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Speed Observer Structure of Induction Machine
Based on Sliding Super-Twisting
and Backstepping Techniques

Marcin Morawiec and Arkadiusz Lewicki

Abstract—This article presents an analysis of the two
speed observer structures which are based on the back-
stepping and sliding super twisting approach. The observer
stabilizing functions result from the Lyapunov theorem. To
obtain the observer tuning gains the observer structure
is linearized near the equilibrium point. The rotor angular
speed is obtained from nonadaptive dependence. In the
sensorless control system structure the classical PI con-
trollers and transformation to the multiscalar variables are
applied. The theoretical derivations are verified in exper-
imental waveforms. Comparison of both speed observer
structures is presented for nominal speed, load torque in-
jections while regenerating mode, very low speed range
and the uncertainties of nominal parameters of induction
machine.

Index Terms—Induction motor drives, observer, variable
speed drives.

I. INTRODUCTION

T
HE INDUCTION machine (IM) is a popular motor used

in all industrial applications, especially for electric drive

systems, to drive pumps, in transportation (train and trams) and

in electromobility (electric or hybrid vehicles), in floating vessel

[35]. The popularity of these machines is associated with a lower

cost than permanent magnets machines and highly mechanical

and thermal robust [1]. In transportation or in electromobility a

speed sensor is necessary for safety reasons but in these applica-

tions redundancy can be guaranteed by a sensorless option (what

is safer than only using the speed sensor which can be demaged).

The name “sensorless” means a system without rotor electrical

speed measurements. In addition to the rotor speed, the rotor flux

vector components should be reconstructed. The rotor speed can

be measured by a sensor (an encoder), but there is a risk asso-

ciated with the loss of reliability of the control system structure
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which influences the whole electric drive system stability (sensi-

tivity to vibrations, limited high-speed performance, installation

issues, or measurements disturbances). In the sensorless control

structure, an observer that reconstructed the rotor flux vector

components as well as stator current vector components is typ-

pically used. The state variables of the observer can be estimated

in (dq) reference frame as well as in (αβ) stationary reference

frame. The sensorless methods can be categorized into two

groups. First one is based on high frequency injection [2]–[6] and

the second one on techniques based on the mathematical model

of the IM [7]–[30]. The approach based on the mathematical

model of IM is popular but often a problem appears when the

parameters of the IM are detuned or uncertain. Therefore, in

the literature, in addition to classic solutions such as: nonlinear

full order observers [7], [8], extended Luenberger observers [8],

extended Kalman filters [9], model reference adaptive system

(MRAS) [11], [12], there exists the methods of observers or con-

trols named “robust.” The group of robust estimators includes:

based on backstepping approach [13], [14], adaptive [15], model

predictive [16] the interconnected observers [17], [18] and

above all based on the sliding-mode techniques [18]–[24]. The

interconnected observer is rather complicated to introduce to

industrial applications [16], [17], however, it gives good sen-

sorless control performance, especially at low rotor speed range

[17]. Sliding-mode approach has attractive advantages, such as

fast response characteristics and robustness to disturbance. The

satisfactory properties of the sensorless control are achieved in

[20] in which the first-order sliding-mode (FOSM) was imple-

mented but with the observer-backstepping technique. Due to

the structure of FOSM the chattering has occurred. Therefore,

in many applications it is better to use the high-order sliding

mode (HOSM) [22]–[24], by which the chattering effect can be

minimized. HOSMs presented in literature can be divided into a

few groups: exact differentiation via sliding mode technique [25]

which was named supertwisting algorithm (STA) and applied to

observation in [26] and to estimations of state variables of IM

[17], [22], [27] the homogeneous differentiators presented in

[27]–[28].

The backstepping based speed observer were presented for

example in [13] and [14]. Despite the use of the robust approach,

the problem of reproducing observer state variables at low speeds

has not been solved. The structure proposed in [13] works stable

near to zero rotor speed but for the case of regenerating operation

the properties of the speed observer are not sufficient. Behavior
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of the others structure for example MRAS or adaptive full-order

observer (AFO) in the regenerating mode are similar to [13]. The

introduction of the appropriate modification presented in [31] to

the AFO or MRAS structures makes them slightly more robust

near to zero rotor speed operation and for regenerating modes.

