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Speed of state transitions in macroscopic systems is a crucial concept for foundations of nonequilib-
rium statistical mechanics as well as various applications in quantum technology represented by optimal
quantum control. While extensive studies have made efforts to obtain rigorous constraints on dynamical
processes since Mandelstam and Tamm, speed limits that provide tight bounds for macroscopic transitions
have remained elusive. Here, by employing the local conservation law of probability, the fundamen-
tal principle in physics, we develop a general framework for deriving qualitatively tighter speed limits
for macroscopic systems than many conventional ones. We show for the first time that the speed of the
expectation value of an observable defined on an arbitrary graph, which can describe general many-body
systems, is bounded by the “gradient” of the observable, in contrast with conventional speed limits depend-
ing on the entire range of the observable. This framework enables us to derive novel quantum speed limits
for macroscopic unitary dynamics. Unlike previous bounds, the speed limit decreases when the expectation
value of the transition Hamiltonian increases; this intuitively describes a new trade-off relation between
time and the quantum phase difference. Our bound is dependent on instantaneous quantum states and thus
can achieve the equality condition, which is conceptually distinct from the Lieb-Robinson bound. We
also find that, beyond expectation values of macroscopic observables, the speed of macroscopic quantum
coherence can be bounded from above by our general approach. The newly obtained bounds are verified
in transport phenomena in particle systems and nonequilibrium dynamics in many-body spin systems. We
also demonstrate that our strategy can be applied for finding new speed limits for macroscopic transitions
in stochastic systems, including quantum ones, where the bounds are expressed by the entropy production
rate. Our work elucidates novel speed limits on the basis of local conservation law, providing fundamental
limits to various types of nonequilibrium quantum macroscopic phenomena.
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I. INTRODUCTION

Understanding how fast a state changes in time is a
fundamental problem in nonequilibrium physics. In 1945,
Mandelstam and Tamm showed in their seminal work [1]
that, in an isolated quantum system, the time for an initial
state to relax to a state orthogonal to it is rigorously lower
bounded as

T ≥ TMT := π�

2�H
, (1)

where �H is the energy fluctuation of the system. The
appearance of the energy fluctuation is deeply related to
the quantum uncertainty relation between energy and time.
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Indeed, the derivation of inequality (1) can be carried out
from a relation for a more general observable Â: the expec-
tation value of its speed dÂ/dt = i[Ĥ , Â]/� is evaluated as
a consequence of the uncertainty relation,

|〈 ˙̂A〉| ≤ BUR := 2
�
�A ·�H , (2)

where �A is the quantum fluctuation of Â. Such bounds
on the speed of quantum transitions are nowadays called
quantum speed limits and are generalized in many ways
with various applications as one of the central issues of
quantum dynamics [2]. The measure breakthrough of the
quantum speed limit includes the Margolus-Levitin bound
[3–5], which is based on the energy expectation value
rather than the fluctuation [6–9], and generalization to dis-
sipative quantum systems and mixed states [10–19], to
name a few. The quantum speed limits are also related to
information theory [for example, inequality (2) is a spe-
cial case for the quantum Cramér-Rao inequality [20] ] and
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geometry of quantum states [21–23], indicating its fun-
damental mathematical structure. Furthermore, quantum
speed limits turn out to impose essential constraints on
quantum technologies, such as optimal quantum control
[24–29], shortcuts to adiabaticity [30–32], and quantum
metrology [33–35]. Recently, speed limits have been found
to exist even for classical systems [36,37], and various
bounds for classical transitions are obtained in light of
information theory [38–40] and irreversible thermodynam-
ics [41,42].

Despite their success for a wide range of situations,
many established speed limits fail to capture physically
relevant bounds for certain processes, i.e., processes with
macroscopic transitions (Fig. 1). To see this, let us con-
sider a single quantum particle that is initially located
at the left end on a one-dimensional lattice with sys-
tem size L � 1 (see Fig. 2). If we consider the average
position x̂ of a particle counted from the left, the time
for the initial particle [〈x̂(0)〉 = 1] to be transferred to
a distant position with 〈x̂(T)〉 = O(L) is expected to be
T ∼ O(La) (a ≥ 1), assuming the short-ranged hopping
[43]. From a different viewpoint, the instantaneous speed
d〈x̂〉/dt is always below the O(L0, t0) quantity. On the
other hand, many conventional bounds cannot describe
these scales. For example, direct application of inequalities
(1) and (2) leads to TMT = O(L0) and BUR = O(tb) (b >
0) [44] in this case, which are quite loose for large L and t.
The situation becomes even worse when we consider

many-body systems, where TMT becomes smaller for larger
system sizes [19,28]. These problems are relevant for the
issue of foundation of nonequilibrium statistical mechan-
ics, i.e., quantum unitary dynamics after quench [45–48],
which has attracted recent intensive attention in the experi-
mental development of artificial quantum systems [49,50].
In fact, while the timescale of dynamics is a fundamental
quantity, many conventionally known timescales cannot
be used for processes involving macroscopic transitions,
such as particles’ transport from an inhomogeneous initial
state, since they do not grow even with increasing system
size [51–54]. Another important field of study concerning
this problem is the optimal quantum control represented by
the quantum state transfer [55,56]. While previous studies
try to estimate the speed of the process analyzing simple
settings [24–27] and proposing conjectures [28,29], rigor-
ous and general relations on speed limits for macroscopic
transitions are seldom known.

From a formal point of view, there are two reasons why
many conventional bounds do not work for the above set-
ting. One is that they rely on statistical measures that do not
take into account the macroscopic geometric structure of
the setup. For example, the Mandelstam-Tamm and other
similar bounds rely on quantum fidelity |〈ψ(t)|ψ(0)〉| (for
pure states) or the Bures angle to distinguish initial and
final states. However, such measures are not suitable for
characterizing the spatial distance for the particle trans-
port x in Fig. 2; indeed, the quantum fidelity rapidly

FIG. 1. Schematic illustration of our achievements. We establish a general framework for deriving qualitatively tighter speed lim-
its of a quantity A than many conventional ones, which depend on the entire range of A, such as �A or ‖A‖op. Our strategy is to
map general dynamics of our interest to dynamics on a graph, where we use the local conservation of probability. In contrast with
conventional bounds, our speed limits involve the gradient ∇A of A on the graph, which can significantly tighten the bound when
∇A 
 �A or ‖A‖op. When applied to macroscopic quantum systems (such as macroscopic transport of atoms or relaxation of a locally
perturbed spin chain), our theory indicates a novel trade-off relation between time and the quantum phase difference. When applied
to macroscopic stochastic dynamics, including the quantum one, our theory indicates a trade-off relation between time and quantities
such as the entropy production.
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FIG. 2. A simple example of a process with a macroscopic
transition. For a single particle at the left end (〈x̂〉 = 1) to relax
to the extended region [〈x̂〉 = O(L)] on a one-dimensional lattice
with size L, it takes at least time t = O(La) (a ≥ 1). On the other
hand, the bound in inequality (1) is loose and cannot capture this
timescale, since the time-evolved state can be nearly orthogonal
to the initial state even for short times with t = O(L0).

decays even for short times t � O(L0) provided that the
wavepacket overlap between the two states becomes small.
The other reason is that, since the spectral range of x̂
diverges with L, the bound in inequality (2) and the one
based on, e.g., the trace distance ‖dρ̂/dt‖1 [57,58] do not
lead to the finite speed limit for such a divergent observ-
able in general (note that |d〈x̂〉/dt| ≤ ‖x̂‖∞ ‖dρ̂/dt‖1). We
note in passing that these discussions are related to the opti-
mal transport problem [59]. In this problem, one introduces
the so-called Wasserstein distance, which is a distance
between two probability distributions that takes account
of the underlying geometric structure for the random vari-
ables (see Appendix A). While beautiful relations between
Wasserstein distances and certain thermodynamic speed
limits in stochastic systems are recently known [60–64],
the distances are often practically complicated and hard to
calculate in general. Moreover, the extension of the dis-
tance to the quantum realm is still controversial despite
various efforts [57,61,65–69].

We note that the Lieb-Robinson bound [70], which
describes the general bound of information propagation
in quantum many-body systems, is often not satisfac-
tory for the precise evaluation of the speed. Indeed, the
Lieb-Robinson bound only treats the maximal velocity
independent of the quantum state. Therefore, the bound
is typically not tight and cannot attain the equality con-
dition, as opposed to state-dependent speed limits such
as the Mandelstam-Tamm bound. In addition, unlike the
Lieb-Robinson bound, the state-dependent bound often
indicates a notable trade-off relation, e.g., the trade-off
relation between time and energy fluctuation as in Eq. (1).

A. Summary of the results

1. General framework for deriving speed limits on
macroscopic transitions

In this work, we develop a new, general, and rig-
orous framework to obtain state-dependent speed limits

applicable to processes with macroscopic transitions on the
basis of the local conservation law of probability, the fun-
damental principles of physics (see Fig. 1). We initially
demonstrate for the first time that the speed of the expecta-
tion value of an observable A (either classical or quantum)
defined on vertices of a graph, which describes arbitrary
systems including many-body ones, is bounded like
∣
∣
∣
∣

d〈A〉
dt

∣
∣
∣
∣
≤ (a term involving ∇A)

× (a term involving local probability current),
(3)

which takes the place of, e.g., inequality (2). Here, the
gradient ∇A mathematically corresponds to the derivative-
like operation on a discrete graph (see Appendix B). The
appearance of the gradient can dramatically tighten the
speed limit for the case

∇A 
 �A or ‖A‖op. (4)

For the example in Fig. 2, while �x in inequality (2)
becomes large before saturating to O(L), the term involv-
ing ∇x in inequality (3) is always O(L0). We also show
that inequality (3) also provides a reasonable timescale for
the macroscopic transition. Furthermore, going beyond the
expectation value, we show that our method can be used
for obtaining the speed limits for, e.g., the variance of the
observable and entropy of the state. We also discuss how
our results on general graphs are connected to continuous
systems. We also point out the new relation of our speed
limits to the optimal transport problem, which indicates the
connection between nonequilibrium statistical mechanics
and underlying mathematical structures.

Our theory only relies on the local probability conser-
vation and can thus be applied to any physically normal
system, as demonstrated for quantum unitary dynamics,
nonlinear dynamics, classical stochastic dynamics, and
quantum stochastic dynamics in this manuscript. Further-
more, our results are applied even for discrete many-body
systems, which are concisely formulated with the language
of the graph theory. Note that related speed limits based on
the local probability conservation were obtained for, e.g.,
the continuous classical Fokker-Planck equation [39,71]
before; however, our work is fundamentally distinct from
previous work by demonstrating that local probability con-
servation generally provides useful and insightful speed
limits even for quantum systems, discrete systems, and
many-body systems, pointing out that it holds for any
physical process.

2. Speed limits in quantum unitary dynamics as a new
trade-off relation

As a primary application of our general framework,
we derive a novel type of speed limit applicable to
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unitary quantum dynamics. Unlike conventional quan-
tum speed limits, we find the importance of the expec-
tation value Etrans of the transition Hamiltonian of
the system [see Eq. (44) below] for our speed limit.
In particular, instead of inequality (2), we show the
inequality

∣
∣
∣
∣

d〈Â〉
dt

∣
∣
∣
∣
≤ (a term involving ∇A)

√

R2 − E2
trans (5)

for an observable Â given in Eq. (40) below. Here, R
is bounded by a probability-distribution-dependent factor
[see Eq. (47) below], which is accessible in state-of-the-
art experiments (such as the quantum gas microscope in
ultracold atomic gases [72]). It is further bounded by
the state-dependent constant that is easily known from
the Hamiltonian structure, which is also equivalent to
the maximum degree of the weighted graph [see Eq.
(49) below]. In addition, beyond conventional expecta-
tion values, we prove similar speed limits for dynamics
of macroscopic coherence, a key quantity for quantum
information, which previous literature seldom discussed.
We also discuss the relation with the continuous-space
nonlinear Schrödinger equation and elucidate that inequal-
ity (5) for a general discrete system reduces to a previ-
ously unknown speed limit [see inequality (62) below]
based on the kinetic energy in the continuous system.
We verify our speed limits for the transport in single-
particle and interacting many-particle systems and the
nonequilibrium process of an interacting many-body spin
system.

Interestingly, inequality (5) suggests that the increase of
Etrans can decrease the speed provided that R is the same,
which we discuss is due to the suppression of the phase
difference of the quantum state. Thus, our inequality (5)
[or its continuous version in Eq. (62) below] intuitively
represents the novel trade-off relation between time and the
quantum phase difference, in stark contrast with the trade-
off relation between time and energy fluctuation in Eq. (1).

Let us briefly discuss the conceptual distinctions
between previous works. Our bound is in general state
dependent through Etrans and can be tighter than the bound
indicated by the Lieb-Robinson velocity [70], which is
independent of the quantum state and provides only max-
imal velocity. Quite importantly, in contrast with the
Lieb-Robinson bound, our bound can satisfy the equal-
ity condition in some situations, as discussed in Sec.
IV. In addition, our bound is different from Refs. [28,
29], which proposed quantum-geometry-based conjec-
tures. Our theory instead derives fundamental and rigor-
ous laws that govern speed limits of general macroscopic
dynamics using the distinct principle of local conservation
of probability.

3. Speed limits in stochastic dynamics by entropy
production

To demonstrate the broad applicability of our general
approach, we also prove speed limits for macroscopic sys-
tems involving Markovian dissipation. We first derive a
speed limit based on the irreversible entropy production;
while entropy production has recently been found to play
an important role in state transitions [41,58,71,73–79], we
show that a related speed limit of macroscopic observables
on a general graph is obtained from our framework. The
bound can be qualitatively better for macroscopic systems
than that proposed in Ref. [41]. In addition, we obtain a
modified speed limit, which is valuable even without the
detailed balance condition, using the Hatano-Sasa entropy
production [80]. We verify our bounds for the dynamics
of the simple exclusion processes. We also show that a
similar speed limit is obtained even for macroscopic quan-
tum open systems described by the Gorini-Kossakowski-
Sudarshan-Lindblad equation [81,82].

B. Organization of the paper

The rest of the paper is organized as follows (also
see Fig. 1). In Sec. II, we present a general framework
of deriving the speed limit using the local conservation
law of probability on a general graph. We also discuss
the limit for transition times and the relation with con-
tinuous systems. In Sec. III, on the basis of the general
framework, we derive speed limits that are useful for
unitary quantum dynamics with macroscopic transitions,
noting the importance of the transition Hamiltonian. In
Sec. IV, our quantum speed limits are confirmed for par-
ticle systems and a many-body spin chain, which are
relevant for state-of-the-art experiments of artificial quan-
tum systems. In Sec. V, we apply our general framework
to classical Markovian systems and obtain speed limits
for macroscopic transitions based on the entropy produc-
tion rate. In particular, we derive a useful speed limit
even without the detailed balance condition based on the
Hatano-Sasa entropy production rate. In Sec. VI, our speed
limits for classical stochastic systems are confirmed with
many-particle systems obeying the simple exclusion pro-
cess. In Sec. VII, we show the corresponding speed limit
for dissipative quantum systems described by the Gorini-
Kossakowski-Sudarshan-Lindblad equation. In Sec. VIII,
we briefly discuss several miscellaneous topics that our
approach can investigate. In Sec. IX, we conclude our
results by suggesting some directions for future studies.

II. MACROSCOPIC SPEED LIMIT CONSTRAINED
BY CURRENTS

We begin with a general formulation of our speed limit
based on the local conservation law of probability for a
given graph structure, which represents a general system
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including a many-body one. We show that the instanta-
neous speed of the expectation value of an observable is
bounded by the gradient of an observable on the graph
and the sum of the magnitude of the local probability
current. We demonstrate that this bound can dramatically
improve the speed limit for certain observables compared
with the bound based on, e.g., the uncertainty relation in
inequality (2).

A. Instantaneous speed limit on a general graph

We consider a graph G consisting of a set of vertices
V and edges E [see Fig. 3(a)], which is obtained from the
system of our interest (see Fig. 1). The vertices are labeled
as, e.g., n ∈ V and m ∈ V , and the edges are denoted by,
e.g., (n, m) ∈ E [we assume that (n, n) /∈ E]. We consider
a time-dependent probability distribution on the graph,
p(t) = {pn(t)}n, whose time evolution is assumed to obey
the continuity equation,

dpn(t)
dt

= −
∑

m(∼n)

Jmn(t), (6)

where Jmn(t) satisfies Jmn(t) = −Jnm(t) and m (∼ n)means
that we take a sum of m connected to n by the edge,
i.e., m : (n, m) ∈ E . Physically, n ∈ V labels some (pos-
sibly coarse-grained) subspace obtained from the decom-
position of the total state space, e.g., the Hilbert space
in quantum systems. For example, we can decompose
the total space into non-coarse-grained states character-
izing the fundamental microscopic dynamics [Fig. 3(b)].
Instead, the space can be decomposed such that the
corresponding graph becomes one dimension with E =
{(1, 2), . . . , (n, n + 1), . . . , (N − 1, N )} [Fig. 3(c)].

