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Due to the intensive use of mobile phones for different purposes, these devices usually contain 
confidential information which must not be accessed by another person apart from the owner of 
the device. Furthermore, the new generation phones commonly incorporate an accelerometer 
which may be used to capture the acceleration signals produced as a result of owner's gait. 
Nowadays, gait identification in basis of acceleration signals is being considered as a new 
biometric technique which allows blocking the device when another person is carrying it. 
Although distance based approaches as Euclidean distance or dynamic time warping have been 
applied to solve this identification problem, they show difficulties when dealing with gaits at 
different speeds. For this reason, in this paper, a method to extract an average template from 
instances of the gait at different velocities is presented. This method has been tested with the 
gait signals of 34 subjects while walking at different motion speeds (slow, normal and fast) and it 
has shown to improve the performance of Euclidean distance and classical dynamic time 
warping. 
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1. Introduction 

In biometrics, the term "gait" is used to describe a particular manner or style of 
walking which is distinctive for each individual.1 Although gait shows a common 
pattern for everybody, it also presents some interpersonal differences which make 
possible individual identification. This fact may be observed in our ability to 
recognize a person only by observing his/her gait. 

In previous literature, different sensors have been used to capture the human gait. 
Many works2-4 proposed to extract the movement of lower limbs from images 
recorded by a camera. In other works, the authors5'6 extracted the movement of the 



legs by using some pressure sensors incorporated to the floor of the room. However, 

both approaches limit the acquisition to specific indoor environments. In order to 

alleviate this restriction, some authors used some wearable sensors which allow the 

subject to move freely.7 Due to the miniaturization of inertial sensors, some works 

have also proposed to use gyroscopes and accelerometers to measure these body 

movements.8 '9 In particular for this paper, the human gait is captured by means of a 

tri-axial accelerometer. 

In former works, the authors have placed an accelerometer on the back10 '11 or on 

the chest12 in order to classify the different activities performed by a subject. 

Although these positions make it possible to differentiate between several activities, 

they are not adequate to identify subjects, as the movements captured in these 

positions are similar among most individuals. The first work tha t analyzed the 

acceleration of the gait as a biometric technique was performed by Ailisto and 

Mántjárvi et al. in Ref. 8. They performed an experiment over 36 subjects by placing 

the accelerometer at their waists. This is an interesting position since the acceler

ometer can be incorporated easily in the buckle of the belt. Another place tha t could 

be comfortable for users is their hip; however, signals captured at this place are not 

well-balanced since the sensor is closer to one leg in relation to the other one. 

Although other authors9 '1 3 have tried to identify subjects from the accelerations of 

their ankles, capturing the movement of only one leg is a bit restricted since the 

movement of other body parts are also specific for each subject. The work presented 

in Ref. 14 shows tha t measuring the accelerations at several body parts considerably 

increases the identification performance, however this implies tha t the user must 

wear many sensors which could be uncomfortable. In our proposal, only one accel

erometer was placed near the sacral vertebra since the center of gravity (COG) is 

close to this position. Therefore, the accelerations measured at this place represent a 

summary of the accelerations of the whole body. The COG is approximately at the 

same height of the waist so the sensor was at tached to the belt of the subject. 

Several techniques have been proposed to discriminate among gait acceleration 

signals of different individuals. In Ref. 9, the authors extracted the walking cycle 

length and some histogram statistics from the gait accelerations of each subject to 

perform this discrimination. The work presented in Ref. 8 compared the identifica

tion results obtained by these histogram statistics with two other features: the 

coefficients of Fast Fourier Transform calculated over a window of the acceleration 

signal and the correlation between the walking cycles and a template obtained during 

the enrolling time. This work concluded tha t the best result — an equal error rate of 

7% — is achieved by the correlation method. Other works have also generated 

templates of the gait cycles from the da ta captured during the enrolment phase. In 

Refs. 13 and 15, the authors divided the enrolment signal into steps averaging all 

these steps to create a gait template. The amplitude and length of each step were 

normalized using linear interpolation in order to produce a template independent of 

the variations on speed and amplitude of the signals. Other authors have proposed to 



use a normalization based on dynamic time warping (DTW) since it is able to deal 

with nonlinear time variability.16 Nevertheless, in this paper they did not evaluate 

the system performance with gaits at different speeds. 

