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Abstract

Purpose. Due to its safe, low-cost, portable, and real-time nature, ultrasound is a prominent imaging method in computer-

assisted interventions. However, typical B-mode ultrasound images have limited contrast and tissue differentiation capability

for several clinical applications.

Methods. Recent introduction of imaging speed-of-sound (SoS) in soft tissues using conventional ultrasound systems and

transducers has great potential in clinical translation providing additional imaging contrast, e.g., in intervention planning,

navigation, and guidance applications. However, current pulse-echo SoS imaging methods relying on plane wave (PW)

sequences are highly prone to aberration effects, therefore suboptimal in image quality. In this paper we propose using

diverging waves (DW) for SoS imaging and study this comparatively to PW.

Results. We demonstrate wavefront aberration and its effects on the key step of displacement tracking in the SoS reconstruc-

tion pipeline, comparatively between PW and DW on a synthetic example. We then present the parameterization sensitivity

of both approaches on a set of simulated phantoms. Analyzing SoS imaging performance comparatively indicates that using

DW instead of PW, the reconstruction accuracy improves by over 20% in root-mean-square-error (RMSE) and by 42% in

contrast-to-noise ratio (CNR). We then demonstrate SoS reconstructions with actual US acquisitions of a breast phantom.

With our proposed DW, CNR for a high contrast tumor-representative inclusion is improved by 42%, while for a low contrast

cyst-representative inclusion a 2.8-fold improvement is achieved.

Conclusion. SoS imaging, so far only studied using a plane wave transmission scheme, can be made more reliable and

accurate using DW. The high imaging contrast of DW-based SoS imaging will thus facilitate the clinical translation of the

method and utilization in computer-assisted interventions such as ultrasound-guided biopsies, where B-Mode contrast is often

to low to detect potential lesions.
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Introduction

Ultrasound (US) imaging is indispensable in computer-

assisted interventions from surgical navigation to operative

guidance, thanks to its being a low cost, non-ionizing,

portable, and real-time imaging modality. Typically, US

is known as a B-Mode imaging method that maps echo

amplitudes indicating local tissue reflectivity. Nevertheless,

B-mode images do not necessarily provide sufficient contrast

for certain anatomical structures and pathological conditions.
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Elastography, for example, creates images of local tissue

elasticity in terms of shear modulus which may indicate

pathological state [35]. Speed-of-sound (SoS) and acous-

tic attenuation are other tissue parameters that are known to

have valuable differentiation capability [2]. To characterize

and map these acoustic properties, transmission-based com-

puted tomography (CT) uses specialized US imaging setups

for arrival time and power-loss computation with water-bath

suspension of the breast anatomy[21,22]. Such transmission-

mode US imaging systems do not rely on echoes, i.e. US

reflections at tissue interfaces but rather record a transmit-

ted signal directly with another transducer at an opposite

location, e.g. in a ring structure. It was shown that with

such setups quantitative assessment of SoS bears tremendous

potential for breast cancer detection [19–21]. In compari-

son to shear-wave elastography, SoS was found to lead to a

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11548-021-02426-w&domain=pdf
http://orcid.org/0000-0002-3108-4257


1202 International Journal of Computer Assisted Radiology and Surgery (2021) 16:1201–1211

better ex vivo tissue differentiation [8] with high specificity

for benign and malignant tumors [10,11,18]. However, in

transmission-mode US imaging, a double-sided access and

hence a water-bath suspension of the anatomical structure

is required, e.g., with two opposing [20], ring shaped [5] or

full 3D [7] transducer geometries. These require costly and

non-portable systems and an additional technician to operate,

with a limited application on only submersible body parts,

e.g. the breast and the extremities.

Novel US contrast modalities as above and their tissue

differentiation capability are highly relevant also for image-

guided planning and navigation. For instance, for US-guided

needle biopsies as for the breast, prostate, and liver lesions,

the visibility of potentially suspected regions in the US

images could allow to target those specific locations; in a

real-time fashion potentially enabling sensitivity for lesions

otherwise invisible in B-mode. Nevertheless, dedicated and

bulky transmission imaging setups mentioned above pre-

clude interventional applications of these novel contrast

modalities, due to limitations to submersible anatomy. Even

for the breast, carrying out interventions, such as biopsies,

in a water bath and within the limited space of a bulky setup

would be infeasible in the current clinical realm. Reliable

imaging of such modalities with conventional clinical hand-

held US transducers is an essential step in enabling their

interventional applications.