The better properties are achieved if the sliding-mode approach

is included with the backsteppig approach what was noticed

by Morawiec and Lewicki [20]. However, the sliding-mode

approach is not necessary and it does not guarantee the stable

work for the regenerating machine mode. In [20], the algebraic

dependence from which the rotor speed is reconstructed was

accordingly modified. As a result of proposed modification

in [20], stable operation was achieved in the zero speed and

the range of stable operation for the regenerating mode was

increased. Proposed in [20] observer structure contains the large

number of differential equations, tunning gains and is more

complicated than the AFO speed observer structures [11], [15],

[31], [32]. The main motivation of this article is to propose

the speed observer structure of IM which has the simpler form

than [20], [22]–[24] and better properties, especially in terms

of the regenerating mode. The problems of stable work of a

speed observer system at regenereting mode range and very low

speed of machine were presented in many papers [17]–[20],

[23]–[24], [31]–[32], [36]. In the sensorless control system and

for the regenerating mode range close to zero speed (0.1 p.u. or

smaller) the stator voltage amplitude and frequency is very small.

As shown in [37], the IM can be unobservable (for the stator

frequency equal to zero). Therefore, the two propositions of the

speed observer are introduced. The first one is based on the

backstepping technique and the second is based on the STA

algorithm. Due to the structure of the speed observer the back-

stepping structure can be significantly simplified, what is shown

in Section III. However, the backstepping approach itself does

not cause that the speed observer will be robust on a disturbances.

The proposed extension of the observer structure by the vector

“S” gives possibilities of using the STA algorithm, which is much

more resistant to observer structure disturbances (for example

uncertainties of IM parameters, problems with the generating of

very low stator voltage by a voltage source inverter at low speed

range or unobservable working points of IM—the chattering

effects due to sliding-mode can prevent it). Furthermore the rotor

electric speed value can be obtained from the new algebraic

equation in which the “robust term” is added. Comparison of

properties of both structures with the new speed estimation

manner will be presented for the same scenarios. Therefore, the

main contribution of the article is to present the speed observer

structure which is robust on the machine uncertainties of pa-

rameters, working stable at very low or zero rotor speed range,

in regenerating mode and is “quite” simple to use in industrial

applications.

II. MATHEMATICAL MODEL OF IM

The differential equations of IM model, expressed in station-

ary reference frame (αβ) takes the following form [20], [22],

[33]

dis

dτ
= a1(−Rsis + us)− a2

dψr

dτ
(1)

dψr

dτ
= −a3ψr + jωrψr + a4is (2)

dωr

dτ
=

1

J
(Te − TL) (3)

where:

is, us, ψr are the current, voltage and the rotor flux vectors,

respectively,

a1 =
Lr

wσ

, a2 =
Lm

wσ

, a3 =
Rr

Lr

, a4 =
RrLm

Lr

. (4)

The following assumptions are taken into account: the IM

parameters (4) are known and constant, the stator current vector

components isα, isβ can be measured, the stator voltage vector

components usα, usβ are the control variables, rotor flux vector

components ψrα, ψrβ as well as isα, isβ and the rotor angular

speed ωr are estimated by the speed observer structure.

In further considerations, vector S will be taken into account,

defined as follows:

S = −a3ψr + jωrψr + a4is. (5)

Operation domain D is defined as follows:

ψmax
r , imax

s , ωmax
r , Tmax

L
are, respectively, the maximum

values of the rotor flux vector, stator current vector, rotor speed,

and load torque such that |ψr| ≤ ψmax
r , |is| ≤ imax

s , |ωr| ≤
ωmax

r , |TL| ≤ Tmax
L

(Tmax
L

= 0.745 p.u. for imax
s = 1.1 p.u.).

III. SPEED OBSERVER OF IM EXTENDED TO INTEGRATORS

The approach which is based on the augmentation of a system

by an integrator has been named in [29] (Lemma 2.8) integrator

backstepping. According to this lemma the system ẋ = f(x) +
g(x)u can be augmented to integrator

ẋ = f(x) + g(x)ξ (6)

ξ̇ = u (7)

and there exists the continuous and differentiable control law

u = α(x) which can be treat as the virtual control and the track-

ing error z = ξ − α(x). There is a smooth function, positively

defined and radially unbounded V (x, ξ, z) such that

V̇ (x, ξ, z) ≤ −W (x, ξ, z) ≤ 0 (8)

where W (x, ξ, z) > 0 is positive define in z = ξ − α(x) and

guarantees the global boundedness of state variables as well as

convergence of (x, ξ, z) to zero in finite time (or to the largest

invariant set as it was presented in [29]). The backstepping

method presented above allows to extend the observer model

of the IM to an integrator.

Authors of this article propose two different approaches to

obtain the stabilization functions for the same observer structure.

The observer model will be rewritten in stationary reference
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frame (αβ). The differential equations of the proposed observer

have the following form:

dîsα

dτ
= a1(−Rsisα + usα)− a2Ŝα + vα (9)

dîsβ

dτ
= a1(−Rsisβ + usβ)− a2Ŝβ + vβ (10)

dψ̂rα

dτ
= Ŝα + vψα (11)

dψ̂rβ

dτ
= Ŝβ + vψβ (12)

where on the left side of differential equations stabilizing func-

tion are included (marked by vα,β , vψα,β) and isα,β , usα,β are

known or measured.