Recent works in human gait17 '18 have shown the high intra-variability present in 

the gait. In these studies, the authors affirm that the gait of the same person at 

different speeds can be as different as other person's gait. Furthermore, they also 

remark on the great differences in the gait of the same individual when using different 

kind of shoes. 

In this paper, an experiment has been conducted to analyze the differences in gait 

identification performance when the walking speed varies considerably. In an initial 

phase, Euclidean distance and classical D T W algorithm were used to calculate the 

distances among gaits of different individuals at several speeds. Due to the fact that 

these algorithms have shown to be insufficient to deal with this speed variability, we 

have generated a gait template which summarizes the signals of gaits at different 

speeds. This template generation is based on the work presented in Ref. 19 where the 

authors generate templates for the recognition of upper limb gestures at different 

speeds. 

The rest of the paper is structured as follows. First, we describe the acquisition of 

the acceleration signals and the preprocessing applied to them. After that we present 

how the experiments were performed to analyze the variability produced by the 

speed. Before describing the method which extracts the template from the gait at 

different speeds, we present the results obtained by Euclidean distance and classical 

D T W . Then, the results obtained by our template extraction technique are shown. 

Finally, we conclude the paper stating our final conclusions. 

2. Signal Capture 

The acceleration of the COG during a walk is captured with the tri-axial acceler-

ometer sensor. This sensor was connected by a bluetooth connection to a personal 

digital assistant which stored the acceleration signals during the walks. The sensor 

was placed close to the COG of the person. The axes of the accelerometer were 

oriented so that the X-axis was pointing to the floor, the Z-axis to the left of the user 

and the y-axis pointing forward. Using the biologic nomenclature, the axes are 

named: vertical (X), anteroposterior (Y) and mediolateral (Z). The acquisition rate 

was fixed at 100 Hz which is sufficient since the frequencies of typical movement of 

the legs are usually lower than 12 Hz.20 The range of accelerations measured by the 

sensor is [— 2, 2]g because during the normal gait most accelerations of the waist are 

within this range. 

Some previous works using an accelerometer placed at the COG2 1 '2 2 have 

described that vertical and anteroposterior accelerations repeat a discernible pat tern 

tha t consists of two quasi-sinusoidal signals. These signals are produced by the 

typical swinging of the pelvis in both directions during the gait cycle. Therefore, 

these sinusoidal signals present the same frequency though there is a phase-shift 
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Fig. 1. Example of acceleration signals for several walking cycles. 

between them. In the case of mediolateral acceleration, it presents a monophasic 

pa t tern since it depends on which limb is lifted. Furthermore, in contrast to the 

others accelerations, the authors of Ref. 23 have remarked the difficulty of finding a 

common pat tern in this acceleration for all subjects. This means tha t the medio

lateral acceleration is user-dependent so it may be crucial when identifying people. 

An example of these captured signals can be observed in Fig. 1 in which several cycle 

steps are depicted. 

Although, in this work, we have manually segmented the signal in steps, some 

previous works show the feasibility of the automatic segmentation thanks to the 

sinusoidal behavior of vertical and anteroposterior accelerations.8 '16 For instance, in 

Ref. 8, the authors propose to detect the maxima in the vertical acceleration to 

segment into steps. 

After segmenting the signal into steps, each step has been normalized in ampli

tude. On the one hand, the offset of the signal is removed to ignore the contribution 

of the gravity force whether the sensor is not completely well oriented. On the 

other hand, the signal is divided by the s tandard deviation of the signal since slight 

changes in the walking speed may produce high variations in the magnitude of the 

accelerations. 

3. E x p e r i m e n t S e t u p 

In this experiment, 34 subjects (23 male and 11 female) walked about 40 steps along 

a corridor. All these signals were segmented in gait cycles which correspond to two 
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Fig. 2. Durat ion of the steps of the subjects a t different speeds. 

steps. This means that there are 20 gait cycles for each walk. Nevertheless, initial and 
end cycles were rejected because they are special cases. Hence, for each walk there are 
18 segmented gait cycles. 