For hand-held imaging, the use of a passive reflector as an

acoustic mirror and timing reference was proposed in [28,32]

for SoS reconstruction from time-of-flight measurements to

the reflector placed at a known distance from the transducer.

This was later extended to imaging acoustic attenuation [25]

and its spectral mapping [26] by referencing measurements

to water-bath calibration of the reflector appearance. Obvi-

ating the need for a reflector, small misalignments between

images acquired at different plane-wave (PW) angles were

used in [14] to reconstruct SoS distribution using a Fourier

domain reconstruction approach. In [31], SoS reconstruc-

tion in the spatial domain was shown to yield improved

accuracy and less artifacts. In [34] it was proposed for

PW transmits to adapt receive apertures dynamically when

beamforming different image locations to minimize spatial

point-spread function (PSF) variation, in order to improve

displacement estimation used for SoS3 reconstruction. Deep-

learning-based variational neural network approaches for

inverse-problem of SoS have been demonstrated to yield fast

and robust reconstructions in [3,39,40].

In clinical settings, several works have studied SoS imag-

ing using transmission-mode and water-submerged systems,

e.g. for breast tissue classification [17], solid mass dif-

ferentiation [13], and imaging human-knee [41]. Using

conventional transducers in pulse-echo mode, SoS has been

studied clinically for quantifying muscle loss [30] and breast

density [29], as well as for differential diagnosis of breast can-

cer [27]. SoS maps can also help to correct for beamforming

delays and hence to improve any other US imaging modal-

ity. Typical beamforming assuming a constant SoS computes

incorrect delays, not only reducing B-mode image resolution

but potentially also affecting any following image processing

such as texture analysis, tumor classification, segmentation,

image translation, and displacement estimation for elas-

tography. With the knowledge of SoS distribution, such

aberrations can be corrected as demonstrated in [1,15,24].

Despite promising studies, robust pulse-echo SoS recon-

structions using conventional transducers are still challeng-

ing. Compared to differential diagnosis, where the real-time

aspect is less of an essence and presegmented regions may

potentially be used as priors [12], e.g. for quantification of

region averages, interventional imaging and image-guided

applications with real-time probe manipulation depend on

robust image reconstructions without priors. State-of-the-

art SoS techniques using PW transmit sequences are shown

herein to yield subobtimal imaging due to PSF distortions and

consequent displacement measurement errors. To address

this, we herein propose a transmit sequence with diverg-

ing waves (DW) to minimize aberration artifacts and thus

yield improved reconstructions. Although PW sequences

are known to allow for high frame-rate and high quality

images [23,36], DW (also termed synthetic transmit aper-

ture imaging) benefit from lower aberration effects and have

been presented over the recent decades for several other ultra-

sound imaging modalities, including B-Mode, Doppler, and

Vector Flow imaging [16,36]. We herein study the feasibility

of utilizing DW for SoS imaging, comparatively to PW, also

considering the effect of PSF centering via adapted receive

apertures.

Motivation

To demonstrate the effects of a wavefront choice on aber-

ration related artifacts and to motivate the use of diverging

waves in this context, we first present a simulated exam-

ple below (cf. Fig. 1) comparing PW and DW. Using the

MATLAB toolbox k-Wave [37], we simulate different trans-

mit schemes and record the spatio-temporal acoustic signal

at each and every point in the entire imaging field-of-view

(FOV). For both transmit settings, we run two simulations:

one with an SoS inclusion and one for a homogeneous case

with no SoS inclusions, in order to comparatively quantify the

effect of aberrations introduced by the inclusion. Consider the

wavefronts arriving at a certain depth (e.g., marked with the

dashed line in Fig.1a). As expected, the wavefronts passing

through the inclusion would arrive earlier at such depth, com-

pared to a no-inclusion scenario, cf. Fig. 1b/b’. Besides such

earlier arrival, one can observe the strong aberration effects

below the edges of the inclusion for the PW case (shown with
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the arrows in Fig. 1b), mainly caused by diffraction. Such