The observer structure (9)–(12) is stable if the appropriate

stabilizing functions will be determined. In order to stabilize

structure (9)–(12) the following integrators structure should be

considered:

dŜα

dτ
=−Ŝα(a3+a2a4)−ωrŜβ+Rra2(−Rsisα+usα) + vSα

(13)

dŜβ

dτ
=−Ŝβ(a3+a2a4)+ωrŜα+Rra2(−Rsisβ+usβ) + vSβ

(14)

where ωr is marked as known value.

Taking into account (21)–(23), integrators structure (5), (13),

and (14), the tracking errors of the state variables of the proposed

observer (9)–(12) have the form

dĩsα

dτ
= −a2S̃α + vα (15)

dĩsβ

dτ
= −a2S̃β + vβ (16)

dψ̃rα

dτ
= S̃α + vψα (17)

dψ̃rβ

dτ
= S̃β + vψβ (18)

dS̃α

dτ
= −S̃α(a3 + a2a4)− ωrS̃β + vSα (19)

dS̃β

dτ
= −S̃β(a3 + a2a4) + ωrS̃α + vSβ (20)

where

ĩsα = îsα − isα, ĩsβ = îsβ − isβ , (21)

and ψ̃rα = ψ̂rα − ψrα, ψ̃rβ = ψ̂rβ − ψrβ (22)

S̃α = Ŝα − Sα, S̃β = Ŝβ − Sβ . (23)

On the other hand, it is possible to extend the observer struc-

ture (9)–(12) (taking into account the integrator backstepping

lemma) to the integrators with errors dynamic

dS̃α

dτ
= ĩsα (24)

dS̃β

dτ
= ĩsβ . (25)

Comparing (19), (20) to (24), (25) one obtains

vSα = ĩsα + ks(S̃α(a3 + a2a4) + ωrS̃β) (26)

vSβ = ĩsβ + ks(S̃β(a3 + a2a4)− ωrS̃α) (27)

where vSα and vSβ are stabilizing functions the integrators

structure (13), (14), and ks > 0.

Using above comparison between integrators structures it is

not necessary to apply the further backstepping procedure [29]

[which significantly reduces the mathematical procedures and

simplifies the observer structure—the observer structure does

not need to be extended with an integrator (24), (25) because of

the “S” vector differential equations and new obtained functions

(26), (27)]. In the next step, the other stabilizing functions will

be achieved by using the Lyapunov stability theorem.

The quadratic of Lyapunov function has the form

V1 = 0.5
(

ĩ2
sα + ĩ2

sβ + ψ̃2
rα + ψ̃2

rβ + S̃2
α + S̃2

β

)

. (28)

The derivative of (28) with taking into account (15)–(20) and

(26), (27), takes the form

V̇1 = ĩsα(−a2S̃α+vα)+ ĩsβ(−a2S̃β + vβ) + ψ̃rα(S̃α+vψα)

+ψ̃rβ(S̃β + vψβ) + S̃α(̃isα) + S̃β (̃isβ) ≤ 0
.

(29)

The observer structure is asymptotic stable if

vα = −cs(1 − a2)S̃α (30)

vβ = −cs(1 − a2)S̃β (31)

vψα = −kψS̃α (32)

vψβ = −kψS̃β (33)

and (26), (27), where cs, kψ > 0.

Further considerations should demonstrate that for system (1),

(2) the estimation errors of the proposed observer can exponen-

tially converge to zero in finite time t > t1 (under condition of

no disturbances of the system). If to proposed observer structure

(9)–(12) and (13), (14) the following uncertainties terms are in-

troduced: ∆ai ≤ ∆amax
i , ∆aψ ≤ ∆amax

ψ , and ∆aS ≤ ∆amax
S

(where index max means the maximum value of an uncertainties

coefficient). Since system (1), (2) stays in operation domain D,

hence if

vα = max
{

−cs(1 − a2)S̃α −∆ai

}

+ δα (34)

vβ = max
{

−cs(1 − a2S̃β)−∆ai

}

+ δβ (35)

vψα = max
{

−kψS̃α −∆aψ

}

+ δψ (36)

vψβ = max
{

−kψS̃β +∆aψ

}

+ δψ (37)
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vSα = max
{

ĩsα + ks(S̃α(a3 + a2a4) + ωrS̃β −∆aS)
}

+δS

(38)

vSβ = max
{

ĩsβ + ks(S̃β(a3 + a2a4)− ωrS̃α −∆aS)
}

+δS

(39)

with δα, δβ , δψ, δS> 0 and for ĩsα,β ≤ ε1, S̃α,β ≤ ε2, ψ̃rα ≤ ε3,

ε1,2,3 ≪ 1 are sufficient small reals, there is assumed (cs, kψ) ≈
1, the derivative (29) has the following form:

