate of the traditional PID control method is the largest, up to about 3%,
indicating that this method has poor control over the system output fluctuation. By using
the fuzzy adaptive PID control method, the system output angle error can be effectively
reduced. This method can reduce the absolute error to about 3.6%, and the error change
rate can be reduced to 0.3%. As can be seen from Figure 9b, with the increase of the flexible
load length, the variance value of the traditional PID control method fluctuates the most.
When the fuzzy adaptive PID control method is used, the variance value of the fuzzy
adaptive PID control method is reduced by 10% on average compared with the traditional
PID control method, and the system output angle fluctuation is more stable. In summary,
the fuzzy adaptive tuning PID control strategy combined with the pole assignment method
can significantly reduce the output fluctuation of the system and effectively improve its
stability.

5. Conclusions

In this paper, the dynamic modeling of a servo-driven flexible-load system is carried
out considering the nonlinear characteristics of the system. Three control strategies of
traditional PID, same real-part pole assignment tuning PID, and fuzzy adaptive tuning
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PID combined with pole assignment are used to control the vibration of the system. The
vibration law of flexible load with three different lengths is discussed, and the conclusions
are as follows:

(1) The dynamic modeling of the servo-driven flexible-load system established in this pa-
per takes into account that the flexibility in the load will cause significant fluctuations
in the system speed output, which will cause a large deviation in the system angle
and displacement output. The unified dynamic model of the system is established.

(2) The proposed fuzzy adaptive tuning PID control strategy combined with pole as-
signment is based on the traditional PID parameters. Firstly, the same real-part pole
assignment method is used to adjust PI parameters, and then the fuzzy adaptive
control strategy is applied to adjust the adjusted PID parameters to adjust the input
variables of the system in real time. The simulation results show that the control
strategy is stable and reliable when used to suppress system vibration.

(3) By comparing the system output angle error and flexible load terminal deformation
under three different working conditions, it can be seen that the system angle error
and flexible load deformation increase with the increase of flexible load length. The
control strategy proposed in this paper can reduce the system output angle error
and the deformation of the flexible load by 10% on average. From the angle of error
analysis, it is proved that the control strategy proposed in this paper can effectively
reduce the speed fluctuation of the servo-driven flexible-load system and improve the
working accuracy of the system.

Based on the above research contents and conclusions, more nonlinear factors affecting
the system stability can be considered for the next research work. At the same time, the
direction of the intelligent control algorithm can be improved. It provides theoretical
suggestions for future stability research into flexible-load servo systems.
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