aberrations could aggravate when the echos are considered,

and would largely hinder any post-processing such as delay

estimation for SoS reconstruction. To demonstrate this, we

perform here a delay estimation only for the transmit side

using normalized cross-correlation (NCC) between spatio-

temporal data at all image points for with-inclusion and no-

inclusion cases. Fig. 1c/c’ show the estimated delays based on

cross-correlation lags and Fig. 1d/d’ show correlation errors

(i.e. 1−CorrelationCoefficient) in delay estimation, result-

ing from PW and DW, respectively. As seen in Fig. 1d, delay

estimation accuracy is quite low with PW transmits, com-

pared to DW. This can be more generally stated via statistics

from multiple PW and DW settings, shown in Fig.1e/e’ as

probability density functions, where the PW case is seen to

have errors further away from zero. To better illustrate this,

the cumulative distribution functions are plotted in Fig.1f,

which indicates the number of highly aberrated readings that

forestall accurate displacement estimation. As can be seen,

given any NCC tolerance/threshold, DW would yield much

superior displacement estimation than PW, for aberrations

typical to expect in in-vivo tissue. For instance, for an NCC

tolerance of minimum 0.99, 20% of PW readings would be

below this threshold, while all DW readings would be within

bounds – which is a large margin considering the single small

inclusion given a large homogeneous FOV.

In the context of SoS imaging, such wavefront distortions

lead to incoherent signal summations in receive beamform-

ing, thus potentially corrupting displacement estimations,

which in turn degrade SoS reconstruction. By reducing wave-

front aberrations, DW can yield improved SoS imaging, as

shown later in our experiments.

Methods

We herein use a limited-angle computed tomography (LA-

CT) reconstruction method in the spatial domain, similarly

to [31] with the adaptations described below. The fundamen-

tal imaging principle and an overview of the data processing

is sketched out in Fig. 2. First, raw data is acquired based

on a PW or DW sequence, both of which involve multiple

transmits (Tx) and after each Tx a receive (Rx) recording

of RF data on all element channels. For a DW Tx, a sin-

gle element emits a narrow band-limited pulse. For a PW

Tx, all elements emit such a pulse, with a fixed time-delay

between neighbouring elements to angulate the wave-front,

where necessary. Rx recordings from a set of multiple such

transmissions (Tx) is the input herein for the reconstruction

of an SoS frame. Then, separately for each Tx, these Rx sig-

nals are beamformed into spatial RF frames, between which

apparent local displacements are estimated to be next used

to reconstruct a SoS map.

Beamforming. To beamform with the received raw channel

data from the PW or DW transmit sequences (cf. Fig. 2),

we herein employ a conventional delay-and-sum algorithm.

Delays are computed with an assumed constant SoS of

1500 m/s for the simulations and 1470m/s for the phan-

tom data acquisition. For both transmit schemes and all RF

frames, beamforming is performed on a fixed Cartesian grid

aligned with the transducer surface, for a fixed sampling

space for the subsequent displacement estimation between

these frames.

We present results with two different beamforming choices:

with full Rx aperture and with an adapted Rx aperture. In

full Rx aperture case signals from all channels are fed into

beamforming, while still subjected to dynamic aperture per

imaging depth (F-number = 1), which results in Rx aper-

ture staying centered above each beamformed image point.

As Tx arrival directions to a point keep changing with each

Tx, this yields a PSF varying between different transmits,

impeding the subsequent displacement estimation. This is

remedied with an adapted Rx aperture (Fig. 3a), centered for

each beamformed image point such that the PSF between Tx

events to be displacement estimated is aligned as described

in [34]. Depending on the RX aperture, PSFs can be aligned

at different angles for the same Tx event. Each Tx event

here is beamformed with Npsf = 3 PSF angle alignments:

ψpsf = 0◦ and ±15◦, similar to the settings in [24]. For all

transmits, we utilize a fixed Cartesian beamforming grid of

Nx × Nz .

For the apparent displacement estimation between beam-

formed RF frames (cf. Fig. 2), we use a normalized cross-

correlation algorithm in the axial direction, similarly to [31].

Depending on the alignment of PSF in beamforming, the esti-

mated displacements are then corrected in the corresponding

Tx-Rx direction, i.e. by multiplying them by cos(ψpsf). For a

constant computational complexity and to keep the data input

into the reconstruction constant, we herein compute the rel-

ative delay data for a fixed number of M = 9 combinations,

yielding an apparent displacement vector of ∆τ ∈ R
M Nx Nz .