The subjects repeated this walk three times at three different speeds: slow, normal 
and fast. In the slow speed, subjects were asked to walk quietly as they were thinking 
about something. The normal speed corresponds to their usual walking speed. Last, 
for the fast speed, subjects were asked to walk fast as they were arriving late to a 
meeting but without running. Therefore, overall, 1836 gait cycles (3 speeds x 34 
subjects x 18 steps) have been captured. 

The high variability in the length of steps at different speeds may be observed in 
Fig. 2 where the average durations of the steps for each individual and speed are 
represented. 

4. Euclidean Distance 

As an initial approach to discriminate the gaits of different subjects, we have cal
culated the distances between the acceleration signals of the segmented steps of each 
subject. Due to the fact that two steps of different subjects or at different speed may 
have different lengths, they must be rescaled in order to compare them. Some works 
have proposed to perform a global rescaling of the signals by means of interpolating 
techniques and then calculate the Euclidean distance since all signals present the 
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Fig. 3. FAR and FRR curves for Euclidean distance approach when comparing steps at the same speed. 

same length.13'18 In this paper, all steps have been rescaled to a length of 100 samples 
using a polyphase filter implementation. 

After that, we have analyzed the similarity among the gait signals of the same 
individual at the same speed and the differences when comparing them with the gait 
signals of other individuals. The results of this analysis have been depicted in Fig. 3 
by means of three curves of false acceptance rate (FAR) and false rejection rate 
(FRR). Each curve represents the rates obtained for a specific speed (slow, normal 
and fast) when comparing the signals of different subjects at this same speed. 

It can be observed that all equal error rates (EER) are close to 10% which is quite 
high. The reason of this poor performance could be that the global time rescaling is 
not adequate for this problem. Consequently, a DTW approach has been tested since 
it is able to align dynamically two signals. 

5. Dynamic Time Warping 

DTW algorithm generates a matrix M with the costs of aligning the samples of two 
signals. In our case, the cost of each element m^ is the Euclidean distance between 
the 3D acceleration vectors of the points i and j of both compared instances, 
respectively. After that, the algorithm determines the path over this matrix which 
allows aligning both signals producing the minimum cost. This path W is called 
"warping path" and represents how both signals must be extended or compressed in 
order to be aligned. 



Accumulated distance matrix 

50 100 150 200 250 300 350 

Time 

Fig. 4. Example of alignment using DTW. 

Hence, the distance between two signals will be the sum of each element cost of 
the chosen warping path. This distance will be divided by the length of the 
warping path W in order to make it independent of the length of the signals. An 
example of the DTW algorithm for two signals is represented in Fig. 4 where 
matrix M is depicted with the accumulated costs and the warping path W using a 
white line. 

As can be observed in Fig. 5, the FAR and FRR curves when comparing gaits at 
the same speed show a significative improvement in comparison to Euclidean dis
tance. An EER of 1.5% is obtained when comparing gait signals at fast speed whereas 
for slow and normal speeds EER is a bit higher, about 2%. This difference in per
formance may be caused by the fact that the noise affects more the signals at low 
speed since their magnitude is comparable to the magnitude of noise. 

In Fig. 6, the distances between gait signals at different speeds are compared. 
Although the EERs achieved when comparing gaits of similar speeds (slow-normal 
and normal-fast) have increased considerably, up to 14% and 12%, respectively, the 
worst performance, about 32%, has been reached when comparing gaits at quite 
different speeds (slow-fast). Therefore, these results indicate that gaits of the same 
individual at different speeds may produce signals different enough to be identified as 
belonging to other individual. 
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Fig. 5. FAR and FRR curves for classical DTW approach when comparing steps at the same speed. 
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Fig. 6. FAR and FRR curves for classical DTW approach when comparing steps at different speeds. 

Finally, we have represented, in Fig. 7 the FAR and FRR curves when ignoring 
the speed of the gait, i.e. we only distinguish between gaits of different individuals 
without taking into account their respective speeds. Hence, the EER of 19.31% 
shown in this figure may be considered as an overall measure of the performance of 
DTW to deal with gaits at different speeds. 
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Fig. 7. FAR and FRR curves for classical DTW approach when all steps are compared without taking 
into account their speeds. 

