
PHYSICAL REVIEW E NOVEMBER 1999VOLUME 60, NUMBER 5
Speed of wave-front solutions to hyperbolic reaction-diffusion equations
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The asymptotic speed problem of front solutions to hyperbolic reaction-diffusion~HRD! equations is studied
in detail. We perform linear and variational analyses to obtain bounds for the speed. In contrast to what has
been done in previous work, here we derive upper bounds in addition to lower ones in such a way that we can
obtain improved bounds. For some functions it is possible to determine the speed without any uncertainty. This
is also achieved for some systems of HRD~i.e., time-delayed Lotka-Volterra! equations that take into account
the interaction among different species. An analytical analysis is performed for several systems of biological
interest, and we find good agreement with the results of numerical simulations as well as with available
observations for a system discussed recently.@S1063-651X~99!06211-X#

PACS number~s!: 05.70.2a, 05.40.2a
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I. INTRODUCTION

Reaction-diffusion equations have been used to desc
very different processes in fluid dynamics, dendritic a
population growth, pulse propagation in nerves, and m
other biological, chemical, and physical phenomena. The
suing equations are derived from the classical diffus
equation which, after taking into account a source~also
called reaction! term f (n), adopts the formnt5nxx1 f (n),
wheren is the density of particles andf (n) is a nonlinear
function with at least two equilibrium states. Equations
this kind are called parabolic reaction-diffusion~PRD! equa-
tions. It has been shown by Aronson and Weinberger@1# that
sufficiently localized initial conditions evolve asymptotical
into a traveling monotonic wave front connecting two eq
librium states. The asymptotic speed at which the fr
propagates is the minimal speedc for which there is a mono-
tonic front joining both states. Some solutions to reactio
diffusion equations seem to be particularly important to
scribe the dynamics of such systems, namely the so-ca
wave-front solutions. Wave fronts are solutions of const
speed connecting equilibrium states, namely the roots
f (n). It is observed both experimentally and numerically th
the global, nonlinear dynamics rapidly selects a unique s
tion. The speed at which the front moves towards the sta
state is referred to as the selected speed. There already
several proposed criteria in the literature for the analysis
the dynamical velocity selection: a minimum speed rule@2#,
structural stability@3#, marginal stability@2,4#, and many
others. The marginal stability approach was studied initia
by Dee and Langer@2# and Ben-Jacobet al. @4#. According
to the marginal stability hypothesis, for most sufficiently l
calized initial conditions, the propagation velocity of we
developed fronts generically approaches the margi
stability point which apparently coincides with the minim
velocity. This point may be calculated explicitly from th
linearized leading-edge approximation, in which only the l
earized equation of motion is studied near the front. In
literature, this is sometimes referred to as the line
PRE 601063-651X/99/60~5!/5231~13!/$15.00
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marginal-stability case. All of this work refers, however,
parabolic reaction-diffusion~PRD! equations.

An important feature of diffusive phenomena is the ex
tence of a delay time@5–7#. In reactive systems, this can b
taken into account by resorting to hyperbolic reactio
diffusion ~HRD! equations, which generalize PRD equation
The existence of wave fronts in HRD equations has b
analyzed by Hadeler@8# and has been recently applied
population growth@9#, forest fire models@10#, bistable sys-
tems @11#, and the Neolithic transition@12#. A rather com-
plete study of the wave-front speed problem in HRD eq
tions is the aim of this work.

Our starting point is a system of reacting particles, follo
ing one-dimensional equations for the time evolution of t
number densityn and fluxJ of particles

]n

]t
1

]J

]x
5F~n!, ~1!

t
]J

]t
1J52D

]n

]x
, ~2!

where the first equation is the balance equation forn and the
second one is the transport equation for the fluxJ. For mi-
croscopic derivations of Eqs.~1! and ~2!, see Refs.@9# and
@12#. F(n) is the source function corresponding to the rea
tive process,D is the diffusion coefficient, andt is the re-
laxation~or delay! time. WhenF(n)50 the systems~1! and
~2! reduce to the telegrapher’s equation of diffusion@7#,
whereas fort50 we have the classical, PRD description
reaction diffusion~see, e.g., Ref.@1#!.

II. LINEAR ANALYSIS

From Eqs.~1! and ~2! it is easy to obtain the so-calle
HRD equation,

tntt1nt5Dnxx1F~n!1tF8~n!nt . ~3!
5231 © 1999 The American Physical Society
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Heret is the mean collision time for chemical reactions@12#,
@13#, time between two consecutive generations in hum
migrations @12#, mean ignition time in forest fire model
@10#, etc., and the primed symbol denotes85d/dn. It is con-
venient to rescale Eq.~3! for further purposes as follows:

t* 5kt,

x* 5xAk/D,

and writeF(n)5k f(n), where 1/k is a characteristic time o
the reactive process. We definea5kt. Then Eq.~3! be-
comes, omitting asterisks for notational simplicity,

antt1nt5nxx1 f ~n!1a f8~n!nt . ~4!

In the absence of a delay time (t50), this reduces to the
classical~or PRD! equationnt5nxx1 f (n), which has been
recalled in Sec. I. For simplicity we will consider reactio
terms f .0 which vanish atn50 and n51. It has been
shown@8# that Eq.~4! has traveling wave fronts with profile
n(x2ct) and moving with speedc.0, which will satisfy
the equation

~12ac2!nzz1c@12a f8~n!#nz1 f ~n!50, ~5!

where z5x2ct, and with boundary conditions limz→`n
50, limz→2`n51, andnz,0 in (0,1); nz vanishes forz
→6` @8#. We will now analyze how linear stability analys
can be applied to HRD equations, in order to study the sp
of the front.

Linear analysis makes it possible to study the behavio
the wave front near the equilibrium states, which accord
to Eq. ~1! are the solutions to the equationf (n)50, sayn
50 andn51. In Ref. @9# the lower boundc.2Af 8(0)/@1
1a f8(0)# was derived by analyzing the trajectories in t
phase space (n,nz). Here we will summarize an alternativ
approach that yields the same conditions on the front ve
ity but, in contrast to the one in Ref.@9#, it will allow us to
analyze the asymptotic behavior ofn(z) near the equilibrium
points. This behavior will in turn be used in the derivation
better bounds on the speed in the next section.