Note that for the adapted Rx aperture case, each Tx sequence

is beamformed with Npsf = 3 PSF alignments, such that in

this case ∆τ ∈ R
Npsf M Nx Nz . For this case, the imaging field-

of-view where PSF alignment can be effectively applied is

smaller than the full field-of-view, due to limited aperture of

the transducer. For instance, in Fig. 3a where ψpsf = 0◦ is

illustrated, the regions on the further right cannot be imaged,

because the corresponding Rx apertures fall outside the phys-

ical aperture of the transducer.

For the PW transmissions, the relative delays from an

angle separation of Δφ (see Fig. 3b) are used in the SoS

reconstruction. Nevertheless, the actual displacement esti-

mations are performed using cross-correlation between PW

angles with a smaller increment Δθ , in order to prevent

speckle decorrelation and artefactual readings due to phase
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Fig. 1 Wavefront aberration comparison in simulations using acoustic

recordings in the entire imaging field. (a) Heterogeneous SoS distri-

bution with a circular Gaussian-smoothed inclusion of 1575 m/s on a

1500 m/s substrate. The wavefronts arriving at the dashed line in (a) are

shown (b) for 0◦ PW transmit and (b’) for a DW. The time-of-arrival

(ToF) on the y-axis in (b,b’) is referenced to the ToF of wavefront

peak for a homogeneous simulation without any SoS inclusions. Green

arrows indicate columns of aberration effects due to diffraction. Having

placed virtual receivers across entire FoV and cross correlating arriv-

ing signals with signals from the homogeneous setting, local (c/c’) lags

and (d/d’) correlation errors (= 1−correlation coefficient) are shown.

Note that, for the single DW case, given the directivity of finite-width

transducer elements, the acoustic energy is delivered within a triangular

opening (shown as masked in c’ & d’), outside of which beamforming

and hence time-lag computations are infeasible with sufficient SNR,

and are thus also omitted from SoS reconstructions. (e/e’) Probabil-

ity distribution of the correlation error based on three {-10,0,10}◦ PW

and 32 Tx-element DW datasets. (f) Cumulative distribution function

from (e/e’), illustrating the superiority of DW
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computed. Based on the respective Tx-Rx wave paths, the forward problem of relative delays is formulated as a linear system and tomographically

reconstructed
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Fig. 3 a Tx and Rx paths for two DWs i, j (adapted RX aperture). b PW

(arrows indicating PW normals) with displacement tracking between

Δθ . Relative delay data obtained by accumulating increments to an

angular disparity ΔφPW . c DWs are created with a single channel. d A

sample row of the differential path matrix L linking SoS distribution

and relative delay data at pixel (x, z) (positive/negative values for path

i/ j
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wrapping. To obtain the relative delay data for larger dis-

parities Δφ, the delay readings from the Δθ increments are

then accumulated. In the literature on pulse-echo SoS imag-

ing, delay accumulations were performed for increments of

Δθ = 0.5◦ as in [14,32] or Δθ = 2◦ as in [34]. We study and

compare both these settings in our experiments later below.

As the choice of Δφ highly affects final SoS reconstructions,

we vary this parameter to find an optimal setting, as later

presented in our results section.

For the DW case, the relative delays are obtained by a

frame selection as illustrated in Fig. 3c. Here, the delays are

directly estimated using cross-correlation-based displace-

ment tracking between consecutive single element trans-

missions separated by Δchannel. As can be expected, this

setting highly affects the quality of the relative delays mea-

surements: On the one hand, for a small element separation,

e.g. using consecutive channels, apparent displacements can

be below the tracking noise level, as also illustrated later

in our experiments. On the other hand, for large element

separations, coherent speckle pattern changes drastically,

precluding displacement estimation. Given this tradeoff, an

optimal element separation Δchannel is expected, which is

studied later below in the experiments.

Speed-of-Sound Reconstruction. Derivation of SoS maps is

based on relative delay data (cf. Fig. 2) and an inverse prob-

lem formulated to reconstruct the slowness σ̂ ∈ R
N ′

x N ′
z on a

N ′
x × N ′

z spatial grid, which is just the inverse of the SoS:

σ̂ = arg min
σ

‖L(σ − σ0) − ∆τ‖1 + λ‖Dσ‖1 (1)

The differential path matrix L ∈ R
M Nx Nz×N ′

x N ′
z here links

the relative slowness distribution σ − σ0 to the relative delay

measurements; for instance, in Fig. 3d the delay measure-

ment at pixel (x, z) is sensitive to SoS variation along the

illustrated paths between the beamformed images j and i .