We define a time-independent observable A whose
expectation value with respect to p(t) can be written as

〈A〉 (t) =
∑

n

anpn(t). (7)

We also define another observable-dependent graph gener-
ated from E and A,

EA = {(n, m)|[(n, m) ∈ E] ∩ (an �= am)}. (8)

The speed for 〈A〉, i.e., 〈Ȧ〉 := d〈A〉/dt, is given as

〈Ȧ〉 = −
∑

n∼m

anJmn

= −1
2

∑

n∼m

(an − am)Jmn

= −1
2

∑

n∼Am

(an − am)Jmn. (9)

Here, n ∼ m [n ∼A m] means that the sum of n and m sat-
isfies (n, m) ∈ E [EA]. To derive this equation, we use the

continuity equation and the fact that Jmn is antisymmet-
ric. Now, using Hölder’s inequality, we have a set of speed
limits, such as

|〈Ȧ〉| ≤ 1
2

√
√
√
√

∑

n∼m

(an − am)2rnm

∑

n∼Am

J 2
nm

rnm
(10)

and

|〈Ȧ〉| ≤ 1
2

max
n∼m

|an − am|
∑

n∼Am

|Jnm| (11)

for some symmetric real numbers rnm, which are assumed
to be positive if and only if n ∼A m.

Inequalities (10) and (11) are the first main results of
our paper. They have a simple meaning: the transition rate
of A is upper bounded using the probability current |Jmn|
and the difference between an and am, which is regarded
as the gradient of the observable A on the graph. These
relations are particularly useful when |an − am| with n ∼
m is (typically) much smaller than DA := maxn,m∈V |an −
am|. To see this, let us consider the following inequality
instead of inequality (11):

|〈Ȧ〉| = |
∑

n∈V
(an − α)ṗn|

≤ max
n∈V

|an − α|
∑

n∈V
|ṗn| (12)

for some α ∈ R. The inequality becomes optimal when
α = (maxn∈V an + minn∈V an)/2, for which we obtain

|〈Ȧ〉| ≤ DA

2

∑

n∈V
|ṗn|. (13)

Then, if maxn∼m |an − am| is much smaller than DA,
inequality (11) becomes much tighter than inequality (13).
As an example for this situation, let us consider a one-
dimensional graph 1, . . . , N ∈ V and (n, n + 1) ∈ E (1 ≤
n ≤ N − 1) [see Fig. 3(c)]. If A describes the position on
the graph counted from the left, i.e., an = n, we have

1 = max
n∼m

|an − am| 
 DA = N − 1, (14)

meaning that inequality (11) is much tighter than inequal-
ity (13) when the orders of

∑

n∼Am |Jnm| and
∑

n∈V |ṗn| are
the same.

As indicated above, the importance of inequalities (10)
and (11) is that the dependence of observables appears
as their gradient, i.e., an − am with n and m being con-
nected by the graph. Since maxn∼m |an − am| measures the
maximum variation of A concerning the change of the
neighboring vertices, it is regarded as the discrete version
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FIG. 3. (a) Schematic illustration of a graph composed of verticesV and edges E . Each of the vertices satisfies the continuity equation
as shown in Eq. (6). (b) An example of a graph, where each vertex indicates the microscopic states i, j , . . . such as the basis of the
Hilbert space. (c) Another example of a graph, which is one dimensional and has edges E = {(1, 2), . . . , (n, n + 1), . . . , (N − 1, N )}.
We are interested in a situation where the observable A is smooth on a graph, i.e., |an − am| with (n, m) ∈ E are much smaller than the
maximum range of A, denoted by DA.

of the Lipschitz constant. To describe it, we introduce the
notation

‖∇A‖∞ := max
n∼m

|an − am|. (15)

Similarly, we can write the first factor on the right-hand
side of inequality (10) with the graph Laplacian known
in graph theory [83], which is analogous to the Laplacian
for continuous functions (see Appendix B for details). To
describe it, we define

[AT∇2
r A] := 1

2

∑

n∼m

(an − am)
2rnm, (16)

where ∇2
r is the graph Laplacian matrix for a graph

weighted by rnm, whose elements are given by

(∇2
r )nm = −rnm + δnm

∑

m′(∼An)

rnm′ . (17)

Note that A is regarded as a vector whose elements are an.
With such notation, inequalities (10) and (11) are simply
written as

|〈Ȧ〉| ≤
√
√
√
√

[AT∇2
r A]

2

∑

n∼Am

J 2
nm

rnm
(18)

and

|〈Ȧ〉| ≤ 1
2
‖∇A‖∞

∑

n∼Am

|Jnm|. (19)

B. Speed limit for other quantities

We can obtain similar speed limits for other quanti-
ties not written as the expectation value of an observable.

For example, the general scalar function of the probability
distribution written as F(p) has the set of speed limits

|Ḟ| ≤
√
√
√
√

[(∂F)T∇2
r (∂F)]

2

∑

n∼∂F m

J 2
nm

rnm
(20)

and

|Ḟ| ≤ 1
2
‖∇(∂F)‖∞

∑

n∼∂F m

|Jnm|, (21)

where ∂F(p) = (∂F/∂p1, . . . , ∂F/∂p|V|)T. Taking F =
∑

n anpn leads to inequalities (18) and (19).
The general result is useful when we consider the speed

limit of the entropylike quantity

S(p , X ) = −
∑

n

pn ln
pn

Xn
, (22)

where X = {Xn} is independent of p and t. When we take
X = p ref, where p ref is some reference probability distribu-
tion, S(p , X ) reduces to the Kullback-Leibler divergence
−D(p||p ref), which quantifies the difference between the
two probability distributions [84]. Instead, if we take Xn as
the dimension of the subspace n, S(p , X ) reduces to the
observational entropy SV

obs(ρ̂), which is the promising can-
didate for entropy in isolated quantum systems [85]. In this
case, we find the speed limit, e.g.,

|Ṡ| ≤ 1
2

√
√
√
√
∑

n∼m

rnm

(

ln
pnXm

pmXn

)2
√
∑

n∼m

|Jnm|2
rnm

. (23)

Moreover, as detailed in the following sections, the
speed of more nontrivial quantities, such as macro-
scopic quantum coherence and variance of observables, is
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bounded by a similar quantity. For example, let us consider
a variance of A,

V[A] = �A2 = 〈A2〉 − 〈A〉2 = 1
2

∑

nm

(an − am)
2pnpm.

(24)

Using inequality (20), we have

|V̇[A]| ≤ 1
2

√
∑

n∼Am

(an − am)2(an + am − 2〈A〉)2rnm

×
√
√
√
√

∑

n∼Am

|Jnm|2
rnm

≤ ‖∇A‖∞
2

√
∑

n∼Am

(an + am − 2〈A〉)2rnm

×
√
√
√
√

∑

n∼Am

|Jnm|2
rnm

, (25)

meaning that the speed of the variance is also bounded
using the gradient of the observable.

C. Limit for the transition time

Next, we discuss how our approach also enables us to
bound the timescales for transition processes. Let us con-
sider a situation for which the expectation value of an
observable A changes from Aini at t = 0 to Afin at t = T.
Since |Afin − Aini| ≤ ∫ T

0 dt|〈Ȧ(t)〉|, we readily have a lower
bound for the transition time

T ≥ |Afin − Aini|
|〈Ȧ〉|

, (26)

which can be evaluated with inequalities (18) and (19),
where • = (1/T)

∫ T
0 dt• denotes the temporal average. We

also obtain a better lower limit by noting that Afin − Aini =
−(T/2)∑(n,m)∈EA

(an − am)Jmn, from which we have

T ≥ |Afin − Aini|
√

([AT∇2
r A]/2)

∑

n∼Am Jnm
2
/rnm

(27)

and

T ≥ 2|Afin − Aini|
‖∇A‖∞

∑

n∼Am |Jnm| . (28)

These inequalities are useful when |Afin − Aini| is much
larger than [A∇2

r A] or ‖∇A‖∞. For example, let us
again consider a one-dimensional graph 1, . . . , N ∈ V and

(n, n + 1) ∈ E (1 ≤ n ≤ N − 1). For an = n, by choosing
Aini = 1 and Afin = N , we have [from inequality (28)] T ≥
2(N − 1)/

∑

n∼Am |Jmn|. Assuming that
∑

(n,m)∈EA
|Jmn| =

O(T−γ ) (γ ≥ 0), we have a proper macroscopic timescale
T � O(N 1/(1−γ )). Note that γ = 0 and γ = 1/2 corre-
spond to the ballistic and diffusive timescales, respectively
[86]. We note that this macroscopic timescale cannot be
attained by the speed limit similar to inequality (13), i.e.,

T ≥ 2|Afin − Aini|
DA
∑

n∈V |ṗn|
. (29)

Indeed, if we consider the above example for this inequal-
ity, the right-hand side is O(1) when

∑

n∈V |ṗn| = O(1),
which is quite loose.

D. Continuous case

We can consider a similar speed limit for continuous
systems as that obtained for the discrete graph. To see this,
let us consider the continuous system whose space coordi-
nate is denoted by x. We consider time evolution for the
probability distribution P(x, t), which obeys the continuity
equation

dP(x, t)
dt

= −∇ · J(x, t). (30)

We assume that J(x) becomes zero for |x| → 0. Using inte-
gration by parts, the instantaneous speed limit for 〈A(t)〉 =
∫

dxP(x, t)A(x) reads

| 〈Ȧ〉 | ≤
√
∫

dxr(x)[∇A(x)]2

√
∫

dx
|J(x)|2

r(x)
(31)

for r(x) > 0 and

| 〈Ȧ〉 | ≤ max
x

|∇A(x)|
∫

dx|J(x)|, (32)

which are the continuous versions of inequalities (10) and
(11). Note that this is generalized to arbitrary functions
written as F = F[P(x, t)], where ∇A(x) is replaced by
∇(δF/δP). We also note that, while Ref. [71] uses inequal-
ity (31) for specific r(x) in the classical Fokker-Planck
equation, we consider more general systems, including,
e.g., a system obeying the nonlinear Schrödinger equation
(see Sec. III).

Moreover, when we consider a situation where the
expectation value of the observable A changes from Aini
at t = 0 to Afin at t = T, we have the relation [cf. inequality
(28)]

|Afin − Aini| ≤ max
x

|∇A(x)|
∫

dxT|J(x)|. (33)

Here, we note that max |∇A(x)| is the Lipschitz constant
for a differentiable function A(x).
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We note that inequality (33) is closely tied to the
order-one Wasserstein distance. The Wasserstein distance
plays a crucial role in characterizing the distance between
two probability distributions P(x) and Q(x) by taking
account of the underlying geometric structure, such as the
Euclidean distance between x and y (see Appendix A for
the definition).

As shown in Appendix A, in one dimension, we can
show that the order-one Wasserstein distance with respect
to the Euclidean distance |x − y| becomes

W1[P(0), P(T)] = T
∫

dx|J (x)|, (34)

where we have assumed that J (−∞) = 0. Thus, combined
with inequality (33), we have

|Afin − Aini| ≤ max |∂xA(x)| W1[P(0), P(T)]. (35)

Thus, in this case, our approach to derive the speed limit is
directly connected to the optimal transport problem.

III. UNITARY QUANTUM DYNAMICS: THEORY

In this section, we apply the general formalism obtained
in the previous section to unitary quantum systems. We
introduce the decomposition of the Hilbert space for gen-
eral quantum many-body systems with discrete states and
show several speed limits for certain observables. In par-
ticular, by bounding the probability current from above,
we show that the speed limit is bounded using the expec-
tation value Etrans of the transition Hamiltonian, which is
a standard observable. Interestingly, the speed limit can be
tighter when the magnitude of Etrans increases because of
the suppression of the quantum phase difference. This intu-
itively means the novel trade-off relation between time and
the quantum phase difference, instead of the trade-off rela-
tion between time and energy fluctuation by Mandelstamm
and Tamm. We also show that, beyond expectation val-
ues, we can bound the speed of the change of entropy and
macroscopic quantum coherence. Furthermore, we discuss
the case for continuous systems and elucidate the rela-
tion to speed limits for discrete systems. The detailed
derivations of each result are given in Appendices C–F.

A. General setting for discrete quantum systems

Let us consider the von Neumann equation

dρ̂(t)
dt

= −i[Ĥ (t), ρ̂(t)], (36)

where we set the Planck constant as unity in the following.
We assume that the Hilbert space H is finite dimensional
and decompose it as H =⊕|V|

n=1 Hn, and we define P̂n as

the projection operator onto Hn. From the von Neumann
equation, we find a continuity equation for

pn(t) = Tr[ρ̂(t)P̂n] (37)

as

dpn

dt
= −

∑

m(∼n)

J q
mn(t), (38)

where

J q
mn(t) = iTr[Ĥ(t)nmρ̂(t)mn − Ĥ(t)mnρ̂(t)nm]. (39)

Here, X̂nm = P̂nX̂ P̂m for an operator X̂ and (n, m) ∈ E if
n �= m and Ĥ(t)nm �= 0 for any t.

As discussed in Fig. 3(a), two cases are particularly
important. One is the case where n labels the complete
basis {|x〉} (1 ≤ x ≤ dim[H]) of the Hilbert space. In that
case, P̂x = |x〉 〈x|. The other interesting case is that in
which n labels a position in a one-dimensional graph, i.e.,
E = {(n, n + 1) | 1 ≤ n ≤ N − 1}.

B. Speed limit for expectation values of observables

As a first target, we show the speed limit of the expecta-
tion value of an observable given by

Â =
∑

n

anP̂n. (40)

Following the general derivation in the previous section,
we find that

|〈 ˙̂A〉| ≤ BgL =
√

[AT∇2
r A]

2

√
√
√
√

∑

n∼Am

|J q
nm|2
rnm

(41)

and

|〈 ˙̂A〉| ≤ BLip = ‖∇A‖∞
2

∑

n∼Am

|J q
nm|, (42)

where A = (a1, . . . , a|V|)T is regarded as a vector obtained
from Â (subscripts “gL” and “Lip” represent the graph
Laplacian and Lipshitz constant, respectively).

Although the speed limits above contain the sum of the
functions of local probability currents, we find that they
are further bounded from above using more physically
relevant quantities. Indeed, we obtain a hierarchy of the
bounds

|〈 ˙̂A〉| ≤ BgL ≤ Bp ≤ BH , (43)

where each of the bounds is explained in the follow-
ing. In particular, below we show the importance of the
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expectation value of the transition Hamiltonian defined as

Etrans =
〈
∑

n∼Am

Ĥnm

〉

. (44)

This quantity is just an expectation value of the globally
defined observable

∑

n∼Am Ĥnm, unlike
∑

n∼Am |Jnm| that
involves information of the local current. We also note that,
when E = EA, we have Etrans = Tr[ρ̂(Ĥ −∑n Ĥnn)].

First, Bp is given by

Bp =
√

2
[AT∇2

rp A]
Rp

√

R2
p − E2

trans, (45)

where

rp
nm = ‖Ĥnm‖op

√
pnpm (46)

for n ∼ m [otherwise rp
nm = 0] and

Rp = Tr[∇2
rp ] =

∑

n∼Am

‖Ĥnm‖op
√

pnpm (47)

are dependent on the probability distribution p(t).
The probability distribution {pn} in Rp is in principle

measured in experiments of artificial quantum systems,
such as the quantum-microscope technique in ultracold
atomic systems [72]. Since Etrans is just a standard expec-
tation value of the observable, the bound in inequality (45)
is accessible in state-of-the-art experiments.

This bound contains nontrivial information. First, the
speed limit becomes tighter when the absolute value of the
expectation value of the transition Hamiltonian is larger,
provided that Rp is almost the same. It may sound counter-
intuitive that large energy concerning the transition Hamil-
tonian suppresses the speed for transition. Intuitively, this
is attributed to the fact that, while the difference in quan-
tum phases generates the current, such a phase difference
should be suppressed for large Etrans. To be more precise,
the local current J q

nm and the local energy Ynm concern-
ing the transition Hamiltonian are respectively given by
2|Tr[ρ̂nmĤmn]|sin θnm and 2|Tr[ρ̂nmĤmn]|cos θnm, where θnm
plays the role of the difference in quantum phases [87].
Thus, if

∑

n∼Am |2Tr[ρ̂nmĤmn]| (which can be bounded by
2Rp ) is given, the sum of the local current

∑

n∼Am |J q
nm| and

energy of the transition Hamiltonian 2Etrans =∑n∼Am Ynm
cannot be large simultaneously (see Fig. 4 and Appendix
C). Note that the correspondence between

√

R2
p − E2

trans

and the quantum phase difference becomes more evident
by considering the continuous-space limit (see Sec. III E).