V̇1 =−δα |isα|−δβ |isβ |−δψα

∣

∣

∣
ψ̃rα

∣

∣

∣
− δψβ

∣

∣

∣
ψ̃rβ

∣

∣

∣
≤ −µ

√

V1

(40)

where µ = min(
√

2δα,
√

2δβ ,
√

2δψ,
√

2δS) and value ks > 0

can be determined from

ks =

∣

∣

∣
(̃isαS̃α + ĩsβS̃β)

∣

∣

∣

∣

∣

∣
(S̃2

α + S̃2
β)(a3 + a2a4)−∆amax

S (S̃α + S̃β)
∣

∣

∣

. (41)

The condition (40) implies the convergence of vectors values

îs to is, ψ̂r to ψr and Ŝ to S in finite time, noted as t2.

Remark 1: The estimation errors (23) stabilized observer

structure (9)–(12) should be determined as follows:

S̃α = Ŝα −
(

−a3ψ̂rα − ω̂rψ̂rβ + a4îsα

)

∆
= Ŝα − Sα (42)

S̃β = Ŝβ −
(

−a3ψ̂rβ + ω̂rψ̂rα + a4îsβ

)

∆
= Ŝβ − Sβ . (43)

Remark 2: Speed of convergence of the proposed observer

structure is depend on the tuning gains cs > 0 and 0 < kψ ≤ 1.

It is easy to prove that for kψ > 1 the observer structure will

be unstable, for example taking (17), (18), for kψ = 2, hence
˙̃
ψrα = −S̃α and

˙̃
ψrβ = −S̃β .

Remark 3: Value of estimated rotor speed results from vector

(Ŝ × ψ̂r) and scalar (Ŝ · ψ̂r) multiple of vector (Ŝ, ψ̂r) and in

the proposed integrators structure (13), (14) ωr = ω̂r estimated

from the dependence

ω̂r =
Ŝβψ̂rα−Ŝαψ̂rβ − a4(̂isβψ̂rα− îsαψ̂rβ) + Cf (Ŝ · ψ̂r)

ψ̂2
rα + ψ̂2

rβ

(44)
(

Ŝ · ψ̂r

)

= Ŝαψ̂rα + Ŝβψ̂rβ − a4(̂isαψ̂rα + îsβψ̂rβ)

+a3(ψ̂
2
rα + ψ̂2

rβ)
(45)

where ψ̂2
rα + ψ̂2

rβ �= 0 and

Cf = kf sgn (sω) =

{

1sω < 0

−1sω ≥ 0
(46)

sω = (Ŝ · ψ̂r) and 0 < kf < 5.

For the very low rotor speed sω = ω∗
r whereω∗

r is the reference

rotor speed (input to the control system).

Remark 4: Practical stability analysis presented in this sec-

tion is satisfied for the nominal parameters of the IM and

with an uncertainties terms introduced to observer structure.

The stability analysis of observer-controller system has been

presented in [17], [18], [20], and [23]. The proof of stability

procedure may be carried out in a similar manner. Despite the

fact that the analysis shows the convergence of the observer

structure to zero, in practical applications in cases of many

different disturbances, estimation errors take values close to

zero. Influence parameters uncertainty on the sensorless control

system will be demonstrated in the experimental tests.

Proposed speed observer structure (9)–(14) has no robust term

(only dependence (44) contains switching term), therefore, in the

Section V, the STA will be introduced.

IV. TUNNIG GAINS OF SPEED OBSERVER

The observer gains influence the speed observer conver-

gences. The tunning gains can be specified from the model

of the observer errors (15)–(20) (nonlinear approach) or can

be linearized near an equilibrium points. In the drive system

the second one approach is more desirable than the first due

to possibility of taking into account specifics machine working

points in which it can be unstable. In order to examine the impact

of the observer gains to stability range, the nonlinear observer

system (15)–(20) is linearized near the equilibrium point. The

linearized system has the general form

d

dt
∆x(t) = A∆x(t) +B∆u(t) (47)

where A and B are the Jacobian matrices and ∆x(t) =
[̃isd, ĩsq, ψ̃rd, ψ̃rq, S̃d, S̃q]

T , ∆u(t) is treated as known control

inputs.

Taking into account the model of observer structure errors and

its linearization near the equilibrium point, matrix A is defined

as follows:

A =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 cssωψ 0 0 a5 0

−cssωψ 0 0 0 0 a5

0 0 −kψ kψψωψ kψψ 0

0 0 −kψψωψ −kψ 0 kψψ

1 0 0 0 −a6 a7

0 1 0 0 a7 −a6

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

where

css = (1 − cs), kψψ = (1 − kψ), a5 = −a2css
a6 = (a3 + a2a4)(1 − ks), a7 = (−ωr + ωψ(1 − ks))

.