The σ0 describes the initial slowness, which was used to

compute the delays of the beamformed RF data.

The regularization matrix D together with the weight λ

controls the amount of spatial smoothness and is essential

due to ill-conditioning of L. D implements LA-CT specific

image filtering aimed to suppress streaking artifacts along

wave propagation directions via anisotropic weighting of

horizontal, vertical and diagonal gradients. For the corre-

sponding directions either a Sobel (horizontal and vertical)

or a Roberts kernel (diagonal) is used. Similarly to [31], we

herein utilize a κ = 0.9 anisotropic weighting. The optimiza-

tion problem is solved using a limited-memory Broyden–

Fletcher–Goldfarb–Shanno (L-BFGS) algorithm [4,6,9,33].

For computational efficiency, we restrict the number of

relative delay data readings ∆τ in eq. (1) to 104, which are

randomly selected from all R
M Nx Nz (full Rx aperture) or

R
Npsf M Nx Nz (adapted Rx aperture) recordings, respectively.

Materials and experiments

Numerical simulations. To evaluate how accurate SoS het-

erogeneities can be imaged using the above explained SoS

imaging method based on PWs or DWs, we simulated a pulse-

echo scenario, where a linear transducer is simulated and the

echos at each element are recorded. In total 28 SoS hetero-

geneity cases are simulated (see first rows in Fig.5a/b), which

are divided into two subsets.

The first subset (cases 1-6 and 28) consists of seven

defined shapes on a homogeneous background substrate of

1500 m/s. Elliptical and circular inclusions have a SoS con-

trast of either −2% (i.e. 1470 m/s) or +2% (i.e. 1530 m/s).

The last case has two circular inclusions. The second subset

(7–27) consists of randomly shaped inclusions (SoS val-

ues: [1450, 1550] m/s). Substrate SoS values are varied in

two ways: (1) Average SoS of the substrate is no longer

fixed to 1500 m/s, but take values between [1485, 1515] m/s.

(2) Each substrate is varied locally between ±3 m/s. Such

substrate variations are important to evaluate how reconstruc-

tions would perform with natural tissue variation. To allow

for displacement estimation (cf. Fig. 2), a fully-developed

speckle pattern is required, realized herein by increasing a

random 10% set of the medium pixels by a slight density

perturbation.

A linear array transducer is modeled with Nc = 128

channels and a 300 μm pitch. We used transmit pulses

of fc = 5 MHz center frequency with 3 half cycles. All

simulations (including in Fig. 1) were run with a spatial

discretization of 75μm pixels and a temporal resolution of

6.25 ns (i.e., 160 MHz sampling frequency) to allow for an

accurate sampling of the wave propagation. Herein, for each

case a full-matrix capture with multi-static transmission was

simulated first and then recomposed into corresponding PWs

or DWs using synthetic aperture Tx/Rx beamforming. To

reduce high frequency artifacts, we additionally applied a

60% band-pass filter on the recomposed RF data.

For experiments, 81 PW angles (ranging between −20◦

and 20◦ with a step size of 0.5◦ and Tukey apodization) were

simulated via synthetic-aperture. For DW, we used single

element multi-static transmissions (see Fig. 3a/b). All raw

data was beamformed based on a constant SoS assumption

of 1500m/s.

Tissue-mimicking phantom. For data acquisition of the breast

phantom (CIRS Multi-Modality Breast Biopsy and Sono-

graphic Trainer, Model 073, CIRS Inc., Norfolk, VA, USA),

unbeamformed RF data using a UF-760AG ultrasound sys-

tem (Fukuda Denshi, Tokyo, Japan) were recorded with a

FUT-LA385-12P linear array transducer (Nc = 128 chan-

nels, 300 μm pitch and 4 half cycles pulses of fc = 5 MHz

center frequency. To increase the signal-to-noise ratio, data

was transmitted using Walsh-Hadamard coded pulses [38]

with subsequent recomposition into angled PWs or DWs,
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Fig. 4 RMSE and CNR vs

regularization weight, ΔφPW

for PW, and Δchannel for DW.