The above discussion indicates the novel trade-off rela-
tion between time and the quantum phase difference: since
a small magnitude of the phase difference (i.e., the large

FIG. 4. Schematic illustration of the trade-off relation between
the current and the expectation value of the transition energy. The
local current |J q

nm| and the expectation value of the local tran-
sition Hamiltonian ∝ Ynm cannot be simultaneously large when
2|Tr[Ĥnmρ̂mn]| is fixed, since |J q

nm| = 2|Tr[Ĥnmρ̂mn]|sin θnm and
Ynm = 2|Tr[Ĥnmρ̂mn]|cos θnm, where θnm plays the role of the dif-
ference in quantum phases. Summation over all of the edges n ∼A
m leads to the trade-off relation between

∑

n∼Am |J q
nm|, Etrans, and

Rp , as detailed in Appendix C.

expectation value of transition Hamiltonian) suppresses
the speed, we cannot simultaneously decrease the time
required for transitions and the magnitude of the quan-
tum phase difference. This new trade-off relation takes the
place of the conventional trade-off relation between time
and energy fluctuation in inequalities (1) and (2). In addi-
tion, as discussed in Sec. VIII, the term

√

R2
p − E2

trans in our
bounds cannot be replaced with �H .

Second, since Rp =∑n∼Am ‖Ĥnm‖oppn −∑n∼Am

‖Ĥnm‖op(
√

pn − √
pm)

2/2, the bound can be tight if the
gradient of the probability distribution (i.e., the difference
between pn and pm) becomes larger. This is distinct from
typical classical systems, where the speed can increase
when the gradient is larger. The distinction again comes
from the fact that the probability current for unitary time
evolution can arise owing to the gradient of phases instead
of probability distributions.

Next, the bound BH is simply given by

BH = ‖∇A‖∞
√

C2
H − E2

trans, (48)

where

CH := max
n∈V

∑

m(∼An)

‖Ĥnm‖op (49)

is the maximum degree of the graph with edge EA and
weight ‖Ĥnm‖op. Equation (48) does not explicitly contain
the probability distribution (it appears only through Etrans).
Thus, given a Hamiltonian and an observable Â, the bound
is readily obtained if the expectation value of the transition
Hamiltonian can be measured.
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We stress that the bounds in Eqs. (45) and (48) uni-
versally hold for any isolated quantum system for an
observable given as Eq. (40). As highlighted in Sec. IV,
these bounds indeed turn out to be useful for macroscopic
transitions.

We discuss the conceptual distinction between the
Lieb-Robinson bound [70,88] and our results. The Lieb-
Robinson bound is the speed limit for the information
propagation described by the operator norm of the com-
mutator of Â(t) and B̂, where Â and B̂ are spatially distant.
While the Lieb-Robinson bound provides a bound for gen-
eral operators that may not be restricted to Eq. (40) and
leads to various dynamical constraints [89–96], it only
gives a state-independent maximal velocity and cannot
achieve the equality condition in general. Our speed limit
is state dependent through, e.g., Etrans and thus can give a
tighter bound than the Lieb-Robinson bound for an oper-
ator in the form of Eq. (40). Furthermore, our bounds
can achieve the equality condition for some situations, as
discussed in Sec. IV.

We note that we can obtain a completely different type of
inequalities by our approach, i.e., speed limits of accelera-
tion, provided that Ĥ is independent of time. As shown in
Appendix D, we find bounds of the form |〈 ¨̂A〉| ≤ Q, from
which we have |〈 ˙̂A〉| ≤ Bacc := ∫ t

0 dτQ. Such bounds Bacc
become zero for the short-time limit t → 0, which may
sometimes be better than BgL and BLip since they can be
nonzero for t → 0.

C. Speed limit for macroscopic coherence

As represented by inequality (20), the bound is gen-
eralized to quantities that are not written as the standard
expectation value of an observable. Here, we show that a
reasonable speed limit is obtained even for macroscopic
quantum coherence. While we can consider different mea-
sures for coherence [97–101], we introduce the following
measure to describe macroscopic quantum coherence:

C =
∑

n,m∈V
cnm||ρ̂(t)nm||22 (50)

for given cnm ≥ 0 with ‖X̂ ‖2 =
√

Tr[X̂ †X̂ ]. While this
measure reduces to (the square of) l2-norm coherence for
cnm = −δnm + 1, we here assume that cnm is a more general
symmetric and positive function of n and m. For exam-
ple, let us consider a single particle on a one-dimensional
lattice and take cnm = |n − m| (1 ≤ n, m ≤ N ), which is
regarded as a distance between n and m [102]. Then, a state
|ψ〉 = (|l1〉 + |l2〉)/

√
2 has C = |l1 − l2|/2, whose macro-

scopicity is controlled by |l1 − l2|. Another state |ψ〉 =
∑N

k=1 |k〉/√N has C = (N 2 − 1)/3N , indicating the exis-
tence of the macroscopic coherence.

Instead, when we take cnm = (an − am)
2 and assume

pure states, C essentially reduces to the variance of
the macroscopic observable, i.e., C = 2V[Â] = 2(〈Â2〉 −
〈Â〉2). This provides a lower bound on the macroscopic
coherence indicator proposed in Ref. [98] and satisfies
some plausible criteria for macroscopic quantum coher-
ence [99].

For simplicity, we consider pure states ρ̂ = |ψ〉 〈ψ | to
derive the speed limit of macroscopic coherence (we dis-
cuss the generalization to mixed states in Appendix E). In
that case, C =∑n,m cnmpnpm and we can use the frame-
work in inequalities (20) and (21). For example, using
inequalities (20) and (21), we have

|Ċ| ≤ 2

√∑

n∼C l(c̃n − c̃l)2rp
nl

Rp

√

R2
p − E2

trans (51)

and

|Ċ| ≤ 2 max
n∼C l

|c̃n − c̃l|
√

C2
H − E2

trans, (52)

where c̃n :=∑m cnmpm and “∼A” in the previous subsec-
tion is replaced with “∼C ,” defined from the graph

EC = {(n, l) | [(n, l) ∈ E] ∩ (c̃n �= c̃l)}. (53)

Interestingly, for pure quantum states, the obtained bounds
of macroscopic coherence contain the same factor with
Etrans as in the case for the expectation values of observ-
ables.

When cnm satisfies the triangle inequality, e.g., cnm =
|n − m|, we can replace c̃n − c̃l above with cnl. For exam-
ple, we have [from, e.g., inequality (52)]

|Ċ| ≤ B̃p := 2 max
n∼C l

|cnl|
√

R2
p − E2

trans

≤ B̃H := 2 max
n∼C l

|cnl|
√

C2
H − E2

trans. (54)

The bound in inequality (54) becomes particularly useful
when maxn∼C l |cnl| 
 maxn,l∈V |cnl|. Indeed, for the exam-
ple of a particle in the one-dimensional system, C = |l1 −
l2|/2 itself can be large when |l1 − l2| = O(N ), whereas
maxn∼C l |cnl| = 1 and remains O(N 0).
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Instead, we can take cnm = (an − am)
2 and obtain the

speed limit for the variance, e.g.,

|V̇[Â]| ≤ Bvar

:=

√
√
√
√

∑

n∼C l(an − al)2(an + al − 2〈Â〉)2rp
nl

Rp

×
√

R2
p − E2

trans

≤ ‖∇A‖∞

√
√
√
√

∑

n∼C l(an + al − 2〈Â〉)2rp
nl

Rp

×
√

R2
p − E2

trans, (55)

where we have used inequality (25).
We also note that, applying a similar type of inequal-

ity, we obtain the absolute bound for the square root of

the variance (i.e., the standard deviation �A =
√

V[Â]) at
finite times (see Appendix F),

|�A(T)−�A(0)| ≤ ‖∇A‖∞
√

C2
H − E2

transT. (56)

This means that the graph structure generated by the
Hamiltonian can control even the growth of the standard
deviation of the observable.

D. Speed limit for entropylike quantities

Applying inequality (23) to unitary quantum dynamics,
we can also derive the bound for the entropylike quantity
S(p , X ), which is defined in Eq. (22). We have, e.g.,

|Ṡ| ≤
√
√
√
√

maxn∼m ‖Ĥnm‖op

Rp

∑

n∼m

pn

(

ln
pnXm

pmXn

)2

×
√

R2
p − E2

trans, (57)

where we set r = rp and use
√

pnpm ≤ (pn + pm)/2.
Here, Rp and Etrans are defined from the graph
E instead of EA. For X = p ref, the first term on
the right-hand side reduces to the square root of
the (discrete version of) Fisher divergence [103],
F̃(p||p ref) =∑n∼m pn[ln(pn/pm)− ln(p ref

n /p
ref
m )]

2/2 [see
inequality (66) below for the continuous case].

When we consider the Shannon entropy, S(p) =
S(p , �1) = −∑n pn ln pn, we have a different type of non-
trivial bound. As shown in Appendix G, we find that

|Ṡ| ≤
√

8
(

CH

Rp
− 1
)√

R2
p − E2

trans. (58)

This is further evaluated by the bound determined from
only the graph structure and the expectation value of the
transition Hamiltonian:

|Ṡ| ≤
√

2
(

CH − E2
trans

CH

)

. (59)

It is an interesting future problem to compare our result
with other speed limits for entropies [104], such as the
Bremermann-Bekenstein bound [105,106] for information
transfer.

E. Bound for the continuous case

Before ending this section, let us discuss a speed limit
for continuous systems and its relation to the bound for
discrete systems. For simplicity, we focus here on the
nonlinear Schrödinger equation

i�
∂ψ

∂t
=
(

− �2

2m
∇2 + Vext + g|ψ |2

)

ψ , (60)

where we explicitly write the Planck constant in this
subsection. This equation can describe, e.g., the Gross-
Pitaevskii equation [107] for Bose-Einstein condensates by
imposing the normalization condition

∫

dx|ψ(x)|2 = M ,
where M is the number of bosons. In the following, we
instead assume that

∫

dx|ψ(x)|2 = 1 without loss of gen-
erality, which makes it easier to directly compare with the
discussion in the previous subsections.

In this model, the quantum current is given by

j = i�
2m
(

ψ∇ψ∗ − ψ∗∇ψ) := |ψ(x, t)|2v = ρv, (61)

where ρ = |ψ |2. This satisfies the continuity equation
∂|ψ |2/∂t + ∇ · j = 0. Then, assuming that j(x) → 0 for
|x| → ∞, the expectation value of an on-site observable
A(x) has the speed limit
∣
∣
∣
∣

d
dt

∫

dxA(x)|ψ(x, t)|2
∣
∣
∣
∣
=
∣
∣
∣
∣

∫

dx∇A · j
∣
∣
∣
∣

≤
√
∫

dxρ|∇A|2
√

2Ekin. (62)

Here, we have introduced the kinetic energy

Ekin =
∫

dx
ρ|v|2

2
=
∫

dx
ρ|∇θ |2�2

2m2 (63)

and the quantum phase θ of the state (or the condensate),
which satisfies ∇θ = mv/�. Inequality (62) indicates that
the speed should be small when the magnitude of the quan-
tum phase difference is small, which represents the trade-
off relation between transition time and the quantum phase
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difference. We also note that Ekin = ∫ dx(�2/2m)|∇ψ |2 −
∫

dx(�2/8m)ρ(∇ ln ρ)2, where the second term is called
the quantum pressure [107] in atomic physics, which is
also proportional to (one of the definitions of) the clas-
sical Fisher information [59] known in statistics. As far
as we know, the quantum speed limit for the nonlinear
Schrödinger equation in the form of inequality (62) has
never been mentioned before.

We can also find the speed limits of the variance and the
entropylike quantities as in inequalities (56) and (57). For
example, the variance of A satisfies

∣
∣
∣
∣

dV[A]
dt

∣
∣
∣
∣
≤ 2‖∇A‖∞

√

V[A]
√

2Ekin, (64)

which leads to

|�A(T)−�A(0)| ≤ ‖∇A‖∞
√

2EkinT. (65)

In addition, the Kullback-Leibler divergence between
ρ(x, t) and σ(x) has the speed limit
∣
∣
∣
∣

d
dt

∫

dxρ(x, t) ln
ρ(x, t)
σ (x)

∣
∣
∣
∣
≤
√

F(ρ||σ)
√

2Ekin, (66)

where F(ρ||σ) := ∫ dxρ(x)|∇ ln ρ(x)− ∇ ln σ(x)|2 is
the Fisher divergence [103].

Notably, for a simple case, this speed limit corresponds
to the continuous version of Bp for a discrete nonlin-
ear Schrödinger equation. To see this, let us focus on
the following equation of motion for a one-dimensional
system:

i
dψl

dt
= −K(ψl−1 + ψl+1)+ Wψl + g̃|ψl|2ψl. (67)

In this case, we have Etrans =∑l K(ψ∗
l ψl−1 + ψ∗

l−1ψl)

and ‖Ĥnm‖op = K . Inserting ψl = √
ρleiθl and taking the

continuous limit, we have (neglecting the boundary term)

Etrans = K
∑

l

{ρl + ρl−1 − (
√
ρl − √

ρl−1)
2} cos(θl − θl−1)

→ 2K − Ka2
∫

dxρ(∂xθ)
2 − Ka2

∫

dx
(∂xρ)

2

4ρ
,

(68)

Rp → 2K − Ka2
∫

dx
(∂xρ)

2

ρ
, (69)

Rp − E2
trans

Rp
→ 2Ka2

∫

dxρ(∂xθ)
2, (70)

and

2[AT∇2
rp A] → 2Ka2

∫

dx(∂xA)2ρ. (71)

Here, a is the lattice constant for the discrete system,
and we take the leading order of a. Consequently, the
transition-energy bound in Eq. (45) becomes

∣
∣
∣
∣

d
dt

∫

dxA(x)|ψ(x, t)|2
∣
∣
∣
∣
≤ 2Ka2

√
∫

dxρ|∂xA|2
√

2Ekin,

(72)

which is equivalent to inequality (62) by setting K =
�/2ma2.

The comparison between the continuous and discrete
systems also clarifies the close relationship between Rp and
the Fisher information. In fact, if ‖Ĥnm‖op is constant for
all n and m, Rp involves the negative sign of the discrete
version of the Fisher information [see Eq. (69) for the con-
tinuous counterpart]. As a more rigorous statement, in this
simple case, we can show that

Rp

‖Ĥnm‖op
=
∑

n∼Am

pn − 1
2

∑

n∼Am

(
√

pn − √
pm)

2, (73)

where the second term becomes proportional to the Fisher
information when we take the continuous limit.

IV. UNITARY QUANTUM DYNAMICS: EXAMPLE

A. Single-particle system

As a first example for our quantum speed limits, let us
consider a single-particle system on a one-dimensional dis-
crete lattice with length L, which obeys the Schrödinger
equation

i
dψl

dt
= −K(ψl−1 + ψl+1)+ Wlψl, (74)

where K is the hopping energy and Wl is a potential.
Assuming the open boundary condition, we can write the
corresponding Hamiltonian as

Ĥ = −
L−1
∑

l=1

K(â†
l+1âl + H.c.)+

L
∑

l=1

Wln̂l, (75)

where âl is the annihilation operator of a particle at
site l and n̂l = â†

l âl is the number operator. We define
the subspace n as the label for the physical sites mea-
sured from the left, for which we have N = L. In this
case, we have J q

l,l−1 = −J q
l−1,l = −iK(ψ∗

l ψl−1 − ψ∗
l−1ψl)

and Etrans =∑L−1
l=1 K(ψ∗

l ψl+1 + ψ∗
l+1ψl) = E −∑l plWl.