The estimator system is oriented with the rotor flux vector 
ψr,

soψrd = |
ψr|,ψrq = 0 and the stator current vector components

and ωψ can be treated as follows:

isd =
ψ∗
rd

Lm

, isq =
T ∗
L

a4ψ
∗
rd

, ωψ = a2

(

isq

ψ∗
rd

+ ω∗
r

)

where (∗) means the values for equilibrium points.

The stability analysis for the proposed speed observer is

presented in Fig. 1 and 2. In Fig. 1(a), the eigenvalues of the

linearized observer system during the rotor speed changing from

−1.0 to 1.0 p.u. are shown. In Fig. 1(b), the load torque was

changed from −1.0 to 1.0 p.u., the rotor speed was 1.0 p.u. (for

-TL the IM worked in regenerating mode. For both these cases

the speed observer was stable (for the constant observer gains).

However in this analysis it was assumed ideal case in which the

error of estimation of rotor speed error is equal to zero.
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Fig. 1. Spectrum of matrix A of the linearized observer system for cs
= 0.5, kψ = 1, ks = 0.5 while (a) the rotor speed is changing from
−1.0 to 1.0 p.u. and (b) TL is changing from −1.0 to 1.0 p.u., ωr = 1.0
p.u.

Fig. 2. Spectrum of matrix A of the linearized observer system for cs
= 0.5, kψ = 0.9, ωr = 1.0 p.u., TL = 0.9 p.u. while (a) ks is changing
from 0.1 to 0.7 p.u. and (b) cs is changing from 0.1 to 1.5.

In Fig. 2(a), the rotor speed was 1.0, TL = 0.9 p.u., cs = 0.5,

kψ = 0.9 and ks was changing from 0.1 to 0.7. For ks higher

than 0.5 the observer structure is unstable. In Fig. 2(b), cs was

changing from 0.1 to 1.5. If cs = 1.0 then the observer structure

is unstable.

From the location of eigenvalues of the linearized observer

system (poles) presented in Fig. 1 and 2 it can conclude that cs
should be smaller than 1.0., 0 < kψ ≤ 1 and 0 < ks ≤ 0.5 then

the observer structure will be stable. Obtained observer tunning

gains using theoretical analysis presented in this section were

introduced to the simulations and in the experimental stand.

V. SPEED OBSERVER OF IM BASED ON SLIDING STA

In [25], a robust exact differentiator ensuring finite time

convergence was designed, as an application of the STA [30].

This algorithm was named supertwisting. It is counted to a

sliding HOSM and simple to apply in the sensorless control

of a machine [17], [22], [24], [26], [28], [30]. The STA form

dedicated to estimation can be written as
{

dx̂1

dτ
= f(x̂2) + λ|x̂1 − x1|0.5sgn(x̂1 − x1) + ∆1

dx̂2

dτ
= αsgn(x̂1 − x1) + ∆2

(48)

where α, λ are the switching gains and ∆1,2 represent the

perturbation terms which can be ∆1,2 ≈ 0.

The conditions for the continuous STA-based observer to

converge in finite time are presented and discussed in [26] and

[28] and have the following form:

α ≫ C

λ
2 = 4C α+C

α−C

(49)

where C > 0 is the Lipschitz’s constant.

The earlier STA algorithm can be used in the observer struc-

ture (9)–(12) and the integrators (19), (20). The speed observer

structure has the following form:

dîsα

dτ
= a1(−Rsisα + usα)− a2Ŝα + λ

∣

∣̃isα
∣

∣

0.5
sgn(̃isα)

(50)

dŜα

dτ
= − Ŝα(a3 + a2a4)− ω̂rŜβ +Rra2(−Rsisα + usα)

+ αsgn(̃isα) (51)

dîsβ

dτ
= a1(−Rsisβ + usβ)− a2Ŝβ + λ

∣

∣̃isβ
∣

∣

0.5
sgn(̃isβ) (52)

dŜβ

dτ
= − Ŝβ(a3 + a2a4) + ω̂rŜα +Rra2(−Rsisβ + usβ)

+ αsgn(̃isβ) (53)

the rotor flux components can be obtained from (11), (12) taking

into account (32), (33) and the rotor electric speed from (44).

Taking into account (49) and if C = 0.005, α = 0.2 then λ <

0.145. In order to reduce the chattering in the experimental setup

coefficient λ = 0.035 was taken. This approach is sufficient to

obtain the stable work of the drive system with IM what will

be presented in Section VI. However similar to [17], [20] and

presented in Section III analysis can be applied to more precisely

estimate value of the coefficient α and λ (using the practical

stability analysis).