A. n'0

Settinge(z)5n(z)!1, we linearize Eq.~5! to obtain the
front equation nearn50. We get

~12ac2!ezz1c@12a f8~0!#ez1 f 8~0!e50. ~6!

Solutions of the forme;elz provide us with the following
characteristic equation:

~12ac2!l21c@12a f8~0!#l1 f 8~0!50. ~7!

So, the solution of the linearized equation~6! nearn50 is
given by

e~z!5A1el1z1A2el2z, ~8!

whereA1 and A2 are integration constants~depending on
the initial and boundary conditions! andl6 are the solutions
of the characteristic equation~7!. Since e(z)5n(z) is the
n

ed

f
g

c-

f

number density of particles, it cannot be negative for a
possible value ofz, thus l6PR. It therefore follows from
Eq. ~7! that

c>cL5
2Af 8~0!

11a f8~0!
, ~9!

where it has been assumed thatf 8(0).0. If this does not
hold, the approach we shall present in this section bre
down. This happens, e.g., in forest fire models~discussed in
Sec. IV D in the present paper!, and in such cases one ma
resort the variational analysis we will develop in Sec. III.

In the limit z→1` one hasn→0 as boundary condition
so l6 must be negative. If one~or both! values ofl were
positive, then in the limitz→1` one would haven→1`
and we would not be dealing with a solution connecting
equilibrium statesn51 and n50, thus the solution unde
consideration would not satisfy the definition of a wa
front, given in Sec. I. Therefore, Eq.~7! yields the conditions

c,1/Aa, ~10!

12a f8~0!.0. ~11!

B. n'1

We now introduce e(z)512n(z).0 and f (n).
2 f 8(1)(12n)5u f 8(1)ue, assumingf 8(1),0 ~this is nec-
essary in order to avoid an unbounded population growth
biological applications@14#!. The linearized Eq.~5! nearn
51 is

~12ac2!ezz1c@11au f 8~1!u#ez2u f 8~1!ue50. ~12!

This equation holds forn'1 and is the analog to Eq.~6!,
which holds forn'0. Similarly, for n'1 Eqs.~7! and ~8!
are replaced by

~12ac2!l21c@11au f 8~1!u#l2u f 8~1!u50, ~13!

e~z!5B1el1z1B2el2z, ~14!

respectively. Here we note that there are real two soluti
for l, one of them being positive~sayl1) and the other one
negative~say l2). Thus, contrary to what happened in th
casen'0 ~wherel1 and l2 could both be required to be
negative in order to ensure thatn→0 for z→` for arbitrary
initial conditions!, here we havel1.0 and l2,0. Now
since we must require thatn→1 for z→2`, we see that it
is necessary thatB250, i.e., forn'1 only l1.0 will ap-
pear in the asymptotic solution~14!, whereas forn'0 both
l1,0 andl2,0 appear in the corresponding solution~8!.
This general result is reached here and is in agreement
an explicit solution, which was derived previously for a ve
specific source termf (n) and initial condition~see Sec. V in
Ref. @9#!.

Just to summarize, the linear analysis presented in
section shows the existence of a traveling wave front, c
necting the equilibrium statesn50 andn51, provided that
the front satisfies the conditions~9!, ~10!, and~11!.

The marginal-stability analysis~MSA!, performed by van
Saarloos for PRD equations@15#, may also be applied to
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HRD equations. It is possible to show that the linear a
proach we have presented and the corresponding MSA y
the same result~9!. Thus we will not develop the MSA for
HRD equations explicitly. Let us mention, however, th
there are thin differences between both analyses. In M
one does not assume uniformly translating fronts of the fo
n(x2ct) but the procedure is more general and refers to
velocity of the envelope. The present paper is devoted to
~3!, which is a HRD equation that does not yield states
hind the front that are periodic in space. In the case of eq
tions that lead to periodic states, a uniformly translating fr
cannot occur, so that it would be necessary to investigate
envelope of the front by means of the MSA.

III. VARIATIONAL ANALYSIS

In this section we follow the variational analysis by Be
guria and Depassier for PRD equations@16#. We will extend
it to HRD equations. We start from Eq.~5! and define
p(n)52nz with p(0)5p(1)50 andp.0 in (0,1). Equa-
tion ~5! may be written as

~12ac2!p
dp

dn
2c@12a f8~n!#p1 f ~n!50. ~15!

Let g(n) be an arbitrary positive function; multiplying Eq
~15! by g/p and integrating by parts we obtain

cE
0

1

g@12a f8~n!#dn5E
0

1F ~12ac2!hp1
g f

p Gdn,

~16!

whereh52g8.0 as chosen for PRD equations@17#. Now
for any positive numbersr ands, it follows from (r 2s)2 that
(r 1s)>2Ars. If 12ac2.0 or c,1/Aa, sincef, g, h, andp
are positive, we may chooser[(12ac2)hp ands[g f /p to
get a restriction onc which eliminatesp,

~12ac2!hp1
g f

p
>2A12ac2Af gh, ~17!

and therefore,

c

A12ac2
>2

E
0

1
Af ghdn

E
0

1

g@12a f8~n!#dn

. ~18!

If the effect of the delay timet is neglected~i.e., for a
5kt'0), this reduces to the Benguria-Depassier princi
@16,17#. To see that Eq.~18! is a variational principle we
must show that there is a functiong5ĝ for which the equal-
ity holds. From the explanation above Eq.~17! we see that
this happens whenr 5s or (12ac2)ĥp5ĝ f /p, which ac-
cording to our HRD equation~15! implies thatĝ satisfies the
ordinary differential equation

ĝ8

ĝ
52

c

12ac2

12a f8~n!

p
1

p8

p
.
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The correspondingĝ, obtained by integrating this equation
is given by

ĝ~n!;p~n!expF2
c

12ac2En0

n 12a f8~ ñ!

p
dñG ~19!

with 0,n0,1. Evidently ĝ(n) is a continuous positive
function. We will now determine the behavior ofĝ(n) near
n50 and see that the integrals in Eq.~18! exist. To verify
this we recall, from the linear analysis, that the front a
proachesn50 exponentially. From this, it is easily seen th
the dominant term in Eq.~8! yieldsp52dn/dz;mn, where

m5
1

2~12ac2!
@c@12a f8~0!#

1Ac2@11a f8~0!#224 f 8~0!#.