We also have Rp = 2K
∑

l
√

plpl+1 and CH = 2K . As an
observable, let us consider the average position

x̂ =
∑

l

ln̂l =
∑

l

lP̂l (76)

here. In this case, we have ||∇x||∞ = 1 and [xT∇2
rp x] =

Rp/2.
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Figures 5(a)–5(c) show time evolutions of 〈˙̂x〉 and our
speed limits for several initial states (see Fig. 6), i.e.,

|ψ1〉 = â†
1 |vac〉 , (77)

|ψ2〉 = â†
L/4 |vac〉 , (78)

and

|ψ3〉 = 1√
L/2

L/2
∑

i=1

â†
i |vac〉 , (79)

where |vac〉 denotes the vacuum state. Here, |Etrans| for
|ψ3〉 is larger than those for |ψ1〉 and |ψ2〉. As shown in the
figure, we find that each of the bounds BLip,Bp , and BH
in Eqs. (42), (45), and (48) provides a physically mean-
ingful bound, which is proportional to the gradient of the
quantity and is O(1) with respect to L and t. We note that
BLip = Bp for the initial states |ψ1〉 and |ψ2〉 when we set
Wl = 0. Remarkably, these two bounds also become equal
to the speed of 〈x̂〉 for short times (t � 2) from |ψ1〉 [see the
right panel of Fig. 5(a)], meaning that the inequalities for
BLip and Bp satisfy the equality condition for appropriate
situations (see Appendix H for details).

Several remarks are in order. First, the obtained bounds
are much tighter than the conventional bound BUR in
Eq. (2), where �x diverges as ∝ t for |ψ1〉 [inset of the

right panel of Fig. 5(a)], ∝ t for |ψ2〉, and ∝ L for |ψ3〉
(data not shown) [108]. Second, as demonstrated in the
result for |ψ1〉, the bounds BLip and Bp can even capture the
nonmonotonic behavior of |〈˙̂x〉| (see, e.g., t ∼ 50). Third,
as shown in Fig. 5(c), the speed of the observable for |ψ3〉
becomes typically much smaller than those for |ψ1〉 and
|ψ2〉 because of large Etrans, which is correctly captured by
our speed limits.

Next, we discuss the speed limit for macroscopic coher-
ence. For this purpose, we first consider the measure

C =
∑

l,l′
|l − l′||ρl,l′ |2 =

∑

l,l′
|l − l′|plpl′ . (80)

Figures 5(d)–5(f) show time evolutions of |Ċ| and our
speed limits for the different initial states. Here, B̃p and B̃H
are defined in inequalities (54), and we have also defined
another bound

B̃Lip = 2 max
n∼Cm

|cnm|
∑

n∼Cm

|J q
nm|. (81)

As demonstrated in the figure, we again find that each
bound provides a physically meaningful bound, which is
proportional to the quantities characterizing the gradient
and does not diverge with L and t. Note that the speed
limits for C are just twice as large as those for 〈x̂〉 in the
present case, since ‖∇x‖∞ = maxn∼Cm |cnm| = 1.

(a) (b) (c)

(d) (e) (f)

BH

BH

Bp

Bp

C

BLip

BLip

BUR

FIG. 5. (a)–(c) Speed of the position, 〈˙̂x〉 (black), and the speed limits for the initial states (a) |ψ1〉 (the right panel shows the short-
time regime), (b) |ψ2〉, and (c) |ψ3〉 in a single-particle system. The bounds are given by BLip in Eq. (42) (blue), Bp in Eq. (45) (red),
and BH in Eq. (48) (green). In the inset of the right panel of (a), we also show the bound BUR based on the uncertainty relation in Eq.
(2) (gray). Our bounds are not divergent with L and t even for long times and become much tighter than BUR. Furthermore, the bounds
typically become tighter in (c) than in (a) and (b), since Etrans is larger. We note that the data for BLip and Bp overlap for (a) and (b).
(d)–(f) Speed of the macroscopic coherence measure |Ċ| defined in Eq. (80) (black), and the speed limits for the initial states (d) |ψ1〉
(the right panel is for short times), (e) |ψ2〉, and (f) |ψ3〉. The bounds are given by B̃Lip in Eq. (81) (blue), and B̃p (red) and B̃H (green)
in Eq. (54). We again find that each speed limit provides a physically reasonable bound, which does not diverge with L and t. We use
K = 1, Wl = 0, L = 100, and M = 1.
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FIG. 6. Three initial states for a single-particle system: |ψ1〉
in Eq. (77), |ψ2〉 in Eq. (78), and |ψ3〉 in Eq. (79) with L = 12.
The state |ψ3〉 has a larger expectation value of the transition
Hamiltonian than |ψ1〉 and |ψ2〉.

As another indicator of macroscopic coherence, we can
consider the variance for x̂, V[x̂]. In Fig. 7, we show the
speed of the variance of x̂, i.e., |V̇[x̂]|, and the speed limit
Bvar in inequality (55) for the initial states |ψ2〉 and |ψ3〉.
We find that the speed limit (i) can provide an excel-
lent bound even for the variance speed [especially for
t � L/(4 · 2K) from |ψ2〉] and (ii) becomes smaller when
the expectation value of the transition Hamiltonian (rel-
ative to Rp ) becomes larger, as seen from the result for
|ψ3〉.

B. Many-particle system

Next, we consider a one-dimensional system com-
posed of M hardcore bosons in L lattice sites (M < L/2)
under the open boundary condition, whose Hamiltonian is
described by

Ĥ = −
L−1
∑

l=1

K(â†
l+1âl + H.c.)+

L−1
∑

l=1

Vn̂ln̂l+1 +
L
∑

l=1

Wln̂l,

(82)

(a) (b)
Bvar

FIG. 7. The speed of the macroscopic coherence measured by
the variance of x̂, |V̇[x̂]|, and the speed limit Bvar in inequality
(55) for the initial states (a) |ψ2〉 and (b) |ψ3〉 for a single-particle
system. The speed limit can provide a good bound, especially for
t � L/(4 · 2K) from |ψ2〉 [see (a)]. Moreover, it becomes smaller
when the expectation value of the transition Hamiltonian (rela-
tive to Rp ) becomes larger [see (b)]. We use K = 1, Wl = 0, L =
100, and M = 1.

where âl denotes the annihilation operator of a hardcore
boson at site l and n̂l = â†

l âl. In the following, we consider
that each Hn is the one-dimensional space describing the
(many-body) Fock state |i〉 (i = 1, . . . , dim[H]). Trans-
port experiments of such multiple-particle systems are
realized in cold atomic systems [109,110].

As a quantity of interest, we first consider the sum of the
positions of M particles:

X̂ =
∑

l

ln̂l =
∑

i

XiP̂i. (83)

Here Xi =∑m li,m is the sum of the particle posi-
tions li,1, . . . , li,M for the Fock basis |i〉. Under this
setup, we have Etrans = −〈∑L−1

l=1 K(â†
l+1âl + H.c.)〉, Rp =

2K
∑

i∼j
√pipj , and CH = 2MK . We also have ‖∇X ‖∞ =

1 and [X T∇2
rp X ] = Rp/2. Figure 8 shows the example of

the graph E (= EX ) generated by the many-body Hamilto-
nian for L = 6 and M = 2.

Figures 9(a), 9(b) show time evolutions of 〈 ˙̂X 〉 and our
speed limits for different initial states, i.e.,

|1〉 = â†
1 · · · â†

M |vac〉 (84)

and

|3〉 =
√

M !(L/2 − M )!
(L/2)!

∑

1≤i1<···<iM ≤L/2

â†
i1 · · · â†

iM |vac〉 ,

(85)

which reduce to |ψ1〉 and |ψ3〉 for M = 1, respectively.
Note that |3〉 has larger |Etrans| than |1〉. From the figure,

FIG. 8. An example of the graph E (or, equivalently, EX ) for
the system with many hardcore bosons in Eq. (82). We can cal-
culate Xi for each Fock state |i〉. We have ‖∇X ‖∞ = 1 and
CH = 2MK . The case with L = 6 and M = 2 is shown.
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(a)

(b) (e)

(f)(c)

(d)BH

BH

BH

Bp

Bp

Bp

Blip

Blip

Blip
C

FIG. 9. Verification of the speed limits for systems with mul-
tiple hardcore bosons from the initial state (a),(c),(e) |1〉 or
(b),(d),(f) |3〉. (a),(b) Speed of the sum of the positions of the
particles, 〈 ˙̂X 〉 (black), and the speed limits given by BLip in Eq.
(42) (blue), Bp in Eq. (45) (red), and BH in Eq. (48) (green).
We find that our speed limits are valid even for many-body
systems. (c),(d) Speed of the position of the rightmost parti-
cle, 〈 ˙̂μ〉 (black), and our speed limits. Remarkably, the bounds
BLip and Bp can provide good bounds for t � 12 from |1〉, for
which |〈 ˙̂μ〉| exhibits nonmonotonic behavior. (e),(f) Speed of the
macroscopic coherence |Ċ| (black) and the speed limits given by
B̃Lip in Eq. (81) (blue), and B̃p (red) and B̃H (green) in Eq. (54).
We use K = 1, V = 0.1, Wl = 0, L = 24, and M = 3.

we find that our speed limits are valid even for many-body
systems. In particular, (i) they do not show unbounded
increase with t, (ii) BLip and Bp provide good bounds for
short times from |1〉, and (iii) the expectation value of the
transition Hamiltonian again suppresses the bound [com-
pare (a) and (b)]. For (i), we also note that the bounds
are independent of L and approximately proportional to M
(data not shown). This means that the speed of the aver-
age position 〈 ˙̂X 〉/M becomes O(M 0), which is natural for
locally interacting systems.

Next, we consider the position of the rightmost particle
as another observable of interest:

μ̂ =
∑

l

ln̂l

L
∏

l′=l+1

(1 − n̂l′) =
∑

i

μiP̂i (86)

with μi = maxm li,m the maximum position of the parti-
cle for a given Fock state |i〉. Note that we cannot write
this observable as a sum of local observables. In this case,
we have Etrans = 〈∑i∼μj Hij 〉, Rp = 2K

∑

i∼μj
√pipj , and

CH = 2K . We also have ‖∇μ‖∞ = 1 and [μT∇2
rpμ] =

Rp/2.
Figures 9(c) and 9(d) show time evolutions of 〈 ˙̂μ〉 and

our speed limits for |1〉 and |3〉. We find that our speed
limits are valid for this nonlocal observable. Remarkably,
the bounds BLip and Bp can provide good bounds for
|1〉 and t � 12, for which |〈 ˙̂μ〉| exhibits nonmonotonic
behavior.

Finally, we discuss the speed limit for the macroscopic
coherence, which we choose as

C =
∑

i,j

∣
∣
∣
∣

M
∑

m=1

li,m − lj ,m

∣
∣
∣
∣
|ρij |2 =

∑

i,j

∣
∣
∣
∣

M
∑

m=1

li,m − lj ,m

∣
∣
∣
∣
pipj .

(87)

This reduces to Eq. (80) for m = 1. Figures 9(e) and 9(f)
show time evolutions of |Ċ| and our speed limits for |1〉
and |3〉. In this case, the bounds B̃p and B̃H defined in Eq.
(54) and B̃Lip defined in Eq. (81) are twice as large as Bp ,
BH , and BLip for 〈˙̂x〉. We find that these speed limits indeed
bound the speed of coherence. Except for very short times
from |1〉, the bounds do not seem to be tight enough for
this case; it remains as future work to investigate whether
a tighter universal speed limit for coherence exists.

While we have considered systems with hardcore
bosons for simplicity, we stress that our speed limits can
lead to valuable bounds for interacting fermionic and
bosonic systems, such as the Fermi- and Bose-Hubbard
models. It is easy to confirm this fact for spinless fermions
since the graph’s structure describing the Hamiltonian is
similar to the case for the hardcore bosons. For (standard)
bosons, the situation becomes more complicated since the
local transition strength can diverge as maxi∼j |Hij | ∼ M ;
because of this, studies to find (state-independent) maxi-
mal speeds beyond the conventional Lieb-Robinson bound
have recently been active for bosonic systems [111–114].
In our case, this divergence does not cause much harm,
especially when we consider the speed of the average
position of atoms, X̂ /M . To see this, let m1,i, . . . , mL,i
be the number of particles at sites 1, . . . , L for state
|i〉. Then, M =∑L

l=1 ml,i and CH = maxi
∑

j (∼X i) |Hij | ∼
K maxi

∑

l

√

ml,i(ml+1,i + 1)+√ml,i(ml−1,i + 1). Thus,

〈 ˙̂X /M 〉 is bounded by the factor
√

(CH/M )2 − (Ekin/M )2,
which does not grow with M [115].

C. Many-body spin system

Next, we consider an interacting quantum many-body
spin system in one dimension with system size L [see
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Fig. 10(a)] whose Hamiltonian reads

Ĥ = hσ̂ x
1 +

L−1
∑

l=1

J σ̂ x
l σ̂

x
l+1 + J σ̂ y

l σ̂
y
l+1 + Jzσ̂

z
l σ̂

z
l+1. (88)

We note that the interaction terms do not change the total
magnetization

M̂ =
L
∑

l=1

σ̂ z
l =

2L
∑

i=1

miP̂i, (89)

while the transverse magnetic field hσ̂ x
1 does. Here, we

consider that each Hn is the one-dimensional space
describing the (many-body) computational state |i〉 (i =
1, . . . , dim[H] = 2L).

As an observable of interest, we consider M̂ itself. In
this case, we have Etrans = h 〈σ̂ x

1 〉, Rp = 2h
∑

i∼M j
√pipj ,

CH = h, ‖∇M‖∞ = 2, and [M T∇2
rp M ] = 2Rp . As initial

states, we take

|�1〉 =
L
⊗

l=1

|↑〉l (90)

and

|�2〉 = 1√
2
(|↑〉1 + |↓〉1)⊗

( L
⊗

l=2

|↑〉l

)

, (91)

where |↑〉l (|↓〉l) is the eigenstate of σ̂ z
l with eigenvalue

+1 (−1). Since 〈M̂ (0)〉 � L for both of the initial states,
a macroscopic transition of the magnetization occurs when
the system undergoes a unitary time evolution.

Figures 10(b) and 10(c) show time evolutions of |〈 ˙̂M 〉|
and our speed limits for |�1〉 and |�2〉. We can see that
our speed limits BLip, Bp , and BH are verified even for

the many-body spin system. In particular, these speed lim-
its can qualitatively capture (part of) the oscillations of
|〈 ˙̂M 〉| and provide a good bound for some times [such as
t � pπ/2 (p = 1, 2, . . .) for BLip and Bp from |�1〉].

We note that, in this specific Hamiltonian and
observable, we can also consider a modified ver-
sion of the conventional bound in Eq. (2). Namely,
since |〈 ˙̂M 〉| = |〈[Ĥ , M̂ ]〉| = |〈[hσ̂ x

1 , σ̂ z
1 ]〉|, we can consider

B′
UR := 2

√

V[hσ̂ x
1 ]V[σ̂ z

1 ]. As shown in Figs. 10(a) and

10(b), this indeed gives a bound for |〈 ˙̂M 〉|. In this specific
case, we can show that B′

UR ≤ BH . On the other hand, our
speed limits based on the local conservation law of prob-
ability (such as BLip) have some advantages over B′

UR for
the following reasons. First, the possibility of the reduc-
tion of Ĥ , M̂ → hσ̂ x

1 , σ̂ z
1 relies on the specific observable

and the Hamiltonian, and it is difficult to obtain appropriate
B′

UR for general settings. Second, our method can be used
for obtaining speed limits for, e.g., macroscopic coherence
(see the next paragraph), going beyond the bound B′

UR.

Third, even when we focus on the bound on |〈 ˙̂M 〉|, we
numerically find that BLip and Bp provide better bounds
than B′

UR.
To discuss the coherence structure of the dynamics, we

next consider the variance of the macroscopic magneti-
zation difference V[M̂ ] = C/2 with cij = (mi − mj )

2 in
Eq. (50). Note that V[M̂ ] = O(L2) when the state is a
macroscopically superposed (cat) state [98], such as the
Greenberger-Horne-Zeilinger (GHZ) state,

|�3〉 = 1√
2
(|↑ · · · ↑〉 + |↓ · · · ↓〉), (92)

which satisfies V[M̂ ] = L2. In contrast, noncat states
possess O(Lz) (0 ≤ z < 2), such as the equally super-
posed state (1/

√
d)
∑

i |i〉 with V[M̂ ] = L and the
computational-basis states with V[M̂ ] = 0.