a Evaluation using full Rx

aperture [14,31], and b adapted

Rx aperture [24,34]. Blue bars

indicate optimal parameter

values for each of the 6

approaches
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Table 1 Optimal parameter

settings considering RMSE and

CNR rankings, and the

corresponding results of each

method with best one marked in

bold

Settings Full Rx Aperture Adapted Rx Aperture

PW (0.5◦) PW (2.0◦) DW PW (0.5◦) PW (2.0◦) DW

Δ [◦/ch] 4◦ 6◦ 17 ch 14◦ 8◦ 17 ch

λ [a.u.] 12 10 9 11 5 5

Results

RMSE [m/s] 12.0 9.4 7.7 13.12 10.0 8.0

CNR [a.u.] 3.4 ± 4.1 2.7 ± 3.8 7.5 ± 10.6 1.8 ± 2.3 10.3 ± 9.9 14.7 ± 11.1

respectively. After recomposition, a 60% band-pass filter was

applied. Beamforming was performed based on a constant

SoS assumption of 1470m/s, which is the approximate nom-

inal SoS value of the phantom substrate.

Evaluation metrics. For a quantitative analysis of the SoS

reconstruction ĉ = 1/σ̂ in simulation, we used Root-mean-

squared-error (RMSE =

√

‖ĉ − c
⋆‖2

2/N ) and Contrast-to-

noise ratio (CNR = 2(μinc − μbkg)
2/(σ 2

inc + σ 2
bkg)), given

mean μ and variance σ 2 of (·)inc and (·)bkg, respectively

denoting the region of the inclusion and the background.

In the simulation datasets, the CNR was only computed for

cases 1-18, where the inclusion had an SoS contrast is at least

15 m/s, i.e. 1% compared to the substrate. The background

values were computed based on the whole substrate region

for the simulated datasets.

Results and discussion

Simulation study. First, a sensitivity analysis with respect to

major parametrization choices was performed for the corre-

sponding transmission sequences (PW and DW). We used a

simulated phantom dataset of 28 ground-truth SoS distribu-

tions, representative of different characteristics in inclusion

shape, size and SoS contrast as well as background SoS vari-

ations. These datasets are then evaluated in terms of RMSE as
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Fig. 5 Reconstructions of 28 numerical phantoms with the optimal

parametrization identified as in Fig. 4 and listed in Table 1 for PW and

DW. Image dimensions are 38 mm×50 mm. For PW, a small 10% mar-

gin is masked out on both sides, since the angled PW apodization cause

major artifacts on the edges. Note that CNR is only evaluated for cases

1-18 having ground truth contrast of 1% or more
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Fig. 6 Improvements in RMSE

and CNR for (a) DW Full

Aperture and (b) DW Adaptive

Aperture, compared to each PW

method in a paired fashion.

Stars indicate significant

improvements with p < 0.05

DW Full - x DW Adaptive - x

DW better

DW better

DW better

DW better

(a) (b)

Fig. 7 DW and PW based SoS

reconstructions for two different

cross sections of the CIRS

breast phantom (Multi-static raw

RF data and DW reconstruction

results, together with inclusion

masks and an evaluation routine

are provided as supplementary

material) (a–f, a’–f’) with the

lesion delineations derived from

B-Mode images (g, g’).

Green/red contours represent the

regions inside/outside the

lesions used for CNR analysis.

(h) Sketch of the imaging setup

with the linear array probe on

the breast phantom.

Scalebars: 5 mm
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well as in terms of CNR, indicating how well the inclusions

can be separated from the background, which is of major

importance in the context tumor detection/characterization.

The optimal parameters (Δφ, Δchannel and regularization

weight λ) are then selected as follows: For each parame-

ter combination, average RMSE and CNR across all sample

images was computed, as also plotted in Fig. 4. These values

were then ranked from best to worst (i.e., ascending order for

RMSE, and descending for CNR), and the optimal parameter

set (cf. Table 1) was chosen as the one minimizing the average

rank of the two metrics. The results are also summarized in

Table 1, where it can be seen that with DW the best results are

achieved with an overall RMSE = 7.7 and 8.0, respectively,

for full and adapted Rx aperture cases. For the PW case, the

best achievable results are at least 1.7m/s on average poorer

with RMSE = 9.4 and 10, respectively. The contrast is also
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substantially improved with DW to CNR = 7.5 and 14.7,

respectively, with over 42% improvement compared to best

case PW results of CNR = 3.4 and 10.3.