For t50 this reduces, as it should, to the result derived
PRD equations by Aronson and Weinberger@1# ~see also
Ref. @17#!. Thus, from Eq.~19! we get, nearn50,

ĝ~n!;n12g,

where

g5
c@12a f8~0!#

m~12ac2!
.

We also get in this limitAf ĝĥ;ĝ f 8(n);n12g. Hence the
integrals in Eq.~18! exist if g,2. This condition is satisfied
provided thatc.2Af 8(0)/@11a f8(0)#, which is in agree-
ment with the condition~9! derived form the linearization
method.

Therefore, we have shown that the asymptotic speed
the front is given by

c

A12ac2
5max

g S 2

E
0

1
Af ghdn

E
0

1

g@12a f8~n!#dn
D . ~20!

It is important to notice that the variational result given
Eq. ~20! requires two strong conditions, in order to be app
cable, namelyc,1/Aa and 12a f8(n).0. The second re-
striction is equivalent to a,1/M , with M
5maxnP(0,1)f 8(n), and will be used explicitly in the deriva
tion of upper bounds for the front velocity~Sec. III B below!.
In the following two subsections we analyze whether t
variational result leads to lower and upper bounds for
asymptotic speed and compare to the results from the lin
analysis~Sec. II!. We will show that the linear~and mar-
ginal! stability value for the speedcL Eq. ~9! also follows
from the variational expression~18!. More importantly, we
shall also show that the variational result~20! makes it pos-
sible to obtain a better upper bound on the speed than
following from linear stability, i.e.,c,cmax51/Aa @see Eq.
~10!#.



ta
ve

ia

n

a

d

a-
in
nd
p
l
pe

ds
-

n

by
en-
f

as

e

ible

f
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A. Lower bounds

As we have mentioned in the study above, one may ob
a lower bound for the asymptotic speed, by means of a gi
function g(n). This trial function must satisfy thatg(n).0
andg8(n),0 in (0,1). Consider the simple sequence of tr
functions g5na21 in the limit a→0. These functions are
positive and have negative derivative for 0<a,1, as re-
quired in the derivations above. According to Eq.~18! or
~20!,

c

A12ac2
>2A12a

E
0

1

na23/2Af ~n!dn

E
0

1

na21@12a f8~n!#dn

.

In the limit a→0, the integrands diverge atn50, as in the
case of PRD equations@16#, thus only the singular point will
contribute in the limit. The surviving contributions are the

c

A12ac2
>2A12a

E
0

«

na23/2Af ~n!dn

E
0

«

na21@12a f8~n!#dn

.

We may expand the integrands in Taylor series nearn50.
Only the leading term in the expansions will contribute
a→0 and we have, assumingf 8(0)Þ0,

c

A12ac2
>2A12a

E
0

«

na23/2Af 8~0!ndn

E
0

«

na21@12a f8~0!#dn

.

Performing the integrals and taking the limita→0 we obtain

c

A12ac2
>

2Af 8~0!

12a f8~0!
, ~21!

thus

c>cL5
2Af 8~0!

11a f8~0!
. ~22!

This reduces, as it should, to the classical or PRD valuecL

52Af 8(0) @1# if the effect of the delay time is neglecte
(a'0). It is seen that the lower bound~22! is the same as
Eq. ~9!, which is also known from the derivation of the vari
tional principle above. We conclude that the variational pr
ciple we have derived does not provide better lower bou
for the speed of wave fronts than the linear or MSA a
proaches if we chooseg(n)5na21. As we shall see in detai
in the following subsection, the opposite happens for up
bounds. Moreover, the method presented above forg(n)
5na21 is of interest since it does yield better lower boun
for other trial functionsg(n), depending on the source func
tion considered~an explicit example will be presented i
Sec. IV D!.
in
n

l

s

-
s

-

r

B. Upper bounds

Here we derive upper bounds for the asymptotic speed
extending to HRD equations the recent development by B
guria and Depassier@16#. We need the particular case o
Jensen’s inequality@18#

E
0

1

m~n!Aa~n!dn

E
0

1

m~n!dn

<AE
0

1

m~n!a~n!dn

E
0

1

m~n!dn

, ~23!

wherem(n).0 anda(n)>0. If we definem(n)5g(n)@1
2a f8(n)# and a(n)5 f (n)h(n)/$g(n)@12a f8(n)#2%, then
the left-hand side of the above inequality may be written

E
0

1

m~n!Aa~n!dn

E
0

1

m~n!dn

5

E
0

1
Af ghdn

E
0

1

g~12a f8!dn

,

and inside the square root in the right-hand side we hav

E
0

1

m~n!a~n!dn

E
0

1

m~n!dn

5

E
0

1 f h

12a f8
dn

E
0

1

g~12a f8!dn

.

We have then, from Eqs.~20! and ~23!, a relatively simple
expression which will allow us to find upper bounds

c

A12ac2
52 max

g S E
0

1
Af ghdn

E
0

1

g~12a f8!dn
D

<2 max
g F E

0

1 f h

12a f8
dn

E
0

1

g~12a f8!dn
G 1/2

. ~24!

We now observe that integration by parts makes it poss
to find an expression in whichh5g8 no longer appears,

E
0

1 f h

12a f8
dn5E

0

1

g
f 81a~ f f 92 f 82!

~12a f8!2
dn. ~25!

Moreover, in order to get an upper bound independent og,
we write Eq.~25! in a more useful form,

E
0

1 f h

12a f8
dn5E

0

1

g~12a f8!
f 81a~ f f 92 f 82!

~12a f8!3
dn

< sup
nP~0,1!

F f 81a~ f f 92 f 82!

~12a f8!3 G E
0

1

g~12a f8!dn,

~26!

were we have applied the condition (12a f8).0. Finally,
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c

A12ac2
<2A sup

nP~0,1!