(a) (b) (c) (d)BH

Bp
BLip

BvarB′
UR

FIG. 10. (a) Schematic figure of the many-body spin system in Eq. (88). The spins consist of the spin-conserving interaction for the
entire spins and the transverse magnetic field only at the first site. (b),(c) Speed of the magnetization, 〈 ˙̂M 〉 (black), and the speed limits
from the initial states (b) |�1〉 and (c) |�2〉. The bounds are given by BLip (blue), Bp (red), BH (green), and B′

UR (gray). The speed limits

can qualitatively capture (part of) the oscillations of |〈 ˙̂M 〉| and provide nice bounds for certain times, such as t � pπ/2 (p = 1, 2, . . .)
for BLip and Bp from |�1〉. Note that some of the curves are almost overlapped (BLip � Bp for |�1〉 and BH � B′

UR for |�2〉). (d) Time
evolution of the macroscopic coherence measured by the variance V[M̂ ] (black) and its bound Bvar (red) from the GHZ state |�3〉. We
find that the bound works well especially for t � pπ/2 (p = 1, 2, . . .). We consider the case with L = 10, Jx = Jy = 0.1, Jz = 0.05,
and h = 1 for all of the calculations.
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Figure 10(d) shows a time evolution of the variance
from the GHZ state |�3〉. We find that the speed limit
Bvar in Eq. (55) works well for V[M̂ ], especially at t �
pπ/2 (p = 1, 2, . . .). We also note that our inequality (56)
enables us to obtain a rigorous lower bound of the time T
for a cat state to relax to a noncat state (or vice versa) via
the unitary time evolution

T ≥
|
√

V[M̂ (t)] −
√

V[M̂ (0)]|

‖∇M‖∞
√

C2
H − E2

trans

= O(L)
2

, (93)

which is extensive with respect to the system size.

V. CLASSICAL MARKOVIAN SYSTEMS AND THE
IRREVERSIBILITY BOUND

In this section we turn our attention toward classical
Markovian systems and show that the irreversible entropy
production bounds macroscopic transition speed. Entropy
production has recently been found to play an impor-
tant role [41,58,71,73–79,116–124] for thermodynamic
bounds, e.g., certain speed limits and the thermodynamic
uncertainty relation. We here show a similar useful speed
limit for macroscopic transitions at any coarse-grained
level by applying our general method in Sec. II. Our bound
can be qualitatively better for macroscopic transitions than
that proposed in Ref. [41]. Furthermore, we newly derive
a modified classical speed limit based on the Hatano-Sasa
entropy production rate [80], which works well for long
times even when the detailed balance condition is not
satisfied.

A. General setting for discrete systems

We introduce a finite-dimensional state space S and
consider the Markovian equation

dρx

dt
=
∑

y

Wxyρy , (94)

where x, y ∈ S , ρ is the classical probability distribution,
and Wxy is the transition rate matrix satisfying Wxy ≥ 0
for x �= y and

∑

x Wxy = 0.
We arbitrarily decompose S as S =⊕n Sn and define

the coarse-grained probability

pn =
∑

x∈Sn

ρx (95)

as well as the coarse-grained transition rate matrix

Wnm =
∑

x∈Sn

∑

y∈Sm
Wxyρy

∑

y∈Sm
ρy

. (96)

Then, the original master equation becomes the coarse-
grained one [125],

dpn

dt
=
∑

m

Wnmpm = −
∑

m(∼n)

J c
mn, (97)

where

J c
mn = −Wnmpm + Wmnpn, (98)

and the graph E is defined as E = {(n, m) | (n �=
m) and (Wnm �= 0 or Wmn �= 0)}. We note that W depends
on p(t) in general and that

∑

n Wnm = 0.

B. Bound for macroscopic observables

We consider a macroscopic observable that is given by

A =
∑

n

anpn. (99)

Using the general method introduced in Sec. II, we obtain
〈Ȧ〉 = − 1

2

∑

n∼m(an − am)J c
mn and inequalities such as

|〈Ȧ〉| ≤ Bc
cur := ‖∇A‖∞

2

∑

n∼Am

|J c
mn|. (100)

1. Standard entropy production bound

Let us first consider a bound based on the standard
entropy production rate. For simplicity, we start from the
case where the system is attached to a single heat bath at
temperature β−1 and W satisfies the detailed balance con-
dition, i.e., Wxy/Wyx = e−β(Ex−Ey ), where Ex is the energy
of state x. Denoting the Shannon entropy of ρ as S(ρ),
we can write down the entropy production rate of system
�̇ := Ṡ(ρx)+∑x �=y Wyxρxβ(Ex − Ey) as [126]

�̇ =
∑

x �=y

Wxyρy ln
Wxyρy

Wyxρx
. (101)

Similarly, we can define the following entropy production
rate defined from the coarse-grained Markovian dynamics
[125]:

�̇CG :=
∑

n∼Am

Wnmpm ln
Wnmpm

Wmnpn
. (102)

This quantity is smaller than the bare entropy produc-
tion rate, i.e., �̇CG ≤ �̇, which is shown via the log-sum
inequality (see Appendix I).

Now, as proven in Appendix I, we find the follow-
ing bounds for the instantaneous speed of the expectation
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value of A:

|〈Ȧ〉| ≤
√

�A�̇CG

2
≤ ‖∇A‖∞

√

ACG�̇CG

2
(103)

and

|〈Ȧ〉| ≤ ‖∇A‖∞

√

A�̇
2

. (104)

Here�A :=∑n∼m(an − am)
2Wnmpm is the second moment

of the transition speed of A and we define

ACG :=
∑

n∼Am

Wnm (105)

as the dynamical activity of the coarse-grained equation.
Note that ACG ≤ A :=∑x �=y Wxy , where A is the bare
dynamical activity [41]. The proof of inequality (103) fol-
lows by taking rnm = Wnmpm + Wmnpn (note that �A =
[AT∇2

r A]) and using the inequalities introduced in Refs.
[41,75]. This inequality can also be obtained from the
short-time version of the thermodynamic uncertainty rela-
tion [127]. It explicitly shows that the entropy production
rate can provide a useful bound for macroscopic sys-
tems because of the factor ‖∇A‖∞, which is concretely
illustrated in Sec. VI.

We can use the instantaneous speed limit obtained
above as the bound for the relaxation time. Integrating the
inequality (104) from time 0 to T, we obtain

T ≥ 2|〈A〉(t)− 〈A〉(0)|2
||∇A||2∞A�

, (106)

where we define the total entropy production � = ∫ T
0 dt�̇,

which is equal to D[ρ(0)||ρSS] − D[ρ(t)||ρSS] for time
independent W [128].

We note that the above inequalities can be much
tighter than proposed in Ref. [41]. Indeed, the refer-
ence considers the speed limit for total variation distance,
from which we obtain |〈Ȧ〉| ≤ ‖A‖∞

√
2A�̇ and T ≥

[|〈A〉(t)− 〈A〉(0)|2]/(2‖A‖2
∞A�). For observables satis-

fying ‖∇A‖∞ 
 ‖A‖∞, which often appears for macro-
scopic transitions (see Sec. VI), inequalities (104) and
(106) become considerably better than those in Ref. [41].

The speed limits are obtained even for the entropy
production rate itself. Indeed, as detailed in Appendix
I, we have �̇CG ≤ ��/2, where �� :=∑n∼m Wnmpm{ln
[Wnmpm/(Wmnpn)]}2. Using this, one obtains

|〈Ȧ〉| ≤
√
�A��

2
. (107)

While the above discussion has been done for the single
heat bath, we can consider the case with multiple heat

baths labeled by ν with temperatures β−1
ν . In this case,

Wxy =∑ν Wν
xy and we can assume the local detailed bal-

ance condition, Wν
xy/Wν

yx = e−βν(Ex−Ey ) for any ν and x �=
y. Then, we can introduce �̇ν and �̇ν

CG by replacing Wxy
with Wν

xy in Eqs. (101) and (102) (note the implicit depen-
dence of W on W). Redefining �̇ and �̇CG by �̇ =∑ν �̇

ν

and �̇CG =∑ν �̇
ν
CG, we can reproduce the above bounds,

inequalities (103), (104), (106), and (107), which are based
on the entropy production rate. We also note that inequal-
ities (103), (104), (106), and (107) still hold for general
Markovian dynamics even without the local detailed bal-
ance condition by defining � and �CG through Eqs. (101)
and (102), although� and�CG may no longer be identified
as the physical entropy production in this case.

2. Hatano-Sasa entropy production bound

While the above bounds based on the standard entropy
production rate are useful under the detailed balance con-
dition, they may not provide tight bounds for long times
without this condition. This is because of the possible exis-
tence of a stationary current, which leads to the nonzero
entropy production rate.

Here, we show that a modified speed of the transition of
an observable is bounded using the Hatano-Sasa entropy
production [80], which is the entropy production where
the entropy generated by the stationary dissipation is sub-
tracted. Assuming that the instantaneous stationary state
ρSS of W(t) is unique, the Hatano-Sasa entropy production
rate for general Markovian systems is given by

�̇HS =
∑

x,y

Wxy(t)ρy(t) ln
Wxy(t)ρy(t)

W̃yx(t)ρx(t)
, (108)

where

W̃yx(t) = Wxy(t)ρSS
y (t)

ρSS
x (t)

(109)

is the generator of the dual process [41]. The important
property of �̇HS is that it vanishes for the stationary state
unlike �̇. In addition, �̇HS = −dD[ρ(t)||ρSS]/dt for time
independent W . To derive general inequalities, we also
introduce the coarse-grained version of �̇HS,

�̇HS
CG =

∑

n,m

Wnm(t)pm(t) ln
Wnm(t)pm(t)

W̃mn(t)pn(t)
, (110)

where W̃mn(t) = Wnm(t)pSS
m (t)/p

SS
n (t).
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Now, to derive a speed limit, we note that

−J c
mn = Wnmpm − W̃mnpn − J c,SS

mn
pn

pSS
n

, (111)

where

J c,SS
mn = −WnmpSS

m + WmnpSS
n (112)

is the stationary probability current. From this, we have

〈Ȧ〉 = − 1
2

∑

(n,m)∈Ec

(an − am)J c,SS
mn

pn

pSS
n

+ 1
2

∑

(n,m)∈Ec

(an − am)(Wnmpm − W̃mnpn). (113)

Then, introducing

VA = −1
2

∑

(n,m)∈Ec

anJ c,SS
mn

(
pn

pSS
n

+ pm

pSS
m

)

, (114)

we have

|〈Ȧ〉 − VA| ≤
√

�̃A�̇
HS
CG

2
≤ ‖∇A‖∞

√

ACG�̇
HS
CG

2
, (115)

where �̃A = max[
∑

n∼Am(an − am)
2Wnmpm,

∑

n∼Am(an −
am)

2

W̃nmpm]. As a special case, we have the non-coarse-grained
version of the inequality,

|〈Ȧ〉 − VA| ≤ ‖∇A‖∞

√

A�̇HS

2
. (116)

We can regard the (modified) speed limits in inequalities
(115) and (116) as bounds for the speed where the contri-
bution of the background current is subtracted. In fact, in
the stationary state, VA becomes a stationary current for A.
Since the right-hand side of inequality (116) becomes zero
for the stationary state, the inequality can be much tighter
than the bound using the standard entropy production rate
if the detailed balance condition is absent.

VI. CLASSICAL DYNAMICS: EXAMPLE

In this section, we discuss concrete examples of the
classical speed limits discussed in the previous section.
Specifically, we consider the symmetric and asymmet-
ric simple exclusion processes [129] to demonstrate the
usefulness of the bound [see Fig. 11(a)]. The generator

describing these dynamics can be written in the operator
form as

W =
L
∑

l=1

qb̂†
l+1b̂l + (1 − q)b̂†

l b̂l+1 + n̂ln̂l+1 − n̂l, (117)

where b̂l is the annihilation operator of a hardcore particle
at site l and n̂l = b̂†

l b̂l is the number operator of the particle
at site l. We here employ the periodic boundary condition
with particle number M and take even L. When q = 0.5
(q �= 0.5), the dynamics becomes the symmetric (asym-
metric) simple exclusion process. In this model, while the
stationary current exists only for q �= 0.5, the stationary
state is the uniform state ρSS

x = 1/dim[S] irrespective of
q. Consequently, �̇ in Eq. (101) becomes equivalent to the
rate of the Shannon entropy Ṡ only for q = 0.5 and �̇HS in
Eq. (108) becomes equal to Ṡ for all q.

We first consider an observable describing the sum of
the distances from the first site over all particles:

d =
L
∑

l=1

ξln̂l (118)

with

ξl = L/2 − |L/2 − l + 1|. (119)

If we use the bare (i.e., non-coarse-grained) basis of the
many-body Fock-state basis, parameterized by the num-
ber of particles at each site, we have ||∇d||∞ = 1. In the
following, we take an initial state as a state for which M
particles reside in sites l = 1, . . . , M [Fig. 11(a)].

Figure 11(b) shows the speed of 〈d〉 for q = 1/2 (sym-
metric simple exclusion process). We find that the speed is
well bounded by the current bound Bc

cur in inequality (100),
which is further bounded by the entropic bound Bc

� in Eq.
(104) and the bound Bc

� in Eq. (107). Note that Bc
� and Bc

�

are almost the same except for early times.
Next, Fig. 11(c) shows the speed of 〈d〉 for q = 0.7

(asymmetric simple exclusion process). We find that, while
the bound based on the current works well for short times,
none of the bounds become tight for long times because
of the finite stationary current. In this case, we find that
the bound based on the Hatano-Sasa entropy, B̃c

�HS in Eq.
(116), is useful to evaluate the speed of the transition even
for long times [see Fig. 11(d)].

Let us discuss another observable μ, defined as the par-
ticle’s distance farthest from the first site. Namely, for a
given state for which the particles are located at l1, . . . , lM ,
μ takes a value given by

max
m=1,...,M

ξlM . (120)

In contrast with the discussion for d, we here consider the
coarse-grained subspaces 1, . . . , L/2, characterized by the
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(a) (b) (c)

(d) (e)

FIG. 11. (a) Schematic illustration for our model, which describes the symmetric and asymmetric hopping models. We consider L
sites and M particles (M = 3 is shown), which hop between neighboring sites at right and left with rates q and 1 − q, respectively. We
consider the distance ξl of particles from the first site in Eq. (119). (b) Speed of the sum of ξl, |〈ḋ(t)〉| (black), and the speed limits for
the symmetric simple exclusion process (q = 0.5). The main and inset panels show results for the long and short times, respectively.
The speed is well bounded by the current bound Bc

cur (blue), which is further bounded by the entropic bound Bc
� (red) and the bound

Bc
� (green). (c) Speed limits of |〈ḋ(t)〉| for the asymmetric simple exclusion process (q = 0.7). While Bc

cur works well for short times,
none of the bounds become tight for long times due to the stationary current. (d) Modified speed limit of |〈ḋ(t)〉 − Vd| (black) for the
asymmetric simple exclusion process (q = 0.7). We find that the bound B̃c

�HS (green) is useful to evaluate the speed of the transition
both for (left) short and (right) long times. (e) Speed of the maximum distance, |〈μ̇(t)〉| (black), and the speed limits for the symmetric
simple exclusion process (q = 0.5). The main and inset panels show results for the long and short times, respectively. As seen from
the almost collapse of the curves, the speed is tightly bounded by the bounds Bc

cur (blue), Bc
� (red), and Bc

� (green), which are obtained
from the coarse-grained variables. We use L = 18 and M = 3 for all the cases.

value of μ (the corresponding graph becomes one dimen-
sional). Figure 11(e) shows the speed of 〈μ〉 for q = 0.5
and the bounds Bc

cur in Eq. (100), Bc
� in Eq. (103), and Bc

�

in Eq. (107) obtained from the coarse-grained variables.
We see that these bounds give quite tight speed limits for
this observable.

VII. SPEED LIMIT FOR MACROSCOPIC
QUANTUM SYSTEMS WITH MARKOVIAN

DISSIPATION

In this section, we discuss the speed limit for open
quantum systems described the Gorini-Kossakowski-
Sudarshan-Lindblad master equation [81,82]. In this case,
the quantum state obeys

dρ̂
dt

= −i[Ĥ , ρ̂] +
∑

η

(

L̂ηρ̂L̂†
η − 1

2
{L̂†
ηL̂η, ρ̂}

)

, (121)

where η labels the type of dissipation. We obtain the
following continuity equation for this dynamics:

dpn

dt
= −

∑

m,n

J q
mn(t)−

∑

η

Kη
n . (122)

Here J q
mn is given by Eq. (39) and

Kη
n =Tr

[
∑

ml

(L̂η)nmρ̂ml(L̂†
η)ln − 1

2
(L̂†
η)nm(L̂η)mlρ̂ln

− 1
2
ρ̂nm(L̂†

η)ml(L̂η)ln

]

. (123)

For an observable written as Â =∑n anP̂n, we have

|〈 ˙̂A〉| ≤ BUni +
∣
∣
∣
∣

∑

η

∑

n

anKη
n

∣
∣
∣
∣
, (124)

where the first term on the right-hand side, BUni =
min
{

BgL,BLip
}

is the contribution from the Hamiltonian

020319-20



SPEED LIMITS FOR MACROSCOPIC. . . PRX QUANTUM 3, 020319 (2022)

part (unitary dynamics) that we discussed in Sec. III.
Note that the graph EUni to evaluate BUni is defined from
the nonzero off-diagonal elements of the Hamiltonian as
in Sec. III, which is different from ED in the following
discussion.