6. Average Template D T W 

A solution to improve the poor results obtained when comparing gaits at different 
speeds could be the generation of a template for each subject using gait cycles at all 
speeds. Then the decision of the ownership of a gait signal will be based on the 
distances to this template. In this paper, we propose to extract an average template 
based on the work in gesture recognition presented in Ref. 19. Concretely, three gait 
instances at slow Is, normal IN and fast IF speed have been used to generate a 
template of the gait for each individual. These instances have been randomly selected 
from the 18 available instances for each subject and speed. The rest of samples 
(51 = 3 speeds x 17 samples) have been used to test the performance of the system. 
This selection has been repeated 10 times in order to take into account the variability 
of different samples. 

The template extraction of our approach uses an algorithm based on DTW to 
align the gait signals at different speeds. Similar solutions have been proposed in 
Refs. 16 and 19 however, these methods attempted to align independently the gait 
signal for each dimension (X, Y, Z) and to fuse subsequently the information of all 
three dimensions. Our alignment algorithm considers the gait signal as a collection of 
3D points and therefore the distance in 3D space measures the closeness between 
samples. In the following paragraphs, the alignment algorithm is explained. 

For each person, the first step of this algorithm is to calculate the DTW distances 
between all possible pairs of all gait instances ( /J/JV, IM^F

 a n d IS^F)
 m order to 

decide what instance will be used as a reference. The reference instance IR will be the 
one that presents the smallest average distance to all the remaining instances. We 

— FAR for all speeds 

— FRR for all speeds 



consider tha t IR is normalized and the remaining instances are normalized using their 

warping paths respect to this reference instance. Each warping pa th W represents 

how to compress and expand the time scale of the given instance I to minimize the 

distance with IR. Between every pair of consecutive elements wk and wk+l of the 

warping path W (see Fig. 4), the D T W algorithm allows only three types of move

ment along the matrix M: horizontal, vertical and diagonal. If this movement is 

horizontal the samples I(t) and I(t + 1) of the given instance / are compressed and 

whether it is horizontal the sample I(t) is extended to the sample I(t + 1). In the case 

that the movement is diagonal, no rescaling is applied. 

Compressing samples means joining them and this produces a loss in the original 

information. In order to minimize this loss, these points are combined by calculating 

their average. In the case of extending a sample, the original value of the sample is 

repeated for the next samples. After rescaling all gait instances, for each instance a 

normalized sequence is obtained which has the same length as the reference instance 

IR. At this point, we propose to extract the average template by calculating the 

average points for each time sample. An example of this template extraction is shown 

in Fig. 8, where the average template is obtained from slow, normal and fast gait 

signals. 

Figure 9 depicts the results obtained when the average templates are compared to 

the gait signals of all different speeds at the same time. Due to the fact tha t each 

experiment has been performed 10 times in order to obtain results independent from 

the chosen instances, the FAR and F R R curves shown in this figure represents the 

average curves for all ten trials. Furthermore, in order to show the variability of the 

results, the s tandard deviation is also represented by means of some dotted lines 
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Fig. 8. Example of template extraction. 
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Fig. 9. FAR and FRR curves for average template DTW approach when all steps are compared without 
taking into account their speeds. 

surrounding the FAR and F R R average curves. The average E E R is about 7.81% ± 

0.5% which is much lower than the obtained by classical D T W 19.31%. 

7. Conc lus ion 

In this paper, we have concluded that Euclidean distance and dynamic time warping 

are not able to deal properly with changes in the gait signal caused by different 

walking speeds. Nevertheless, the extraction of a template from gaits at different 

speeds has shown to improve the identification overall performance from 19.31% to 

7.81% which makes this technique appropriate to noncritical security problems. 

Furthermore, the use of only one template for modeling the individual gait supposes 

to perform only one comparison when identifying the gait signal of a user saving a 

considerable amount of time. Therefore, the identification process has not a high 

computational cost which makes it suitable to devices with low computational power 

as smartphones or other mobile devices. This feature is specially interesting since one 

of the main applications of the gait identification based on acceleronieter signals is to 

detect whether a mobile device has been stolen by detecting changes in the gait 

signals. 
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