F~n! ~27!

where

F~n![
f 81a~ f f 92 f 82!

~12a f8!3
. ~28!

Hence the upper bound may be written as

cU5
2q~a!

A114aq2~a!
, ~29!

whereq(a)5AsupnP(0,1)F(n). This result may be written in
a simpler form if we assume that the source functionf (n) is
continuous and concave, i.e.,f 9,0, in (0,1). Then, since
f (0)5 f (1)50 we havef 8(0).0 and f 8(1),0. We may
write

F~n!5
f 8

~12a f8!2
1a

f f 9

~12a f8!3
,

where, recalling the condition 12a f8(n).0, we see that the
second term is negative~it only vanishes atn50,1). More-
over, since we have assumed thatf is continuous and tha
f 9,0, the first term decreases for increasing values on.
Thus,

sup
nP~0,1!

F~n!5
f 8~0!

@12a f8~0!#2
,

and we have the simpler result

c<cU5
2Af 8~0!

11a f8~0!
, ~30!

which holds provided thatf is continuous and concave i
(0,1). Some examples are discussed in Sec. IV. To the
of our knowledge, these results are the first ones for up
bounds in HRD equations. We note that the lower and up
bounds are the same@see Eq.~22!#, so the asymptotic spee
may be predicted without uncertainty. This generalizes
corresponding theorem for PRD equations (a50), which
states thatc52Af 8(0) provided thatf (n) is continuous and
concave@1,17,19#.

IV. APPLICATIONS

PRD equations have been studied for more than 60 y
@20#. During this time, many important applications ha
been found, including the spread of advantageous ge
@20,21#, population dynamics@21,22#, the development of
epidemics@23#, nerve conduction@24#, models of mithocon-
drial tissue@25#, cellular sensitivity@26#, and other biological
phenomena, in addition to physical applications such as
perconductors@27#, solidification @28#, liquid crystals @29#
and chemically reacting systems@30#. HRD equations have a
comparatively much shorter history@8# and, as happened i
the first applications of PRD equations, have for the mom
st
er
er

e

rs

es

u-

nt

been applied essentially to biological processes. This is
sonable since the value of the delay time in Eq.~2! is diffi-
cult to estimate in most physical systems: even for m
atomic gases, Eq.~2! provides a very rough approximatio
since additional, higher-order terms are usually of the sa
order of magnitude as that in whicht appears, and it is
necessary to take an infinite number of such terms and re
malize the corresponding expressions under suitable assu
tions @31#. In this section we apply our results to a variety
source functions that are useful in the description of so
interesting biological phenomena.

A. Logistic growth

Logistic growth has been used in hyperbolic reactio
diffusion equations to describe the dynamical and thermo
namical properties of delayed population growth@9#. Very
recently, logistic growth in HRD equations has also be
applied to the study of human migrations in the Neolith
transition @12#. The logistic source term isf (n)5n(12n),
which is a realistic function driving the reproduction of man
biological species@14#. This function satisfies the conditio
f 8(0)Þ0, is continuous and hasf 9,0. Whereas the linea
analysis~Sec. I! gives only the lower bound~9!, the varia-
tional results~22! and~30! show that the speed of the fron
is

c5
2

11a
. ~31!

This result is in agreement with the recent work by Fedot
which is based on the path-integral approach, the sca
procedure and singular perturbation techniques involv
large deviation theory@32#. The result~31! is rather impor-
tant in the context of the Neolithic transition, for in Ref.@12#
we obtained good agreement with observations assum
that c52/(11a) is not just a lower bound but the actu
speed of the population wave of the advance. If the effec
the delay time is neglected (a5tk50), we recover the well-
known resultc52 @20,1#, which is the basis of the classica
~or PRD! theory of the Neolithic transition@21#. Section V B
in the present paper contains a refined model of the Neoli
transition.

We have solved Eq.~4! numerically for the logistic source
function in order to determine the speed of the fronts
different values ofa. The results of the simulations are com
pared to the analytical expressionc52/(11a) in Fig. 1. The
numerical simulations of Eq.~4! have been performed b
assuming that initiallyn51 in a localized region andn50
elsewhere, and making use of the splitting operator techni
@33#. The profilen(x) was plotted at different times, and th
has allowed us to determine the asymptotic speed selecte
the smooth front that is observed after an initial transient.
far as we know, Fig. 1 presents the first simulations of h
perbolic wave fronts, and one may observe a rather satis
tory agreement between the numerical results and Eq.~31!.

B. Generalized Fisher-Kolmogorov kinetics

The logistic function is the simplest one leading to som
reasonable results such as the saturation of populations
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a limited amount of available resources@14#. However, other
source functions are important in biological applications.
particularly relevant case is the Fisher-Kolmogorov~FK!
source function, namelyf (n)5n(12n2), which is impor-
tant in genetics@20,19#. Here we will assume a generalize
Fisher-Kolmogorov function,

f ~n!5n~12np!,

with p>1. As in the logistic case, we havef 8(0)Þ0, f is
continuous andf 9,0. Thus using the variational results~22!
and~30! we can predict the speed of wave fronts without a
uncertainty,c52/(11a). It means that this result for th
selected speed holds not only for the logistic case but also
more general situations of practical interest. From Fig. 1,
see that this prediction agrees with the simulations of Eq.~4!
for the FK source function (p52). We have also checke
that there is good agreement for other values ofp.

C. HRD generalization of a cubic PRD model

Consider next the cubic source function

f ~n!5
n

b
~12n!~b1n! ~32!

with 0,b,1. This function has been applied in seve
reaction-diffusion studies on genetics, among them in
description of inferior heterozygotes selection@34# and of the

FIG. 1. Comparative plot between the analytical expression
the dimensionless speedc52/(11a) and the dimensionless spee
obtained from numerical integration of Eq.~4! as a function of the
dimensionless parametera for logistic growth~circles! and gener-
alized FK kinetics,p52 ~rhombs!. There is good agreement be
tween numerical and analytical results.
y

or
e

l
e

morphogenetic field of a multicellular ensemble@35#. The
source function~32! has also been useful because it can
solved exactly when the delay time is not accounted fora
50) @4,17#.