To bound the second term in inequality (124), which
comes from the dissipation operators L̂η, we impose one
assumption about the jump operator: we require that each
jump η moves a state in the subspace Hm to that in
Hn=fη(m) with an injective function fη. In other words, when
(L̂η)nm is nonzero for some n and m, (L̂η)n′m (n′ �= n) and
(L̂η)nm′ (m′ �= m) should be zero. Under this assumption,
we introduce the (coarse-grained) transition rate from m to
n,

TCG
m→n =

∑

η

Tr[(L̂†
η)mn(L̂η)nmρ̂mm], (125)

and the edge set ED = {(n, m) | TCG
m→n �= 0

}

.
Then, we find (see Appendix J) that

∣
∣
∣
∣

∑

η

∑

n

anKη
n

∣
∣
∣
∣
≤ max

(n,m)∈ED
|an − am|

√

Ad
CG�̇

d
CG

2
, (126)

where we have defined

Ad
CG =

∑

n�=m

TCG
m→n (127)

and

�̇d
CG =

∑

n,m

TCG
m→n ln

TCG
m→n

TCG
n→m

≥ 0. (128)

We note that the non-coarse-grained version of �̇d
CG,

�̇d =
∑

x,y

∑

η

|(L̂η)xy |2py ln

∑

η |(L̂η)xy |2py
∑

η |(L̂η)yx|2px
, (129)

reduces to Eq. (101) when L̂η = L̂(xy) = δη,(xy)
√

Wxy |x〉
〈y|. In addition, we can regard �̇d as the physical entropy
production of open quantum systems by assuming {L̂η} to
be Lindblad operators driven by baths that satisfy the local
detailed balance condition [58].

To summarize, we have a bound (124) with inequality
(126), which represents the bound based on the gradient
of Â. Thus, our speed limit is again valuable for macro-
scopic transitions for which the coherent dynamics and
incoherent dissipation process coexist. An example of such
processes is the transport process in an extended quan-
tum system with stochastic hopping [130–133], which is
proposed to be realized in a cold atomic system with
engineered dissipation [133,134].

VIII. DISCUSSIONS

Before concluding this paper, we briefly discuss several
implications and possible generalizations of our approach
not mentioned in the previous sections. While we leave
detailed investigation as a future problem, we here propose
basic ideas, especially for the quantum setting.

A. Absence of the trade-off relation between time and
energy fluctuation in our formalism

We have shown that the speed limit for macroscopic
quantum systems is given by inequalities (45) and (48).
These inequalities indicate the trade-off relation between
time and the quantum phase difference, in contrast with the
trade-off relation between time and energy fluctuation in,
e.g., inequality (2). On the other hand, one may wonder if
the energy fluctuation also plays an important role in our
formalism. In particular, we ask whether the speed |〈 ˙̂A〉| is
bounded by the quantity

D = c ‖∇A‖∞�H (130)

with some universal constant c.
We argue that such a quantity cannot be the bound for

|〈 ˙̂A〉|, which means that the trade-off relation between time
and energy fluctuation does not hold in our formalism. To
see a simple example, we consider nonequilibrium dynam-
ics of the many hardcore-boson system discussed in Sec.
IV. In particular, we consider time dependence of the speed
of the sum of the particles positions, |〈 ˙̂X 〉|, from the initial
state |1〉. As shown in Fig. 12, in contrast with our bounds
Bp and BH as well as the rather loose bound BUR, the
quantity D with c = 2 [which is obtained by replacing �A
in inequality (2) with ‖∇A‖∞] cannot be an upper bound
for |〈 ˙̂X 〉|. In general, if we start from |1〉 for M -particle
dynamics, �H does not depend on M whereas |〈 ˙̂X 〉| can
increase with M . Since ‖∇X ‖∞ = 1 in this case, there is
no universal M -dependent constant c such that |〈 ˙̂X 〉| ≤ D
always holds.

B. Concentration and distribution

Although we have focused on the speed of specific
quantities such as the expectation value, we can also
discuss the bound on the entire probability distribu-
tion p(t) = {pn(t)}. To see this, we first note Cheby-
shev’s inequality, Pt[|A − 〈A〉| > ε] ≤ V[A]/ε2 for ε >
0, where Pt is the probability with respect to p(t). To
simplify the discussion, let us consider unitary quantum
dynamics. Then, V is bounded as [see Eqs. (55) and
(56)] V[Â(t)] ≤ ∫ t

0 Bvar(t′)dt′ + V[Â(0)] and V[Â(t)] ≤
‖∇A‖2

∞[�A(0)+
√

C2
H − E2

transt]2. Employing the latter
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BUR

BH

Bp

D

FIG. 12. Time dependence of the speed of the sum of the posi-
tions of the particles, |〈 ˙̂X 〉| (black), from the initial state |1〉
[the same situation discussed in Fig. 9(a)]. In contrast with the
bounds Bp in Eq. (45) (red) and BH in Eq. (48) (green), the quan-

tity D (purple) in Eq. (130) with c = 2 cannot bound |〈 ˙̂X 〉|. This
indicates that the trade-off relation between time and energy fluc-
tuation does not hold in our formalism. We note that the bound
BUR in inequality (2) (gray), which is based on the standard
trade-off relation between time and energy fluctuation, provides
a rather loose upper bound for |〈 ˙̂X 〉|.

inequality, for example, we obtain

Pt

[∣
∣
∣
∣

A − 〈Â〉
‖∇A‖∞

∣
∣
∣
∣
> ε

]

≤
[�A(0)+

√

C2
H − E2

transt]2

ε2 .

(131)

To see an example of the physical implication of this
inequality, let us consider a situation for which the under-
lying graph is one dimensional as in Fig. 3(c). We also
assume that �A(0) = 0 for simplicity. Then, taking Â = n̂
leads to

∑

|n−〈n̂〉|>ε
pn(t) ≤

(

√

C2
H − E2

transt)2

ε2 . (132)

Thus, the probability of the tail for |n − 〈n〉| �
√

C2
H − E2

transt is polynomially suppressed.
Furthermore, we find the following nontrivial exponen-

tial form of the inequality:

Pt

[∣
∣
∣
∣

A − A′

‖∇A‖∞

∣
∣
∣
∣
> ε

]

≤ 2
〈

cosh
λ(Â − A′)
‖∇A‖∞

〉

0
eCH t−λε

(133)

for 0 ≤ λ ≤ λM := 2 log[(
√

5 + 1)/2] � 0.96 and an arbi-
trary real value A′ (see Appendix K). Here 〈·〉0 denotes
the average with respect to ρ̂(0). Let us again consider

FIG. 13. Schematic illustration of the exponential suppression
of the tail (shaded in cyan) of the probability distribution p(t)
given in Eq. (134), where pn(0) = δ0n is assumed.

the one-dimensional graph (where we assume that n =
. . . , −1, 0, 1, . . . instead of n = 1, 2, . . .) and take Â = n̂.
For simplicity, we assume that pn(0) = δn0 and take A′ =
0. Then, we obtain

∑

|n|>ε
pn ≤ 2eCH t−λε . (134)

This indicates that pn is exponentially suppressed for t �
tn := n/vM with vM = CH/λM (see Fig. 13) [135]. While
this is consistent with the Lieb-Robinson bound stating that
the tail of information propagation (concerning the opera-
tor norm of the commutativity of two distant operators)
is exponentially suppressed, our setting has an advantage
in that tn = n/vM can be larger in general than that pre-
dicted by the Lieb-Robinson bound. Note that our results
hold for time-dependent processes. Even in such cases, the
speed is evaluated only from the time-averaged value of
the Hamiltonian structures CH .

C. Other observables

In the previous sections concerning quantum dynam-
ics, we considered observables that are written as Â =
∑

n anP̂n. Here we discuss the possibility of extending our
results to other observables.

One direction is to diagonalize a general observable B̂
as B̂ =∑ν bνP̂ν and consider a graph whose vertices are

labeled by {ν}. In this case, the speed is given by |〈 ˙̂B〉| =
|∑νμ(bν − bμ)J

q
νμ|, where J q

νμ = Tr[Ĥνμρ̂μν − ρ̂νμĤμν].
Thus, when |J q

νμ| is suppressed for (ν,μ) with large |bν −
bμ|, the speed limit can decrease. We leave the detailed
analysis of this condition as a future problem.

Another direction is to obtain the speed limit of cer-
tain observables from the knowledge of the distribution
p(t), which was discussed in the previous subsection. For
example, let us assume the one-dimensional graph with
labels n = . . . , −1, 0, 1, . . . and pn(0) = δn0 (see the pre-
vious subsection). We consider a general observable B̂
satisfying P̂nB̂P̂n′ = 0 when n, n′ ≤ nth = O(N ). In this
case, using inequality (134), we can prove that the speed
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of 〈B̂〉 is small for t � nth/vM as

|〈 ˙̂B〉| ≤ c‖B̂‖op‖Ĥ‖opeCH (t−nth/vM ), (135)

where c is a constant. Note that, even when ‖B̂‖op and
‖Ĥ‖op are O(N ), the right-hand side is exponentially
suppressed with N for t � nth/vM .

D. Tightening the quantum speed limit for mixed
states

In the previous sections concerning quantum systems,
we mainly focused on pure quantum states. On the other
hand, the loss of quantum coherence can tighten the speed
limit for a purity-decreasing process.

As a first example, let us consider the bound on the
transition time for finite times in inequality (28). Assum-
ing time-independent unitary time dynamics, we obtain the
bound for the averaged speed (using a discussion similar to
that given in Appendix C)

|Afin − Aini|
T

≤ ‖∇A‖∞
√

R2
av − Etrans

2
, (136)

where Rav =∑n∼Am Tr[ρ̂nmĤmn]. The right-hand side can
be suppressed for finite T compared with the case for
T � 0 when starting from a pure state, since Rav ≤
∑

n∼Am ‖ρ̂nm‖1‖Ĥnm‖op and ‖ρ̂nm‖1 can be smaller than√
pnpm for mixed states.
Another example is the case for the dissipative quantum

dynamics discussed in Sec. VII. In this case, we have, e.g.,

BH ≤
√

2
[AT∇2

rcohA]

Rcoh

√

R2
coh − E2

trans, (137)

where rcoh
nm = ‖ρ̂nm‖1‖Ĥnm‖op [see Eq. (C22)] and Rcoh =

∑

n∼Am rcoh
nm . Since rcoh

nm ≤ rp
nm for mixed states and a dis-

sipative time evolution leads to the loss of purity, the
right-hand side of inequality (137) is in general smaller
than Bp for such a process.

IX. CONCLUSION AND OUTLOOK

In this paper we have presented a fundamental frame-
work for deriving speed limits in processes with macro-
scopic transitions. Our strategy is to employ the local
conservation law of probability on a general graph, which
describes general systems including many-body ones. We
prove the bound with the local probability current and
the gradient of the quantity of interest, which is concisely
expressed by the notions of graph theory. Our rigorous
bounds are qualitatively tighter for extended and many-
body systems than conventional speed limits based on,
e.g., the uncertainty relation.

Our framework applies to various dynamics since it
relies only on the local conservation law of probability,
leading to many novel and practical bounds. Applying
it to quantum systems, we obtain previously unknown
bounds that become smaller when the expectation value of
the transition Hamiltonian increases for unitary quantum
dynamics. This is intuitively understood as the novel trade-
off relation between time and the quantum phase difference
instead of that between time and energy fluctuation in the
Mandelstam-Tamm bound. Our results provide first gen-
eral state-dependent speed limits useful for macroscopic
systems; it can achieve the equality condition for some
situations, in stark contrast with the state-independent
Lieb-Robinson bound. In addition, we demonstrate that our
speed limits can apply to quantities that are not written
as the expectation value of an observable, such as macro-
scopic quantum coherence. We have also discussed that
speed limits are described by the entropy production rate
for macroscopic classical stochastic processes. In particu-
lar, we derive a valuable speed limit for long times even
without the detailed balance condition. Furthermore, our
method enables us to derive a speed limit for macroscopic
dissipative quantum systems.

There are many open questions for future studies. First,
while our starting point is to use the local conservation law
of probability, which holds for generic systems, it is inter-
esting to discuss how additional conservation laws may
tighten the speed limit. For example, a time-dependent
Hamiltonian in an isolated system leads to the local conser-
vation law of energy density, from which a different type of
speed limit can arise. Moreover, more nontrivial conserva-
tion laws (such as the dipolar moment [136,137] or those
associated with integrability [138,139]) have recently been
known to slow down the dynamics, and our approach may
uncover corresponding speed limits. We also note that our
method can be helpful for a more coarse-grained level
by starting from the continuity equation of the (possibly
discrete) quantum or classical hydrodynamics [140,141].

Second, it is important to thoroughly investigate the
relationship with quantum thermalization in isolated
many-body systems. The timescale for thermalization of
quantum chaotic systems is an active field of research
[51–54,142,143], but it is not simple to obtain rigorous
results on a relevant timescale for macroscopic transitions.
While our approach succeeds in obtaining rigorous bounds
for such a macroscopic process, we may obtain even tighter
bounds by taking in the complexity of many-body dynam-
ics. For this purpose, we may need to combine our method
and the property of quantum chaotic systems, such as the
eigenstate thermalization hypothesis [144–147] and the
local random-matrix theory [148–154].

Third, it will be intriguing to compare our results
with knowledge in the field of statistics and mathemat-
ics [59,155,156]. While our general approach evades the
explicit introduction of the Wasserstein distance, which
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may complicate the discussion and concrete calculation,
the obtained bounds can be tied to this distance, as indi-
cated by the one-dimensional case [see inequality (33)
and Appendix A]. A future study should aim to relate
our results with the recent development of the notion of
the quantum Wasserstein distance [57,61,65–69] and the
optimal-transport-based inequalities for stochastic systems
[60–64]. Another mathematical perspective is the connec-
tion with spectral graph theory [157]. While our speed
limits are described in the terminology of graph theory, the
graph’s structure can also be uncovered from the spectra
of the graph Laplacians. It is thus interesting to discuss our
speed limit in light of the spectral property of the graph.

Finally, it is a significant challenge to investigate the
implications of our results to the engineering of quantum
systems. For example, it is interesting to discuss how our
speed limits are related to the quantum sensing [35] and
shortcuts to adiabaticity [32] for many-body systems. In
addition, the problem of optimal quantum-state transfer
[24–27,55,56] is closely related to our setup, since one
needs to transfer a quantum state from one site to another
distant site. Our speed limits may give a new useful bound
on the transfer speed, which we leave for future research.
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APPENDIX A: ANALOGY TO THE OPTIMAL
TRANSPORT PROBLEM

Here we discuss the relation between the speed limit
for continuous systems in inequality (33) and the opti-
mal transport problem [59,155]. In the optimal transport
problem, the Wasserstein distance plays a crucial role in
characterizing the distance between two probability dis-
tributions P(x) and Q(x). The Wasserstein distance takes
into account the underlying geometric structure for vari-
ables {x} by introducing some cost function (i.e., distance)
d(x, y). In particular, the (order-one) Wasserstein distance
is defined by

W1(P, Q) := inf
�∈C(P,Q)

∫

dxdyd(x, y)�(x, y), (A1)

where � is a joint probability distribution in a set defined
by

C(P, Q) =
{

�

∣
∣
∣
∣

P(x) =
∫

dy�(x, y), Q(y)

=
∫

dx�(x, y)
}

. (A2)

Intuitively, the Wasserstein distance measures the optimal
expectation value of the cost d for transportation from P to
Q. This distance is also written as [156]

W1(P, Q) = sup
f ∈L

∣
∣
∣
∣

∫

dxf (x)[P(x)− Q(x)]
∣
∣
∣
∣
, (A3)

where L is a set of Lipschitz functions whose Lipshitz
constant is one, i.e.,

L = {f | for all x and all y, |f (x)− f (y)| ≤ d(x, y)}.
(A4)

In one dimension and for d(x, y) = |x − y|, one can show
that the Wasserstein distance between two probability
distributions P and Q is given by [156]

W1(P, Q) =
∫

dx
∣
∣
∣
∣

∫ x

−∞
dy[P(y)− Q(y)]

∣
∣
∣
∣
. (A5)

Substituting P = P(0) and Q = P(T), we have

W1(P, Q) = T
∫

dx|J (x)|, (A6)

where we have assumed that J (−∞) = 0. Thus, inequality
(33) can be rewritten as

|Afin − Aini| ≤ max |∂xA(x)| W1(P, Q). (A7)

APPENDIX B: BRIEF REVIEW OF THE GRAPH
LAPLACIAN

In this appendix, we review the basics of graph the-
ory and the graph Laplacian. A graph G is an object
that consists of vertices V = {v1, . . . , v|V|} and edges E =
{e1, . . . , e|E|}. We write each of the edges as ea = (n, m) if
the ends of edge ea are vn and vm. When the order between
n and m is ignored, the graph is called the undirected graph;
otherwise, it is called the directed graph. In the following,
we only discuss the undirected graph for G. In addition,
when each of the edges is accompanied by some non-
trivial value rnm, the graph is called the weighted graph;
otherwise, it is called the unweighted graph.
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1. Unweighted graph

Let us first formulate the graph Laplacian for
unweighted graphs. In this case, the |V| × |V| matrix that
characterizes the connections of each vertex by the edges,
called the adjacent matrix ruw, is given by

ruw
nm =

{

1, n ∼ m,
0, otherwise.