The (second-order) STA approach limits the chattering effects

with comparison to the FOSM and it allows to achieve robust

observer structure. This problem was developed and shown in

[26], [27], and [34]. The HOSM sliding can practically elimi-

nate the chattering (remove relative-degree restriction [34]). In

the next section, the comparison of experimental tests of two

proposed observer structures will be carried out.

VI. EXPERIMENTAL RESULTS

The experimental tests were carried out on a 5.5 kW drive

system supplied by the voltage source converter system. The

motor drive system parameters are given in Table III. The control

system was implemented in an interface with a DSP Sharc

ADSP21363 floating point signal processor and Altera Cyclone

2 FPGA. The transistor switching frequency was 3.3 kHz but

the sampling time was 150 µs. The stator current was measured

by the current transducers LA 25-NP—in the phases “a” and

“b” and transformed to the (αβ) reference frame by using the

Park transformation. The control system structure is presented

in Fig. 3. There are a four classical proportional-integral (PI)

controllers and the multi-scalar transformation of variables (see
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Fig. 3. Sensorless control structure with proposed speed observer and
multiscalar variables (description in the Appendix).

Fig. 4. Machine is starting up to 1.0 p.u. in case of (a) backstepping-
based speed observer and (b) STA-based speed observer.

in Appendix). The control system structure is described by

the mathematical dependences in the Appendix. In all tests

the reference square of rotor flux was x21
∗ = 0.92 p.u. and

the value of load torque was limited to TLmax = 0.7–0.8 p.u.

The electromagnetic torque of IM is limited to 0.7–0.8 p.u. (in

dynamic IM states due to a maximum value of inverter current

equal to 1.2–1.35 p.u.). The following waveform of variables are

shown as:

x11 —Estimated rotor angular speed.

x12 = ψ̂rαîsβ − ψ̂rβ îsα —Variable proportional to electro-

magnetic torque.

x21 = ψ̂2
rα + ψ̂2

rβ —Square of rotor flux vector.

x22 = ψ̂rαîsα + ψ̂rβ îsβ —Additional variable.

im —Stator current vector module.

ω̃r = ω̂r − ωr —Estimated rotor speed error.

In order to show the properties of two different observer

structures, in the control structure, the continuous PI controllers

have been applied. The experimental tests have been divided

into three scenarios:

1) Machine start-up to nominal speed, reverse and very low

speed reverse (Section VI-A and Fig. 4–6).

2) Robustness against nominal parameters detuning (param-

eter uncertainties) (Section VI-B and Fig. 7–9).

3) Load torque injections for low rotor speed (Section VI-C

and Fig. 10–12).

In order to compare both speed observer structures in will

be always presented the waveforms for observer based on the

Fig. 5. Machine is reversing from 0.95 to −0.95 p.u. in case of
(a) backstepping-based speed observer and (b) STA-based speed
observer.

Fig. 6. Machine is reversing from 0.005 to −0.005 p.u. in case of
(a) backstepping-based speed observer and (b) STA-based speed
observer.

Fig. 7. Stationary state: the main, stator and rotor inductances
are changed from 1.98 to 2.2 p.u., machine is loaded about 0.5
p.u., (a) backstepping-based speed observer and (b) STA-based
speed observer.

backstepping stabilization functions (it is shown in Section III)

and presents the waveforms for the STA approach.

A. Drive Starting, Speed Reversal,
and Very Low Speed Reverse

The first scenario is presented in Fig. 4. The IM is starting

up to 1.0 p.u. The STA introduces more oscillations to the state

variables than the structure with the backstepping based observer
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Fig. 8. Stationary state: the stator resistance is changed from
0.035 to 0.1 p.u. (Rs = 2.85RsN), machine is loaded about 0.5
p.u. (a) backstepping-based speed observer and (b) STA-based
speed observer.

Fig. 9. Stationary state: the stator resistance is changed from
0.035 to 0.1 p.u. (Rr = 2.85RrN), machine is loaded about 0.5
p.u., (a) backstepping-based speed observer and (b) STA-based
speed observer.

Fig. 10. Machine is loaded to 0.9 p.u. (after 1 s) in case
of (a) backstepping-based speed observer and (b) STA-based
speed observer.

what is shown in Fig. 4(b), however, the level of these oscillations

is smaller than in the case of FOSM (for example [20]).

In Fig. 5, the IM is reversing from 0.95 to −0.95 p.u. In

this case near to zero rotor speed, the square of rotor flux (x21)

variable has higher oscillations [see Fig. 5(a)] than in Fig. 5(b).