A lower bound for the speed of the fronts can be obtain
from Eq. ~9! or Eq. ~22!, namely 2/(11a). On the other
hand, the source term~32! is a concave function for (1
2b)/3,n,1 and a convex function for 0,n,(12b)/3, so
the upper bound~31! cannot be applied and we cannot obta
the exact asymptotic speed. However, we shall see that
possible to constrain the speed. Let us first obtain a be
lower bound. As in the case of PRD equations with t
source term~32! @17#, we chooseg(n)5(12n)212bn22b.
We now apply the method in Sec. III A for this single tria
function instead of the sequenceg(n)5na21. Equation~20!
yields, after some algebra,

c

A12ac2

>2

A2b

G~4!
1A2

b

122b

G~5!

12a

G~4!
1

6a

b

~12b!~122b!

G~6!
2

2a

b

~12b!~122b!

G~5!

,

where the integrals have been solved making use of form
~3.191-3! in Ref. @18#, which applies under the assumptio
that 0,b,1/22, G(z) is the gamma function and we hav
applied thatG(z11)5zG(z). From this we find the lower
bound

cL5H cL~a,b!, 0,b,1/2

2

11a
, 1/2,b,1,

where

cL~a,b!5
A2b11/A2b

AS 12
a

5

112b12b2

b
D 2

1
a

2b
~112b!2

.

Notice that for 1/2,b,1 the integrals in Eq.~20! diverge,
so that we have resorted to the lower bound~9! or ~22!. In
the PRD case (a50), we recover the result found by Ben
Jacob, namelycL5A2b11/A2b for 0,b,1/2 and 2/(1
1a) for 1/2,b,1 @4#. For the upper bound we cannot a
ply Eq. ~30!, as explained above, but we can still derive
upper bound from Eqs.~28! and ~32!. Equation~28! yields,
after some algebra,

r

F~n!5

11
2

b
n22n2

3

b
n22aF11

2~12b!

b
n1

2~122b1b2!

b2
n22

4~12b!

b2
n32

3

b2
n4G

F12aS 11
2

b
n22n2

3

b
n2D G3
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and the speed is given by Eq.~29!. In the limit b→1, f (n)
is a concave function and supF(n)5F(0), thuscU→2/(1
1a). The variational analysis for the lower and upp
bounds is restricted to the condition 12a f8.0, which is
equivalent toa,M 21, with M5maxnP(0,1)f 8(n). For this
case one findsM5(11b1b2)/3b and the restriction is (5
2A21)/2,b,1 if a51/2. We have plotted the bounds fo
a51/2 in Fig. 2, as well as the results from numerical sim
lations of Eq.~4! with the source function~32!, as a function
of b. We observe good agreement between the simulat
and the lower and upper bounds.

D. Forest fire models

HRD equations have been used to model the propaga
of forest fires@10#. In this model a reaction term of the form

FIG. 3. Comparative plot between lower and upper dimensi
less bounds and the numerical integration of Eq.~4! for the dimen-
sionless speed of fire fronts as a function of parameterb, with a
51/2. The numerical values for the speed lie between both cur
as they should. As it is expected for forest fire models, the spee
a decreasing function for increasing values ofb.

FIG. 2. Comparative plot between lower and upper bounds
the results from simulations of Eq.~4! for the cubic source function
~32!. Herea51/2, and the range of values ofb is constrained be-
cause of the range of validity of the variational approach. Low
and upper bounds are plotted in solid lines and numerical resul
circles.
r

-

ns

on

f ~n!5nb~12n!

has been used. Forb51, this reduces to the logistic cas
dealt with in Sec. IV A, so we will assume thatb.1. The
parameterb quantifies the number of burning trees needed
order to set fire to a nearby, green tree. For high values ob,
it is expected intuitively that the speed of the fire front w
be smaller. Here we havef 8(0)50, thus the linear analysis
does not hold. Therefore, we resort to the variational ana
sis. Still, sincef 8(0)50, Eq.~22! does not apply, and sinc
f 9,0 does not hold everywhere in~0,1! Eq. ~30! cannot be
applied either. As in Sec. III A, let us consider the simp
sequence of trial functionsg5na21, with 0<a,1. The in-
tegrals in Eq.~20! are

E
0

1
Af ghdn5A12a

GS b

2
1a2

1

2DG~3/2!

GS a111
b

2 D ,

E
0

1

g~12a f8!dn5
1

a
2a

12a

~b1a!~b211a!
.

Thus the best lower bound is given by

cL

A12acL
2

5 max
aP(0,1)

$G~a,b!%,

where

G~a,b!5

2aA12aGS b

2
1a2

1

2DG~3/2!

GS a111
b

2 D F12a
~12a!a

~b1a!~b211a!G
.

We have calculated the value ofa which maximizes
G(a,b) numerically fora51/2 and for different values ofb
between 1 and 7. The corresponding results for the lo
boundcL are plotted in Fig. 3.

For the upper bound we have to consider the funct
F(n), see Eq.~28!. It reads

F~n!5nb22
bn2~b11!n22anb@b1~b11!n222bn#

~12a@bnb212~b11!nb#!3
.

We set, as for the lower bound,a51/2 and find the valuen*
at which supnP(0,1)F(n)5F(n* ) for different values ofb
between 1 and 7. For high values ofb, F(n* ) must be
computed numerically. The upper bound may be calcula
finally from Eq. ~27! or Eq. ~29!,

cU

A12acU
2

52AF~n* !.

The results for the upper bound are plotted, together with
lower bounds and the numerical solution for the speed
Fig. 3 for a51/2. The numerical solution is seen to lie b
tween the upper and lower bounds, as it should, and it
decreasing function with increasing values ofb, as expected.
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One could certainly try other trial functionsg(n) and find
other bounds. We have used the same trial functions a
Sec. III A since they yield relatively simple results whic
illustrate fairly well the usefulness of the new variation
principle here derived. It is also seen from Fig. 3 that
new upper boundcU derived here is much better thancmax

51/Aa5A2 @see Eq.~10!#, which had been derived prev
ously @9#.