(B1)

As in the main text, we use the symbol n ∼ m when
(n, m) ∈ E .

Next, we introduce the incident matrix ∇, which is a
|E | × |V| matrix whose elements are given by

(∇)(n,m),l =

⎧

⎪⎨

⎪⎩

1, n = l,
−1, m = l,
0, otherwise.

(B2)

For a vector A = (a1, . . . , a|V|)T, we have

(∇A)(n,m) = an − am. (B3)

This expression indicates that ∇A is the discrete version
of the gradient for the continuous function. Also, we note
that this representation naturally leads to the definition in
the main text,

‖∇A‖∞ = max
n∼m

|an − am|. (B4)

The graph Laplacian for the unweighted graph is defined
by

∇2 := ∇T∇, (B5)

whose elements are given by

(∇2)nm = −ruw
nm + δnm

∑

m′(∼n)

ruw
nm′ . (B6)

We note that

(∇2A)n =
∑

m(∼n)

(an − am) (B7)

and

[AT∇2A] := (A, ∇2A) = 1
2

∑

n∼m

(an − am)
2. (B8)

2. Weighted graph

Next, we consider the case for the weighted graph,
whose adjacent matrix is written as

rnm =
{

rnm, n ∼ m,
0, otherwise,

(B9)

where rnm = rmn for undirected graphs. We define the
graph Laplacian for this case as

∇2
r := ∇TDr∇, (B10)

where Dr = diag(re1 , . . . , re|E|) is an |E | × |E | matrix. The
elements of the graph Laplacian are given by

(∇2
r )nm = −rnm + δnm

∑

m′(∼n)

rnm′ . (B11)

We note that

(∇2
r A)n =

∑

m(∼n)

rnm(an − am) (B12)

and

[AT∇2
r A] := (A, ∇2

r A) = 1
2

∑

n∼m

rnm(an − am)
2, (B13)

as discussed in the main text.

APPENDIX C: DERIVATION OF THE QUANTUM
SPEED LIMITS FOR EXPECTATION VALUES

Here we show the detailed derivations of the speed lim-
its for expectation values, especially inequality (43). Since
|〈 ˙̂A〉| ≤ BgL and |〈 ˙̂A〉| ≤ BLip are obtained using Hölder’s
inequality as discussed in Sec. II, we focus on

BgL ≤ Bp , (C1)

Bp ≤ BLip,p , (C2)

and

BLip,p ≤ BH , (C3)

where we have introduced another quantity

BLip,p = ‖∇A‖∞
√

R2
p − E2

trans. (C4)

For completeness, we also show that there is another
hierarchy of the bound, i.e.,

BLip ≤ BLip,p . (C5)
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1. Proofs of inequalities (C1) and (C2)

To show inequality (C1), we first take

rnm = |Tr[Ĥnmρ̂mn]| (C6)

for n ∼ m (we assume rnn = 0) and show that

∑

n∼Am

|J q
nm|2
rnm

≤ 4R − 4|Etrans|2
R

, (C7)

where

R = Tr[∇2
r ] =

∑

n∼Am

rnm. (C8)

To see this, we note that the following parametrization
of the local current is possible by setting Tr[Ĥnmρ̂mn] =
rnmeiθnm :

J q
nm = −iTr[Ĥnmρ̂mn − H.c.] = 2rnm sin θnm. (C9)

We also introduce

Ynm := Tr[Ĥnmρ̂mn + H.c.] = 2rnm cos θnm, (C10)

which is proportional to the local energy concerning the
transition Hamiltonian. We note that

∑

n∼Am

Ynm = 2
〈
∑

n∼Am

Ĥnm

〉

= 2Etrans. (C11)

Here, we employ the inequality

sin2 θ ≤ 1 + d2

4
− d|cos θ | (C12)

for arbitrary d ∈ R and θ ∈ R. Then, we have

|J q
mn|2
rnm

≤ 4rnm

(

1 + d2

4
− d|cos θnm|

)

≤ 4rnm

(

1 + d2

4

)

− 2d|Ynm| (C13)

and, thus,
∣
∣
∣
∣

∑

n∼Am

|J q
mn|2
r

∣
∣
∣
∣

≤ 4
(

1 + d2

4

)
∑

n∼Am

r − 2d
∣
∣
∣
∣

∑

n∼Am

Ymn

∣
∣
∣
∣

= 4
(

1 + d2

4

)

R − 4d|Etrans|. (C14)

Since d is arbitrary, we can minimize the right-hand side
with the optimal d (d = 2|Etrans|/R) and get

∣
∣
∣
∣

∑

n∼Am

J q
mn(t)2

rnm

∣
∣
∣
∣
≤ 4R − 4|Etrans|2

R
, (C15)

which is inequality (C7). To conclude, we have

BgL ≤
√

[AT∇2
r A]

2

√

4R − 4|Etrans|2
R

. (C16)

Now, we note that, for r′
nm satisfying rnm ≤ r′

nm for all n
and m, we have

[AT∇2
r A] ≤ [AT∇2

r′A] (C17)

and

4R − 4|Etrans|2
R

≤ 4R′ − 4|Etrans|2
R′ , (C18)

where R′ = Tr[∇2
r′] =∑n∼Am r′

nm (≥ R). Thus, if we can
show that

rnm ≤ rp
nm = ‖Ĥnm‖op

√
pnpm, (C19)

we can show inequality (C1).
Inequality (C21) is proven as follows. First, using the

(matrix version of) Hölder’s inequality, we have

rnm ≤ rcoh
nm := ‖Ĥnm‖op‖ρ̂mn‖1, (C20)

where ‖X̂ ‖1 := Tr[
√

X̂ †X̂ ]. To evaluate ‖ρ̂mn‖1, we diag-
onalize the quantum state as ρ̂ =∑k λk |λk〉 〈λk|. Then

‖ρ̂mn‖1 ≤
∑

k

λk‖P̂m |λk〉 〈λk| P̂n‖1

=
∑

k

λk

√

〈λk|P̂m|λk〉 〈λk|P̂n|λk〉

≤
√
∑

k

λk 〈λk|P̂m|λk〉
∑

k

λk 〈λk|P̂n|λk〉

= √
pmpn. (C21)

Thus, combining all of the above, we obtain inequality
(C21) and thus inequality (C1).

Now, we can prove inequality (C2) by noting that

2[AT∇2
rp A]

Rp
=
∑

n∼Am(an − am)
2rp

nm
∑

n∼Am rp
nm

≤ ‖∇A‖2
∞. (C22)
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2. Proof of inequality (C3)

We can bound Rp with a state-independent quantity as

Rp ≤
∑

n∼Am

‖Ĥnm‖op
pn + pm

2

=
∑

n∈V
pn

∑

m(∼An)

‖Ĥnm‖op

= max
n∈V

∑

m(∼An)

‖Ĥnm‖op

:= CH . (C23)

Thus, inequality (C3) follows.

3. Proof of inequality (C5)

Inequality (C5) is obtained in a manner similar to
inequality (C1). We begin to show that

∑

n∼Am

|J q
nm| ≤ 2

√

R2 − E2
trans, (C24)

where rnm and R are defined in Eqs. (C6) and (C8). For this
purpose, we employ the same parametrization of J q

nm and
Ynm using θnm.

Now, instead of inequality (C12), we use the inequality

|sin θ | ≤
√

1 + b2 − b|cos θ | (C25)

for b, θ ∈ R. Then, we have
∑

n∼Am

|J q
nm| ≤

∑

n∼Am

2rnm

√

1 + b2 − b|Ynm|

≤ 2
√

1 + b2R − 2b|Etrans|. (C26)

The optimal upper bound is obtained for b = (|Etrans|/R)/√

1 − (|Etrans|/R)2, from which we have inequality (C26).
Thus, we have

BLip ≤ ‖∇A‖∞
√

R2 − E2
trans. (C27)

Finally, as in the previous subsection, we use R ≤ Rp and
obtain

BLip ≤ ‖∇A‖∞
√

R2
p − E2

trans, (C28)

which is inequality (C5).

APPENDIX D: DERIVATION OF THE SPEED
LIMIT FOR ACCELERATION

While many bounds in the main text are derived using
inequalities (20) and (21), we can find a speed limit for

quantities that are not written as F(p). Specifically, we can
show that the acceleration of the expectation value, 〈 ¨̂A〉,
can be bounded above provided that Ĥ is independent of
time. This leads to speed limits of 〈Â〉 that are distinct from
BgL and BLip discussed in the main text.

Indeed, we find that, e.g.,

|〈 ¨̂A〉| ≤ max
m,n(∼Am),l(∼Am)

|an + al − 2am| Qp

≤ max
m,n(∼Am),l(∼Am)

|an + al − 2am| C2
H , (D1)

where

Qp =
∑

m,n(∼Am),l(∼Am)

√
pnpl‖Ĥnm‖op‖Ĥml‖op. (D2)

From this acceleration bound, we find a new type of bound
on the velocity. If we assume that 〈Ȧ(0)〉 = 0, we find that

|〈Ȧ(t)〉| ≤ Bacc = max
m,n(∼Am),l(∼Am)

|an + al − 2am|
∫ t

0
dτQp ,

(D3)

which is bounded by the state-independent quantity
maxm,n(∼Am),l(∼Am) |an + al − 2am|C2

H t. Note that Bacc can
be better for short times than BgL and BLip. Indeed, we can
see that Bacc → 0 for t → 0, while BgL and BLip may not
necessarily be zero even for t → 0.

To prove the above inequalities, We first note that

〈 ¨̂A〉 = −i
∑

n∼Am

(an − am)Tr[Ĥnm
˙̂ρmn]

= −i
∑

nml

(an − am)Tr[Ĥnm(Ĥmlρ̂ln − ρ̂mlĤln)]

= −i
∑

nml

(an − am)Tr[ĤnmĤmlρ̂ln + ρ̂nlĤlmĤmn]

= − i
2

∑

m,n(∼Am),l(∼Am)

(an + al − 2am)

× Tr[ĤnmĤmlρ̂ln + ρ̂nlĤlmĤmn]. (D4)

We then have

|〈 ¨̂A〉| ≤ max
m,n(∼Am),l(∼Am)

|an + al − 2am|

×
∑

m,n(∼Am),l(∼Am)

|Tr[ĤnmĤmlρ̂ln]|

≤ max
m,n(∼Am),l(∼Am)

|an + al − 2am| Qp , (D5)

where Qp is given in (D2).

Qp =
∑

m,n(∼Am),l(∼Am)

√
pnpl‖Ĥnm‖op‖Ĥml‖op. (D6)
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We can also show the state-independent inequality

|〈 ¨̂A〉| ≤ max
m,n(∼Am),l(∼Am)

|an + al − 2am| C2
H , (D7)

since

Qp ≤
∑

m,n(∼Am),l(∼Am)

pn + pl

2
‖Ĥnm‖op‖Ĥml‖op

=
∑

n∈V
pn

∑

m(∼An)

‖Ĥnm‖op

∑

l(∼Am)

‖Ĥml‖op

≤ C2
H . (D8)

APPENDIX E: DERIVATION OF THE SPEED
LIMIT FOR COHERENCE FOR GENERAL

STATES

Here, we derive the speed limit for macroscopic coher-
ence for arbitrary states. Using the assumption that cnm =
cmn, we have

dC
dt

= −i
∑

nml

cnmTr[(Ĥnlρ̂lm − ρ̂nlĤlm)ρ̂mn]

− i
∑

nml

cnmTr[ρ̂nm(Ĥmlρ̂ln − ρ̂mlĤln)]

= −2i
∑

nml

cnmTr[Ĥnlρ̂lmρ̂mn − ρ̂mlĤlnρ̂nm]

= −i
∑

nml

(cnm − clm)Tr[Ĥnlρ̂lmρ̂mn − Ĥlnρ̂nmρ̂ml]

=
∑

n∼C l,m

(cnm − cml)Jnlm, (E1)

where

Jnlm = −i Tr[Ĥnlρ̂lmρ̂mn − Ĥlnρ̂nmρ̂ml]. (E2)

Thus, we have, e.g.,

|Ċ| ≤ max
n∼C l,m

|cnm − cml|
∑

n∼C l,m

|Jnlm|. (E3)

While we focus on this inequality here, inequalities using
rnm are obtained similarly.

Now, as in inequality (C26), to bound
∑

nm |Jnm|, we can
show that

∑

n∼C l,m

|Jnlm| ≤ 2
√

R2 − E2, (E4)

where

R =
∑

nlm

|Tr[Ĥnlρ̂lmρ̂mn]| (E5)

and

E =
∑

nlm

Tr[Ĥnlρ̂lmρ̂mn] = Tr
[
∑

nl

Ĥnlρ̂
2
]

. (E6)

We can further show that

R ≤
∑

nlm

‖Ĥnl‖op‖ρ̂lmρ̂mn‖1. (E7)

The trace-1 norm is bounded using the representation ρ̂ =
∑

k λk |λk〉 〈λk|:

‖ρ̂lmρ̂mn‖1 ≤
∑

kq

λkλq‖P̂l |λk〉 〈λk| P̂m |λq〉 〈λq| P̂n‖1

=
∑

kq

λkλq

√

〈λk|P̂l|λk〉 〈λq|P̂n|λq〉| 〈λk|P̂m|λq〉 |

≤
√
∑

kq

λkλq 〈λk|P̂l|λk〉 〈λq|P̂n|λq〉

×
√
∑

kq

λkλq| 〈λk|P̂m|λq〉 |2

= √
plpn

√

Tr[(ρ̂mm)2].

Thus, we have

|Ċ| ≤ 2 max
n∼C l,m

|cnm − cml|
√

R̃2 − E2, (E8)

where

R̃ = Rp

∑

m

√

Tr[(ρ̂mm)2]. (E9)

When cnm is assumed to be a distance between n and m,
which satisfies the triangle inequality |cnm − cml| ≤ cnl, we
have

|Ċ| ≤ max
n∼C l

(cnl)
∑

n∼C l,m

|Jnlm|, (E10)

For pure states, we recover inequality (54) since R̃ = Rp
and E = Etrans in this case.

APPENDIX F: DERIVATION OF INEQUALITY (56)

We have, using the Cauchy-Schwarz inequality,

|V̇[Â]| ≤ 2
‖∇A‖∞

2

√
∑

n∼Am

(an − 〈A〉)2pn‖Ĥnm‖op

×
√
√
√
√

∑

n∼Am

|J q
nm|2

pn‖Ĥnm‖op
. (F1)
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Here,
∑

n∼Am

(an − 〈A〉)2pn‖Ĥnm‖op

=
∑

n

(an − 〈A〉)2pn

∑

m(∼An)

‖Ĥnm‖op

≤ CH V[Â] (F2)

and

∑

n∼Am

|J q
nm|2

pn‖Ĥnm‖op

≤
∑

n∼Am

4r2
nm sin2 θnm

pn‖Ĥnm‖op

≤
∑

n∼Am

4r2
nm

pn‖Ĥnm‖op

(

1 + d2

4
− d| cos θnm|

)

≤
∑

n∼Am

4r2
nm

pn‖Ĥnm‖op

(

1 + d2

4
− d|cos θnm|

)

≤
∑

n∼Am

[

(4 + d2)pm‖Ĥnm‖op

− 4dpm‖Ĥnm‖op|cos θnm|]

≤ (4 + d2)CH

−
∑

n∼Am

2d(pm + pn)‖Ĥnm‖op|cos θnm|

≤ (4 + d2)CH −
∑

n∼Am

4drnm|cos θnm|

≤ (4 + d2)CH − 4d|Etrans|

with d ∈ R, where we have used inequality (C12) and

rnm ≤ √
pnpm‖Ĥnm‖op ≤ pn + pm

2
‖Ĥnm‖op.