Similarly, the variable x22 is more oscillated in Fig. 5(a) than in

the case presented in Fig. 5(b). During the reverse, the estimated

Fig. 11. Machine is loaded about +0.6 p.u. (after 1s – the IM works
in the motor mode) and after 3.5 s IM is loaded −0.6 p.u. and after
8 s again +0.6 p.u. (IM works in regenerating mode) (a) backstepping-
based speed observer and (b) STA-based speed observer.

Fig. 12. After 1s IM machine is loaded about −0.6 p.u. (regenerating
mode) for (a) backstepping-based speed observer structure and (b)
STA-based speed observer.

rotor speed sticks to zero—it goes on only a few ms but it is

visible in Fig. 5(a), however, in the waveforms of the presented

variables from Fig. 5(b) this phenomena does not occur.

In Fig. 6, the IM very small speed reverse is presented (from

0.005 to −0.005—7.2 r/min). The very low speed test shows

that speed observer structure which is based on STA approach is

more robust than the backstepping one. For STA the rotor angular

speed error is near to zero (for the backstepping the estimated

speed error is about 0.02 p.u.). The sliding-mode properly excites

the observer structure and it improves the observer properties.

B. Uncertenties of IM Parameters

In scenario 2, the nominal parameters of IM are detuned

(Rs�RsN, Rr�RrN, Lm�LmN). The main and the stator and

rotor inductances are changed from (1.98 to 2.2 p.u. - Lm =
1.1LmN), the load torque is 0.5 p.u., the rotor speed is 0.1

p.u. This case is shown in Fig. 7(a). The observer structure is

not sensitive to changes of the IM inductances. Their influence

on observer structure stability is negligible (for the inductance

change up to 10% of nominal value and assumed working

conditions).

In Fig. 8, the stator resistance Rs is changed Rs = 2.85RsN.

The estimated rotor speed error is near to zero in stationary state

but the estimated electromagnetic toque value is changed. This
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Fig. 13. Waveforms of reconstructed: rotor speed ω̂r , stator current

vector components îsα, îsβ , rotor flux vector component ψ̂rα and mod-
ule of stator current vector im for (a) backstepping-based speed ob-
server structure and (b) STA-based speed observer.

TABLE I
COMPARISON OF SELECTED PROPERTIES OF THREE STRUCTURES OF THE

SPEED OBSERVERS (FOSM [20], PROPOSED STA AND BACKSTEPPING

OBSERVER STRUCTURES)

shows that the angle between the estimated rotor flux vector and

stator current vector is different.

In Fig. 9, the rotor resistance Rr is changed Rr =
2.85RrN. The change of rotor resistance has a huge im-

pact on estimation quality. The rotor speed error is about

0.05 p.u. for the backstepping and STA. These tests show

that the sensorless control system is stable, but the proper-

ties are not sufficient (during the rotor resistance is detuned

especially).

C. Load Torque Injections for Low Rotor Speed

In the third experimental research scenario, the zero rotor

speed was applied and almost nominal load torque was injected.

This case is shown in Fig. 10. Both sensorless control system

are robust on the load torque injections even if the zero speed is

applied.

TABLE II
COMPUTING TIME OF THE SENSORLESS CONTROL SYSTEM WITH THE

FOSM [20], AFO [31], [32], PROPOSED STA AND BACKSTEPPING

TABLE III
IM PARAMETERS AND REFERENCES UNIT

In Fig. 11, the steps load torque injections are presented for

the motor as well as in regenerating modes. After 1 s the load

torque value was +0.6–0.7 p.u. and after 3.5 s the IM is loaded

−0.6–0.7 p.u. In this case, IM works in regenerating mode—the

reference rotor speed is +0.08 p.u. (comparable conditions as

in [31] and [32]) and the reference load torque value is −0.6–

0.7 p.u. The regenerating mode is a very difficult test for the

sensorless control because the stator voltage vector has small

value about 0.05–0.08 p.u. and the frequency of stator voltage

is very small—these conditions are close to unobservable area

of IM [17], [37]. The proposed sensorless control structure was

stable for the presented in Fig. 11 working points. In case of

STA speed observer [see Fig. 11(b)], the control system was

more robust than the backstepping based—the square of rotor

flux vector (x21), x12 and x11 have a smaller level of oscillations

in regenerating mode.

Fig. 12 presents the waveforms of multi-scalar variables, error

of the estimated rotor speed ω̂r and the module of stator current

vector im. The reference speed is 0.08 p.u. After 1 s the IM is

loaded about –0.6 p.u., through what it works in the regenerating

mode. In this working points the module of the stator current

is about 0.8–0.9 p.u. and the estimated electromagnetic torque

(x12) near to 0.6–0.65 p.u. The error of estimated rotor speed is

smaller than 0.015 p.u. for the backstepping observer structure

but higher than for the STA structure (the average value of

estimated speed error is smaller than 0.01 p.u.). It is results

from the nature of sliding-mode approach and through what the

STA observer structure is more robust than the backstepping

one. Fig. 13 presents the waveforms of estimated rotor speed

ω̂r, stator current vector components îsα, îsβ , rotor flux vector

component ψ̂rα and the module of stator current vector im during

the IM machine works in the regenerating mode (the load torque

value is about −0.5 p.u.).