E. Bistable systems

In several problems arising in biology~such as nerve con
duction @36#!, physics~electrothermal instability@37#!, and
chemistry ~kinetic of bimolecular reactions@38,39#! it is
found that the source term is given by

f ~n!5n~12n!~n2s! for 0,s,1. ~33!

In these cases the system is called bistable. The reason
following: the parameters has a critical values51/2 for
which the stability of the statesn50,1 is inverted and the
front changes its direction of propagation. Fors,1/2 the
front connectsn50 to n51 andc.0, for s51/2 we have
c50 and finally, for 1/2,s,1 the front connectsn51 to
n50 and c,0. This can be seen in Fig. 4. We look fo
bounds for the speed. We use the trial functiong(n)5(1
2n)222sn2s, as in the cubic HRD model~Sec. IV C!. By
following the same steps as in Sec. IV C, we now obtain
following lower bound:
r
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e
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e

cL5
122s

A2F12
a

5
~122s12s2!G2

1a~122s!2

,

which holds for anysP(0,1). Equation~28! yields, after
some algebra,

FIG. 4. Comparative plot between lower and upper bounds
the numerical solution for the dimensionless speed of fronts
bistable systems@Eq. ~33!#, for a51/2. Note the change of sign fo
the speed ats51/2.
F~n!5
2s12n~11s!23n22a@23n414n3~11s!22n2~112s1s2!12ns~11s!2s2#

@12a~2s12n~11s!23n2!#3
,

ns.
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g., a
e

ula-
and the speed is given by Eq.~29!. Figure 4 shows the lowe
and upper bounds fora51/2, as well as the speed obtaine
from numerical simulations of Eqs.~4! and ~33!. According
to Fig. 4, the upper bound from the variational method
better than the boundcmax51/Aa5A2, which has been dis
cussed previously in the context of bistable systems@11#. It
is worth noting that in this case there is excellent agreem
between the lower bound we have been able to derive
the numerical solution. In Fig. 4 we also observe the cha
of sign for the speed ats51/2. The restriction for the valid-
ity of the variational method a,M 21 for M
5maxnP(0,1)f 8(n) yields to a,3/(s22s11), which im-
poses no additional restriction fora51/2.

V. TIME-DELAYED LOTKA-VOLTERRA EQUATIONS

In this section we consider a system with two variablen
andm undergoing reaction-diffusion dynamics. In biologic
applications, they may represent the predator and prey
cies @22#, the farmers and hunter-gatherers in the expans
of agricultural communities@21#, the infected and suscep
tible individuals in the spread of a pandemic@20#, etc. Such
s

nt
nd
e

e-
n

systems of equations are called Lotka-Volterra equatio
Two-variable systems are also important in the propaga
of domain walls in superconductors; heren corresponds to
the superconducting order parameter,m to the gauge-
invariant vector potential and they follow Ginzburg-Land
equations@27# which have in fact the same mathematic
form of Lotka-Volterra equations.

A. General theory

Let us consider the system

tntt1nt5Dnxx1F~n!1tF8~n!nt1gnm,
~34!

t̂mtt1mt5D̂mxx1F̂~m!1 t̂F̂8~m!nt2ĝnm,

which is a pair of coupled HRD equations@see Eq.~3!#. The
superscript̂ refers to the species with number densitym, and
the last term in these equations corresponds to the interac
between both species. This simple term means that in, e.
predator-prey system witht5 t̂50, the predators increas
their population densityn because of their interaction with
preys, which in turn experience a decrease in their pop
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tion densitym. It should be emphasized that here we a
assuming that the interaction rategnm is small compared to
the other terms, since otherwise higher-order terms inn2m,
etc. could be important in the description of the interact
among both species. Fort5 t̂50 we recover the usual~or
PRD! Lotka-Volterra system with spatial inhomogeneiti
~see Chap. 12 in Ref.@22#!. Wave-front solutions to Eqs
~34! have not been reported up to now in the literature, to
knowledge. Here we shall tackle this problem by extend
the theory presented in Secs. II and III. As said above,
consider HRD equations, thus the results applying to P
equations will follow in the limitt→0. In order to illustrate
our procedure, let us consider for a moment a specific pr
lem: in the Neolithic transition, the population wave fronts
farmers~with number densityn) traveled into areas wher
they encountered a population of preexisting hunt
gatherers with a number densitym that is usually assumed t
be approximately uniform, saym0 @21,40#. Both populations
mixed to some extent, and this interaction is regarded as
cause of the gradients observed in the present spatial d
bution of human genes@21#. We may describe the process b
following exactly the same procedure as in Sec. II but m
ing use of the coupled Eqs.~34! instead of Eq.~3!: the pro-
cedure is essentially the same as in Sec. II, so we shall
give the main steps. Since the problem we have in min
the expansion of, say, farming communities, we consider
corresponding equation in the leading edge of the frontn
'0),

~12ac2!ezz1c@12a f8~0!#ez1@ f 8~0!1g̃m0#e50,
~35!

whereg̃5g/k, and the rest of the notation is the same as
Sec. II. This equation generalizes Eq.~6! and is decoupled
from the evolution equation of speciesm. Note that we can-
not apply Eq.~9! with f 8(0)1gm0 instead off 8(0), because
the parentheses multiplyingez in Eq. ~35! does not contain
f 8(0)1gm0 but only f 8(0), thus Eq.~35! does not have the
same form as Eq.~6!. But it is clear that, as in Sec. II, th
asymptotic solutions nearn50 are given by Eq.~8!, with l6

the solution to the characteristic equation, which now rea

~12ac2!l21c@12a f8~0!#l1 f 8~0!1g̃m050. ~36!

As in Sec. II, we require Im(l)50 in order to prevent the
solution from oscillating. This yields

c>2A f 8~0!1g̃m0

@11a f8~0!#214ag̃m0

. ~37!