Using the determined optimal parameter settings, the

reconstructions of the 28 test images are shown in Fig. 5.

The DW-based SoS reconstructions are seen to be superior

to PW-based in almost all cases. Especially with the case

28 in Fig. 5 with both higher and lower inclusions, DW

is seen to perform significantly superior, regardless of the

choice of aperture. The adapted RX aperture is especially

beneficial with DW in layered structures such as shown in

cases 1 and 2. This may be thanks to the smaller RX aperture

leading to a higher coherence in delayed signal summation

when beamforming, thus improving displacement tracking

and hence SoS reconstruction. Some reconstruction errors

are seen when the inclusion is very deep (e.g., simulations

15 and 26), when there cannot be sufficiently many lag mea-

surements within the field-of-view below an inclusion, to

help drive its reconstruction. Similarly, when an inclusion

is located to the sides (e.g., simulation 27), many Tx aper-

tures may not cover it, again reducing lag measurements

for its reconstruction. Accordingly, where possible, an inclu-

sion should be imaged in the middle of the imaging field for

optimal reconstructions [27,31]. For the PW cases, the best

reconstructions are achieved using an angle accumulation of

Δθ = 2◦ and an adapted receive aperture, similarly to [34].

It is worthwhile to note that the adaptive receive aperture set-

ting with a similar RMSE (of 10.0 vs. 9.4 m/s) compared to

the full receive aperture setting, leads to substantial improve-

ment in CNR (of 10.3 vs. 2.7). A similar trend is observed in

the DW case with adapted vs. full receive aperture settings

(RMSE: 8.0 vs. 7.7 m/s; CNR: 14.7 vs. 7.5). Notwithstanding

the aperture differences, the overall SoS imaging is signifi-

cantly improved using DW vs. PW.

Improvements in average metrics is corroborated using a

paired hypothesis test as shown in Fig. 6, where the DW meth-

ods (using either a full or adaptive aperture) are compared

for each sample against all other PW methods. Using a full

receive aperture setting in DW results in significant RMSE

improvement compared to any other PW method, irrespective

of the PW receive aperture setting. Furthermore, significant

CNR improvement w.r.t. any PW method is indicated using

DW with adaptive aperture.

Note that for PW we focus on the center part of the image

and mask out 10% on both sides of the imaging region

(Fig. 5), since the apodization of the angled PW causes signif-

icant artifacts in these image regions, as was also discussed in

[27]. Accordingly, RMSE and CNR were computed in these

shown central regions. For a fair comparison, this same region

is also used for computing the DW metrics, even though this

is not a limitation in DW imaging and such masking is not

required as depicted in Fig. 5.

Beamforming was conducted assuming a constant

1500 m/s, although the actual background SoS differed

sometimes over 15 m/s. Despite such deviations between

actual and beamforming SoS, the reconstructions are seen to

still perform relatively well, as can be seen, e.g. in case 8 with

an inclusion as well as in cases 20 and 25 with nearly homo-

geneous SoS distributions. Indeed, these examples indicate

that it is possible to use our estimated SoS values in the beam-

forming process, as shown in [24], and potentially extend this

to further refine SoS reconstructions iteratively. This is rel-

evant to real-case scenarios where the exact SoS values are

not known a priori.