Optimization is carried out by taking d = 2|Etrans|/CH ,
which leads to

∑

n∼Am

|J q
nm|2

pn‖Ĥnm‖op
≤ 4CH − 4|Etrans|2

CH
. (F3)

Thus,

|V̇[Â]| ≤ 2‖∇A‖∞
√

V[Â](C2
H − |Etrans|2) (F4)

and
∣
∣
∣
∣

d�A
dt

∣
∣
∣
∣
≤ ‖∇A‖∞

√

C2
H − E2

trans. (F5)

Then, integration from t = 0 to t = T leads to

|�A(T)−�A(0)| ≤ ‖∇A‖∞
∫ T

0
dt
√

C2
H − E2

trans.

= ‖∇A‖∞T
√

C2
H − E2

trans. (F6)

APPENDIX G: DERIVATION OF THE SPEED
LIMIT FOR SHANNON ENTROPY

We consider the speed limit of the Shannon entropy

S(p) = −
∑

n

pn ln pn. (G1)

We have

|Ṡ| =
∣
∣
∣
∣

∑

n

ṗn ln pn

∣
∣
∣
∣

≤
∣
∣
∣
∣

1
2

∑

n∼m

J q
nm ln

pn

pm

∣
∣
∣
∣

≤ 1
2

√
√
√
√
∑

n∼m

rnm

(

ln
pn

pm

)2∑

n∼m

|J q
nm|2
rnm

≤
√
√
√
√
∑

n∼m

rp
nm

(

ln
pn

pm

)2
√

Rp − E2
trans

Rp
. (G2)

To proceed, we note that

√
pnpm = pn + pm

2
− (

√
pn − √

pm)
2

2

≤ pn + pm

2
−

√
pnpm

8

(

ln
pn

pm

)2

, (G3)

where we have used

(
√

a −
√

b)2 ≥
√

ab
4

(

ln
a
b

)2

(G4)

for a, b > 0. Then,

∑

n∼m

rp
nm

(

ln
pn

pm

)2

≤ 8(CH − Rp) (G5)

and

|Ṡ| ≤
√

8
(

CH

Rp
− 1
)√

R2
p − E2

trans. (G6)
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By replacing E2
trans/Rp with E2

trans/CH and completing the
square, we have

|Ṡ| ≤
√

2
(

CH − E2
trans

CH

)

. (G7)

We note that a different type of inequality holds by noting
that

Rp ≤ CH − 1
8

∑

n∼m

rp
nm

(

ln
pn

pm

)2

. (G8)

We introduce the quantity similar to the symmetric version
of discrete Fisher information

I(p) = 1
2

∑

n∼m

rp
nm

(

ln
pn

pm

)2

, (G9)

and obtain

|Ṡ| ≤
√

2I(p)
(

CH − E2
trans

CH
− I(p)

4

)

. (G10)

Completing the square again leads to inequality (G7).

APPENDIX H: TIGHTNESS OF THE BOUNDS FOR
SIMPLE SYSTEMS

As discussed in Sec. IV, for a single-particle one-
dimensional system with Wl = 0, the initial state |ψ1〉 leads
to

〈˙̂x〉 = BgL = BLip = Bp (H1)

for short times t � 2, indicating the tightness of these
bounds. We here discuss why this tightness holds in this
situation.

We first show that BLip = Bp . The left-hand side can be
written as

BLip = K
∑

l

| 〈ψ(t)|â†
l+1âl − â†

l âl+1|ψ(t)〉 | (H2)

because ‖∇x‖∞ = 1. To proceed, we show that

〈ψ(t)|â†
l+1âl|ψ(t)〉 = − 〈ψ(t)|â†

l âl+1|ψ(t)〉 (H3)

for |ψ1〉 and |ψ2〉 with any l and Wl = 0. To see this, we
introduce the antiunitary symmetry

T̂ = K̂
L/2
⊗

l=1

(2n̂2l − 1), (H4)

where K̂ denotes the complex conjugation operator. We
then find that, assuming the commutation relation for the

hardcore boson [160],

T̂ |ψ1〉 ∝ |ψ1〉 , T̂ |ψ2〉 ∝ |ψ2〉 , (H5)

T̂ e−iĤ tT̂ −1 = e−iĤ t, (H6)

and

T̂ â†
l+1âlT̂ −1 = −â†

l+1âl. (H7)

Then, we have

〈ψ(t)|â†
l+1âl|ψ(t)〉 = (|ψ〉 , eiĤ tâ†

l+1âle−iĤ t |ψ〉)
= (T̂ |ψ〉 , T̂ eiĤ tâ†

l+1âle−iĤ t |ψ〉)∗

= (|ψ〉 , −eiĤ tâ†
l+1âle−iĤ t |ψ〉)∗

= − 〈ψ(t)|â†
l âl+1|ψ(t)〉 . (H8)

From this relation, we find that

BLip = 2K
∑

l

| 〈ψ(t)|â†
l+1âl|ψ(t)〉 |

= 2K
∑

l

√
plpl+1

= Rp . (H9)

On the other hand, Eq. (H3) also leads to Etrans = 0. Since

we consider pure states and
√

2[xT∇2
rp x]/Rp = 1, we then

find that

Bp = Rp , (H10)

which is equal to BLip, Similarly, we have BgL = BLip.
We next discuss the condition for 〈˙̂x〉 = BLip. To see

this, we note that the equality condition of inequality (11)
is obtained when the signs of (an − am)Jmn are equal (or
zero) for all n ∼A m. For the current situation, this reduces
to the condition that the signs of Jl,l+1 are equal (or zero)
for all l. For short times from the initial state |ψ1〉, we find
that this condition is indeed satisfied with Jl+1,l ≥ 0. Note
that this is consistent with the intuition that the positive
current indicates the transfer of the particle to the right.

APPENDIX I: DERIVATION OF THE SPEED
LIMITS FOR CLASSICAL STOCHASTIC

SYSTEMS

Here, we prove the speed limits for classical stochas-
tic systems. We first derive the bound using the entropy
production, which is done with our general framework
and the inequalities used in Refs. [41,75]. Then we derive
the bound using the Hatano-Sasa entropy production for
general Markovian systems.
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1. Speed limit using the entropy production rate

We apply inequality (10) with rnm = Wnmpm + Wmnpn.
We have

| 〈Ȧ〉 | ≤
√
√
√
√
�A

2

∑

n∼Am

(Wnmpm − Wmnpn)2

Wnmpm + Wmnpn
, (I1)

where

�A = 1
2

∑

n∼m

(an − am)
2(Wnmpm + Wmnpn)

=
∑

n∼m

(an − am)
2Wnmpm (I2)

is the second moment of the transition speed. Now, using
2(a − b)2/a + b ≤ (a − b) log(a/b) for a, b > 0 [41,75],
we have

∑

n∼Am

(Wnmpm − Wmnpn)
2

Wnmpm + Wmnpn
≤
∑

n∼Am

Wnmpm ln
Wnmpm

Wmnpn

:= �̇CG. (I3)

We then obtain

|〈Ȧ〉| ≤
√

�A�̇CG

2
≤ ‖∇A‖∞

√

ACG�̇CG

2
, (I4)

where ACG is the coarse-grained dynamical activity.
The coarse-grained variables above are bounded from

above by the non-coarse-grained variables. In fact, we
have

ACG =
∑

x∈Sn

∑

y∈Sm

Wxyρy ≤ A (I5)

and

�̇CG ≤
∑

n�=m

∑

x∈Sn

∑

y∈Sm

Wxyρy ln

∑

x∈Sn

∑

y∈Sm
Wxyρy

∑

y∈Sm

∑

x∈Sn
Wyxρx

≤
∑

n�=m

∑

x∈Sn

∑

y∈Sm

Wxyρy ln
Wxyρy

Wyxρx

≤
∑

x �=y

Wxyρy ln
Wxyρy

Wyxρx

= �̇, (I6)

where we have used the log-sum inequality [84].

Instead of the expectation values of observables, we can
consider the speed limit for �CG itself. Indeed, we have

�̇CG = 1
2

∑

n∼Am

J c
nm ln

Wnmpm

Wmnpn

≤
√
√
√
√

1
2

∑

n∼Am

Wnmpm

(

ln
Wnmpm

Wmnpn

)2

�̇CG. (I7)

Thus,

�̇CG ≤ 1
2

∑

n∼Am

Wnmpm

(

ln
Wnmpm

Wmnpn

)2

:= ��

2
, (I8)

where �� is the second moment of �̇CG. We then obtain

|〈Ȧ〉| ≤
√
�A��

2
. (I9)

When the detailed balance condition is satisfied and the
non-coarse-grained version is considered, inequality (I8)
is further bounded as

�̇ ≤ max
x∼Ay

Wxy F̃(ρ||ρSS), (I10)

where

F̃(ρ||ρSS) = 1
2

∑

x∼y

ρx

(

ln
ρx

ρy
− ln

ρSS
x

ρSS
y

)2

(I11)

is the discrete version of the Fisher divergence [103].

2. Speed limit using the Hatano-Sasa entropy
production rate

We next derive the speed limit with the Hatano-Sasa
entropy production rate. For this purpose, we first note that

−J c
mn = Wnmpm − W̃mnpn − J c,SS

mn
pn

pSS
n

, (I12)

where

J c,SS
mn = −WnmpSS

m + WmnpSS
n (I13)

is the stationary current.
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From this, we have

〈Ȧ〉 = −1
2

∑

n∼Am

(an − am)J c,SS
mn

pn

pSS
n

+ 1
2

∑

n∼Am

(an − am)(Wnmpm − W̃mnpn). (I14)

Then, introducing

VA = −1
2

∑

n∼Am

(an − am)J c,SS
mn

pn

pSS
n

= −1
2

∑

n∼Am

anJ c,SS
mn

(
pn

pSS
n

+ pm

pSS
m

)

, (I15)

whose value becomes a stationary current of A for the
stationary state, we have

|〈Ȧ〉 − VA| =
∣
∣
∣
∣

1
2

∑

n∼Am

(an − am)(Wnmpm − W̃mnpn)

∣
∣
∣
∣
.

(I16)

To relate the right-hand side with the Hatano-Sasa entropy
production, we use the following deformation of the
inequality:

|〈Ȧ〉 − VA|2

= 1
2

∫ 1

0
dzz
∣
∣
∣
∣

∑

n∼Am

(an − am)(Wnmpm − W̃mnpn)

∣
∣
∣
∣

2

≤ 1
2

∫ 1

0
dz
∑

n∼Am

(an − am)
2[zWnmpm + (1 − z)W̃mnpn]

×
∑

n∼Am

z(Wnmpm − W̃mnpn)
2

zWnmpm + (1 − z)W̃mnpn

≤ 1
2

max
0≤z≤ 1

[
∑

n∼Am

(an − am)
2[zWnmpm

+ (1 − z)W̃mnpn]
]

×
∫ 1

0
dz
∑

n∼Am

z(Wnmpm − W̃mnpn)
2

zWnmpm + (1 − z)W̃mnpn

≤ �̃A�̇
HS
CG

2
. (I17)

Here

�̃A = max
0≤z≤ 1

[
∑

n∼Am

(an − am)
2[zWnmpm + (1 − z)W̃mnpn]

]

= max
[
∑

n∼Am

(an − am)
2Wnmpm,

∑

n∼Am

(an − am)
2W̃nmpm

]

(I18)

and we have used [161]

∫ 1

0
dz

z(a − b)2

za + (1 − z)b
= a ln

a
b

− a + b.

Since

�̃A ≤ ‖∇A‖2
∞ACG, (I19)

we have

|〈Ȧ〉 − VA| ≤
√

�̃A�̇
HS
CG

2
≤ ‖∇A‖∞

√

ACG�̇
HS
CG

2
. (I20)

APPENDIX J: DERIVATION OF INEQUALITY
(126)

Here we show inequality (126). We first note that

∑

n

anKη
n =

∑

nml

(

an − am + al

2

)

Tr[(L̂η)nmρ̂ml(L̂†
η)ln].

(J1)

As mentioned in the main text, we impose one assump-
tion about the jump operator: we require that each jump
η moves a state in the subspace Hm to that in Hn=fη(m)

with an injective function fη. Put differently, when (L̂η)nm

is nonzero for some n and m, (L̂η)n′m (n′ �= n) and
(L̂η)nm′ (m′ �= m) should be zero. Under this assumption,
we can set m = l in Eq. (J1) and have

∑

η

∑

n

anKη
n =

∑

nm

(an − am)
∑

η

Tr[(L̂†
η)mn(L̂η)nmρ̂mm]

= 1
2

∑

nm

(an − am)(TCG
m→n − TCG

n→m) (J2)

with TCG
m→n =∑η Tr[(L̂†

η)mn(L̂η)nmρ̂mm].
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We use the same technique discussed in Appendix I to
obtain inequality (126):

∣
∣
∣
∣

∑

η

∑

n

anKη
n

∣
∣
∣
∣

≤ 1
2

max
(n,m)∈ED

|an − am|

×
√
∑

nm

(TCG
m→n + TCG

n→m)
∑

nm

(TCG
m→n − TCG

n→m)
2

TCG
m→n + TCG

n→m

≤ max
(n,m)∈ED

|an − am|
√

Ad
CG�̇

d
CG

2
. (J3)

Here we have defined

Ad
CG =

∑

n�=m

TCG
m→n (J4)

and

�̇d
CG =

∑

n,m

TCG
m→n ln

TCG
m→n

TCG
n→m

≥ 0. (J5)

APPENDIX K: DERIVATION OF INEQUALITY
(133)

We start from evaluating the speed of 〈e±λÂ〉 with λ > 0:

∣
∣
∣
∣

d〈e±λÂ〉
dt

∣
∣
∣
∣
≤
∣
∣
∣
∣

∑

n

e±λan ṗn

∣
∣
∣
∣

≤ 1
2

∣
∣
∣
∣

∑

n∼Am

(e±λan − e±λam)J q
nm

∣
∣
∣
∣

≤
∣
∣
∣
∣

∑

n∼Am

(e±λan − e±λam)
√

pnpm‖Ĥnm‖op

∣
∣
∣
∣
.

(K1)

Now, we use the fact that, for 0 < λ ≤ λM := (2/‖∇A‖∞)
log[(

√
5 − 1)/2], we have

e±λan − e±λam ≤ e±λan/2e±λam/2 (K2)

for arbitrary n ∼ m. In fact, inequality (K2) is equivalent
to y2 − y − 1 ≤ 0 with y = e±λ(an−am)/2. This is satisfied
when ±λ(an − am) ≤ 2 log[(

√
5 − 1)/2]. Since the maxi-

mum value of ±(an − am) is bounded by ‖∇A‖∞, 0 < λ ≤
λM ensures inequality (K2).

Then, we have

∣
∣
∣
∣

d〈e±λÂ〉
dt

∣
∣
∣
∣
≤
∣
∣
∣
∣

∑

n∼Am

(e±λan/2e±λam/2)
√

pnpm‖Ĥnm‖op

∣
∣
∣
∣

≤
√
∑

n∼Am

e±λanpn‖Ĥnm‖op

√
∑

n∼Am

e±λampm‖Ĥnm‖op

≤ CH 〈e±λÂ〉 . (K3)

Integration from time 0 to t leads to

〈e±λÂ〉 ≤ 〈e±λÂ〉0 eCH t, (K4)

where 〈·〉0 is the expectation value with respect to ρ̂(0).
Then, the Markov inequality indicates that

Pt

[∣
∣
∣
∣

A − A′

‖∇A‖∞

∣
∣
∣
∣
> ε

]

= Pt
[

A − A′ > ‖∇A‖∞ε
]+ Pt

[

A′ − A > ‖∇A‖∞ε
]

≤ 〈eλ(Â−A′)〉
eλ‖∇A‖∞ε

+ 〈e−λ(Â−A′)〉
eλ‖∇A‖∞ε

≤ 〈eλ(Â−A′)〉0 eCH t−λ‖∇A‖∞ε + 〈e−λ(Â−A′)〉0 eCH t−λ‖∇A‖∞ε .
(K5)

Setting λ as λ‖∇A‖∞, we have

Pt

[∣
∣
∣
∣

A − A′

‖∇A‖∞

∣
∣
∣
∣
> ε

]

≤ 2
〈

cosh
λ(Â − A′)
‖∇A‖∞

〉

0
eCH t−λε (K6)

for 0 < λ ≤ 2 log[(
√

5 − 1)/2].
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