This result reduces, as it should, to the lower bound~9! for
noninteracting species (g̃50). On the other hand, in th
absence of a delay timet ~i.e., a5tk50) we obtain

c>2Af 8~0!1g̃m0, ~38!

and if we assume that both the effect of the interaction
that of the delay are negligible we recover Fisher’s result
PRD equations, namelyc>2Af 8(0). Equation ~38! could
have been obtained simply from the fact that in the non
layed~or PRD! modelt50, the first Eq.~34! is nothing but
e

n
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a PRD equation withf (n)1gnm instead off (n), and we
have assumed thatm'm0 nearn50. The PRD limit ~38!
agrees with previous research, where it has been applie
predator-prey systems@41# and to the propagation of inter
faces in superconductors@42#.

It should be noted that Eq.~37! provides just a lower
bound, simply because it is based on the linear appro
~Sec. II!. We now make use of our variational approach
HRD Eqs.~Sec. III!. First of all we note that we cannot mak
use of Eq.~30! with f 8(0)1gm0 instead off 8(0), because
the evolution equation corresponding to the first Eq.~34! is

~12ac2!nzz1c@12a f8~n!#nz1 f ~n!1g̃m0n50,
~39!

and this is not reducible to an equation such as Eq.~5!, since

@ f (n)1g̃m0n#85 f 8(n)1g̃m0Þ f 8(n). Thus we have to
generalize the approach in Sec. III. Since the steps are
actly the same as there, it will suffice to sketch the deri
tion. Equation~15! is generalized into

~12ac2!p
dp

dn
2c@12a f8~n!#p1 f ~n!1g̃m0n50.

~40!

We multiply this byg/p, with p[2nz andg.0, and inte-
grate by parts. As before,h52g8.0 and we apply the gen
eral inequality (r 1s)>2Ars to get rid of p. This finally
yields

c

A12ac2
>2

E
0

1A@ f ~n!1g̃m0n#gh dn

E
0

1

g@12a f8~n!#dn

, ~41!

which generalizes Eq.~18!.
We can now derive lower and upper bounds from t

variational analysis. If we consider again the trial functio
g5na21, Eq. ~41! becomes

c

A12ac2
>2A12a

E
0

1

na23/2A@ f ~n!1g̃m0n# dn

E
0

1

na21@12a f8~n!#dn

.

In the limit a→0, the integrands diverge atn50, as in Sec.
III, thus only the singular point will contribute. We expan
the integrands in Taylor series nearn50, and only the lead-
ing term in the expansions will survive. Thus, assumi
f 8(0)Þ0,

c

A12ac2
>2A12a

E
0

«

na23/2Af 8~0!n1g̃m0 dn

E
0

«

na21@12a f8~0!#dn

.

Performing the integrals and taking the limita→0 we obtain



.
ri
iv

ng

of
h.

n

es

).
s the
ts
un-

as-

ical
ka-
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c>cL52A f 8~0!1g̃m0

@11a f8~0!#214ag̃m0

, ~42!

in agreement with the result~37! from the linear analysis
Thus also for interacting species, the linearization and va
tional methods yield the same lower bound. We now der
upper bounds. Since the only change of Eq.~41! relative to
Eq. ~18! is that f 1g̃m0n appears instead off, we define
m(n) anda(n) performing this change in the correspondi
definitions in Sec. III B, i.e.,m(n)5g@12a f8# as before and
a(n)5( f 1g̃m0n)h/@g(12a f8)2#. We have then, from
Eqs.~41! and ~23!,

c

A12ac2
<2max

g F E0

1~ f 1g̃m0n!h

12a f8
dn

E
0

1

g~12a f8!dn
G 1/2

.

We integrate by parts,

E
0

1~ f 1g̃m0n!h

12a f8
dn52

g~1!g̃m0

12a f8~1!
1E

0

1

gS f 81g̃m0

~12a f8!2

1
a f9~ f 1g̃m0n!

~12a f8!3 D dn. ~43!

We note that, in contrast to what happened in the case
single species@Eq. ~25!#, the boundary term does not vanis
But recalling thatg.0 and the condition 12a f8.0, we
have

E
0

1~ f 1g̃m0n!h

12a f8
dn<E

0

1

gS f 81g̃m0

~12a f8!2

1
a f9~ f 1g̃m0n!

~12a f8!3 D dn,

and, in order to get an upper bound independent ofg,

E
0

1~ f 1g̃m0n!h

12a f8
dn< sup

nP~0,1!
F f 81g̃m0

~12a f8!2

1
a f9~ f 1g̃m0n!

~12a f8!3 G E
0

1

g~12a f8!dn.

~44!

Thus,

F~n![
f 81g̃m0

~12a f8!2
1

a f9~ f 1g̃m0n!

~12a f8!3
. ~45!

As in Sec. III B, if we assume that the source functionf is
continuous and concave and recall again the conditio
2a f8.0, we see that the second term inF(n) is negative
~it only vanishes atn50,1!, whereas the first term decreas
for increasing values ofn. Thus,
a-
e

a

1

sup
nP~0,1!

F~n!5
f 8~0!1g̃m0

@12a f8~0!#2
,

and we have the simpler result

c<cU52A f 8~0!1g̃m0

@11a f8~0!#214ag̃m0

, ~46!

which reduces to Eq.~30! in the limit g̃→0, as it should, and
holds provided thatf is continuous and concave in (0,1
Under these assumptions, our upper bound is the same a
lower one Eq.~42!, and the asymptotic speed of the fron
for interacting species can also be predicted without any
certainty

c52A f 8~0!1g̃m0

@11a f8~0!#214ag̃m0

. ~47!

If the delay time is not taken into account~PRD approach,
a50), this reduces to

c52Af 8~0!1g̃m0, ~48!

in agreement to previous work@41,42#. In Fig. 5 we compare
this analytical result for the expansion of speciesn with
those obtained from numerical simulations for the caset
50. The numerical simulations have been performed by
suming that initiallyn51 in a localized region andn50
elsewhere~as in Figs. 1–4! and m5m0 everywhere; the
equations used are Eq.~34! in the same variables as Eq.~4!,
i.e.,

antt1nt5nxx1 f ~n!1a f8~n!nt1g̃nm0 , ~49!