Phantom experiment. CIRS breast phantom has stiff inclu-

sions representing malignant solid masses with higher

speed-of-sound (cf. Fig. 7g), and hypoechoic inclusions rep-

resenting cysts (cf. Fig. 7g’), which have smaller SoS contrast

with its surrounding. We reconstructed SoS maps using the

optimal settings found in the previous section (cf. Table 1),

since we modeled this probe and acquisition scheme in our

simulations. to the wide range of experimental settings stud-

ied herein (i.e. varying contrast, inclusion size, inclusion

shape, background SoS for both, simulated and phantom

data), the derived optimal settings are hoped to generalize

to a variety of applications and tissue types. For different

imaging device and probe characteristics, these may how-

ever need to be reparametrized. SoS reconstructions using

the different studied methods are shown in Fig. 7a-f and a’-

f’. Similar to a few cases in the simulation study, different

methods can result in overall different absolute SoS offset,

which is believed to be caused by strong aberration effects

and corresponding inaccurate shifts delay estimations. The

artifactual SoS offsets were represented in the simulation

study by the RMSE, which was seen to be superior in the

DW cases. Hence it can be assumed that the DW methods

in the phantom study also result in more accurate absolute

SoS estimations. Furthermore the DW approach is seen to

substantially improve the detection of both the solid mass

and the cyst, whereas with PW neither the inclusion shows

contrast nor the background SoS appears consistent. This is

also reflected by the CNR improvement as shown in the cor-

responding figure corners. For the solid mass, which has a

high SoS contrast, the DW approach leads to a CNR improve-

ment of more than 42%. For the more challenging case of

the cyst-representative inclusion with lower SoS contrast, the

improvement is even more substantial with a 2.8-fold better

CNR.

Regarding the optimal choice of Rx aperture for the breast

phantom datasets, it was observed that for PW adapted Rx

apertures often lead to significantly improved results (except

for the 2◦ PW of cyst inclusion where the CNR is generally

very low due to low contrast nature of this inclusion). For

DW, however, adapted Rx apertures only yields a marginal

improvement in CNR for the cyst case, while being inferior
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for the high contrast inclusion. The reason for this might

be that for the full Rx aperture case, a higher regulariza-

tion weight (λfull = 9 vs. λadap = 5) was found to be

optimal in our parametrization study. This leads to higher

spatial smoothness and a reduced noise in the background,

thus potentially boosting the CNR of high contrast masses.

A high regularization would negatively affect the detectabil-

ity of low contrast inclusions, as these are more prone to be

smoothed out during reconstruction, which corroborates the

observation in Fig. 7c’.

We herein compared DW and PW sequences that would

theoretically yield a similar framerate, i.e. with the setting

M = 9 a total of 18 transmit events needed with either

method for one SoS frame (neglecting any compounding pre-

processing or SNR-boosting steps that may be used for either

method). With DW, although each Tx yields less measure-

ments for reconstruction, due to limited aperture, this in turn

speeds up computations for beamforming, time-delay mea-

surements, and subsequent optimization. A major drawback

of DW with a single element on a physical system would

be the limited Tx energy and hence a low SNR. For the

experimental example, we address this herein with Walsh-

Hadamard coded pulses [38], which excite the tissue with

sufficient power while they can be mapped linearly to any

single element combination (DW Tx event) retrospectively.

Since such a coded imaging approach may reduce frame-

rates for in-vivo applications, an alternative way of inducing

DWs with high SNR and without loss of frame-rate would

be to utilize virtual source transmit, where a DW is formed

using multiple transducer elements.

Conclusion

We have presented herein the use of diverging waves (DW)

in pulse-echo SoS image reconstruction, studying it compar-

atively to existing plane waves (PW) approaches. Analyzing

the wavefront aberrations with PW and DW insonifications,

DW was seen to cause less aberration artifacts that lead

to inaccuracies in displacement estimation. This improved

delay estimation applies irrespective of chosen linear-path

forward model and ray discretization assumptions for SoS

reconstruction. Motivated by this, we have studied a set of

numerical phantoms, observing that the quantitative accu-

racy (RMSE) of SoS reconstructions is over 20% improved

by using DW compared to PW. Even more pronounced are

the improvements in inclusion contrasts, where CNR led to

an improvement of over 42% with DW. These results are

corroborated by an actual ultrasound acquisition of a breast

phantom, where CNR improvements of more than 42% and

280% are achieved with DW for, respectively, high and low

contrast inclusions.

Diverging waves in this work are generated without loss

of generality using a single element transmission yield-

ing circular wavefronts. Nevertheless, the presented method

after minor adjustments of L matrix paths and beamforming

delays is also applicable for multiple-element transmission

using a virtual source approach and also to non-circular

wavefronts, which would allow to increase the echo SNR.

With our findings SoS imaging based on conventional ultra-

sound systems can be substantially improved, paving the

way for translating SoS imaging into the clinic. Quantitative

SoS imaging and its improvements as presented herein are

not only valuable in diagnostic and interventional imaging,

but would also help improve many other ultrasound-based

modalities by correcting aberrations, such as improved beam-

forming for higher-quality B-mode images as presented

in [24].
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