The experimental results presented inthis section show that

the both proposed observer structure are stable in the cho-

sen working ranges and the STA is more robust than the
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Fig. 14. Laboratory stand used in the experimental researches.

backstepping one, especially in the uncertainties of the IM

parameters and during the regenerating mode and very low

speed. In the case of STA structure the chattering in the presented

state variables is visible. The analysis of experimental results

shows that the observer system only with the backstepping

continuous stabilizing functions has worse properties than a

noncontinuous stabilizing control law. The STA structure is more

robust in a very low speed range especially (<7 r/min), but in the

waveforms of presented state variables the chattering effect is

visible (higher oscillations)—the level of the chattering is very

low but visible and almost inaudible while the electric drive is

running. Introduced in (44) Cf parameter improves the properties

of IM especially near to zero speed and during the regenerating

mode.

In Table I, the three structure of the speed observers are

compared. The first one is FOSM presented in [20] and proposed

in Sections III and V backstepping-based structure and STA.

Presented in Table I comparison is not accurate, but “roughly”

represents the properties of the observer structures.

The computing times of the sensorless control system with

selected speed observer structures: FOSM [20], AFO [31], [32],

proposed STA and backstepping are given in Table II.

VII. CONCLUSION

This article presented two speed observer structures. The first

one was based on a modified backstepping approach and the

second one was based on sliding STA. The primary mathematical

mode was extended to the integrator structures, therefore, the

speed observer structures contained six differential equations.

Taking into account the introduced 
S vector the value of esti-

mated rotor speed results from the vector and scalar product.

The main contributions of this article were the speed observer

structures which work stable under parameter uncertainties of

IM as well as in the regenerating machine mode with low

rotor speed. All assumptions was confirmed by the experimental

results. The observer structure presented in this article will be

further developed in the direction of chattering effect reduction

and toward higher order sliding-mode solutions. Proposed ob-

server structure was recommended to industrial applications, in

which the measured and estimated electrical speed are necessary,

for example in the electrical cars, trams, trains, or buses. In

such applications stable observer-controller structure allows to

failure-free electric drive system.

APPENDIX

The control system with the multiscalar variables is shown

in Fig. 3. The multi-scalar variables were proposed in [33] and

they are defined as follows:

x11 = ω̂r (54)

x12 = ψ̂rαîsβ − ψ̂rβ îsα (55)

x21 = ψ̂2
rα + ψ̂2

rβ (56)

x22 = ψ̂rαîsα + ψ̂rβ îsβ (57)

where ω̂r is the estimated rotor speed value, îsα, îsβ are the

estimated stator current vector components and ψ̂rα, ψ̂rβ are

the estimated rotor flux vector components.

Using the mathematical model of IM and taking into account

multiscalar transformation (54)–(57) the multiscalar model can

be obtained [33].

The feedback linearizing controls (decoupling) are obtained,

as follows:

u1 =
wσ

Lr

(

m1 + x11

(

x22 +
Lm

wσ

x21

))

(58)

u2 =
wσ

Lr

(

m2 − x11x22 −
RrLm

wσLr

x21 −
RrLm

Lr

i2
s

)

(59)

where

wσ = LsLr − L2
m (60)

Tx =
RrLs +RsLr

wσ

(61)

i2
s = î2

sα + î2
sβ (62)

where m1,2 are new introduced control variables (treated as the

PI controllers outputs presented in Fig. 3) and the multiscalar

model of IM takes the following form:

dx11

dτ
=

Lm

JLr

x12 −
1

J
TL (63)

dx12

dτ
= Tx (−x12 +m1) (64)

dx21

dτ
= −2

Rr

Lr

x21 + 2
RrLm

Lr

x22 (65)

dx22

dτ
= Tx (−x22 +m2) . (66)

The control variables of IM are determined

usα =
ψ̂rαu2 − ψ̂rβu1

x21

(67)

usβ =
ψ̂rαu1 + ψ̂rβu2

x21

(68)

where u1 and u2 were marked (in the multiscalar model) by

u1 = ψ̂rαusβ − ψ̂rβusα

u2 = ψ̂rαusα + ψ̂rβusβ

. (69)

Fig. 14 presents the experimental stand with the two coupled

machines (5.5 kW squirrel-cage IM and dc machine).
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