âmtt1mt5mxx1 f̂ ~m!1â f̂ 8~m!mt1 ĝ̃nm0 ,

FIG. 5. Comparison between analytical results and numer
simulations for the dimensionless front speed in PRD Lot

Volterra equations, as a function of the interaction parameterg̃m0.
The dots are results from numerical simulations of Eqs.~49! for the
PRD case (t50) and f 8(0)51. The solid line is the prediction
given by Eq.~48!.
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where â5 k̂t̂, ĝ̃5g̃/ k̂ and, analogously to Eq.~4!, 1/k̂ is a
characteristic reactive time for speciesm. In the simulations

we have assumed for definiteness thatâ5a,ĝ̃5ĝ, as well as
logistic growth functions, i.e.,f (n)5n(12n) and f̂ (m)
5m(12m). In Fig. 6 we compare the predictions of E
~47! to the simulations of Eqs.~49! for tÞ0. There is good
agreement in both the classical~Fig. 5! and the time-delayed
~Fig. 6! cases. By comparison to the results forgm050, it is
also seen that the interaction among both species leads
faster wave front, as was to be expected since the last ter
the first Eq.~34! corresponds to a numeric increase in t
expanding species. This was conjectured in Ref.@12# and is
why the front speed increases with increasing values ofg̃m0.

It had been pointed out@17# that a variational character
ization for a system such as Eq.~34! ~even in the PRD case!
was an important problem that remained to be studied. H
we have presented a solution to this problem both for P
and HRD equations.

B. Application to the Neolithic transition

Finally, we apply the results for interacting species to
waves of advance of farming populations in the Neolith
transition. We already considered this problem in our pre
ous paper@12#, but did not take into account the interactio
between the expanding farmers and the preexisting hun
gatherers. This interaction is important, as mentioned in S
V A, because it is thought to have caused the genetic cl
~or gradients! observed in human populations across Euro
and Asia@21#. This is why the two-species model has be
proposed for this expansion@21,40#, although no analytica
results have been previously derived. Recalling that in Se
we have introduced dimensionless variables, the speed o
front v is related to the dimensionless speedc through v
5ADkc. We also recall that we have introduceda5tk,
f (n)5F(n)/k and g̃5g/k. From Eq. ~47! we have two
cases for interacting populations:

FIG. 6. Comparison between analytical results and numer
simulations for the dimensionless front speed in HRD~or time-

delayed! Lotka-Volterra equations, as a function ofa ~for g̃m0

50,1/2,1). The symbols are results from numerical simulations
Eqs. ~49!, and the solid lines are the predictions from Eq.~47!.
There is excellent agreement in all cases.
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~i! PRD approach:it is based on the assumption that th
role of the delay time can be neglected (t'0). Then we
have from Eq.~48!

vPRD52AD@F8~0!1gm0#, ~50!

which becomes Fisher’s result 2ADF8(0) for noninteracting
species, as it should.

~ii ! HRD approach:it takes the delay timet into account.
Then Eq.~47! applies

vHRD5
2AD@F8~0!1gm0#

A@11tF8~0!#214tgm0

. ~51!

In spite of the fact that the Neolithic transition took place
two dimensions, our one-dimensional results are still va
This can be seen from the fact that in two-dimensions,
only change in Eqs.~34! is that we have¹2n instead ofnxx
~and ¹2m instead ofmxx). However, in polar coordinate
¹2n5]2/]r 211/r ]n/]r→]2/]r 2 as r→`, which corre-
sponds to the asymptotic front@43#: it is the propagation of
this front that we are interested in~we have assumed, a
usual,@43#, thatn is independent of the polar angleu).

In order to obtain numerical values for both speeds~50!
and~51! we need values for the parameters appropriate to
Neolithic transition. As explained in Ref.@12#, such values
have been derived from observations independent of
Neolithic expansion and their mean values areF8(0)
50.032 yr21,D515.44 km2/yr and t512.5 yr ~the latter
value follows from the mean generation time! @44#. On the
other hand, from the observations in Ref.@40# we have the
mean values for the other two parametersm050.04
hunters/km andg55.84 km2/~hunter yr! @45#. Use of these
values in Eq.~50! yields vPRD51.6 km/yr, which is much
higher than the speed derived from the archaeological rec
in contrast Eq.~51! yields vHRD51.1 km/yr, which lies en-
tirely within the experimental range, namely 1
60.2 km/yr~see the text as well as Fig. 1 in Ref.@12#!. This
is a strong point for the applicability of HRD equations
human populations, and seems to indicate that HRD eq
tions could become very important in the understanding
the range dynamics of biological species. In Ref.@12#, we
showed that when the interaction among populations is
taken into account, an HRD approach gives better results
the Neolithic transition than the usual, PRD approach. H
we have shown that this conclusion remains valid if the
fect of the interaction among farmers and hunter-gathere
not neglected.

VI. CONCLUSIONS

In this work we have performed numerical and analytic
analyses on the front speed problem in hyperbolic react
diffusion equations. We have made use of two analyti
techniques. First, a linear analysis near the equilibri
points of the systems. Second, we have used and genera
a recent variational analysis derived by Benguria and D
passier@16# for PRD equations. It is a very useful method f
HRD equations also. The general form of this method ta

al

f
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into account the nonlinear effects of the source term,
lower and upper bounds have been obtained. We have
lyzed the application of this method to several systems
biological interest. For logistic and generalized Fish
Kolmogorov kinetics, linear and nonlinear analysis yield t
same results, the selected speed may be obtained exactl
coincides with that obtained from linear analysis and w
numerical results. For forest fire models, linear analysis d
not hold and the variational method becomes especially
ful since a new, improved upper bound has been obtain
We have found lower and upper bounds and the numer
value for the speed of fire fronts. Both bounds and the
merical solution for the speed are decreasing function w
increasingb as is expected in forest fire models. Also for
cubic source term and for bistable systems, analytical
.S

in

.

d
a-
f

-

and

s
e-
d.
al
-
h

d

numerical results are in agreement. We have also exten
our model to a system of two reaction-diffusing equatio
the so-called Lotka-Volterra equations but incorporating
delay time. Results are again in agreement with simulatio
and we have obtained estimations that are consistent with
available experimental measurements for the spread of fa
ing communities in the Neolithic transition.
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