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The asymptotic speed problem of front solutions to hyperbolic reaction-diffsiBD) equations is studied
in detail. We perform linear and variational analyses to obtain bounds for the speed. In contrast to what has
been done in previous work, here we derive upper bounds in addition to lower ones in such a way that we can
obtain improved bounds. For some functions it is possible to determine the speed without any uncertainty. This
is also achieved for some systems of HRE., time-delayed Lotka-Volterya&quations that take into account
the interaction among different species. An analytical analysis is performed for several systems of biological
interest, and we find good agreement with the results of numerical simulations as well as with available
observations for a system discussed recef8y063-651X99)06211-X

PACS numbegs): 05.70—a, 05.40-a

I. INTRODUCTION marginal-stability case. All of this work refers, however, to
parabolic reaction-diffusiofPRD) equations.

Reaction-diffusion equations have been used to describe An important feature of diffusive phenomena is the exis-
very different processes in fluid dynamics, dendritic andtence of a delay timg5—7]. In reactive systems, this can be
population growth, pulse propagation in nerves, and manyaken into account by resorting to hyperbolic reaction-
other biological, chemical, and physical phenomena. The erfiffusion (HRD) equations, which generalize PRD equations.
suing equations are derived from the classical diffusionThe existence of wave fronts in HRD equations has been
equation which, after taking into account a sourfeéso analyzed by Hadelef8] and has been recently applied to
called reactionterm f(n), adopts the forrmn,=n,,+f(n),  Population growth[9], forest fire model§10], bistable sys-
wheren is the density of particles anf{(n) is a nonlinear tems[11], and the Neolithic transitioh12]. A rather com-
function with at least two equilibrium states. Equations ofPlete study of the wave-front speed problem in HRD equa-
this kind are called parabolic reaction-diffusiPRD) equa-  tions is the aim of this work.
tions. It has been shown by Aronson and Weinbefggthat Our starting point is a system of reacting particles, follow-
sufficiently localized initial conditions evolve asymptotically Ing one-dimensional equations for the time evolution of the
into a traveling monotonic wave front connecting two equi-number densityr and fluxJ of particles
librium states. The asymptotic speed at which the front
propagates is the minimal speedbr which there is a mono- an 4d

tonic front joining both states. Some solutions to reaction- E“L 5:':(”)’ @
diffusion equations seem to be particularly important to de-

scribe the dynamics of such systems, namely the so-called 93 an

wave-front solutions. Wave fronts are solutions of constant r—+J=—-D—, 2)
speed connecting equilibrium states, namely the roots of Jt 2

f(n). Itis observed both experimentally and numerically that ) o )

the global, nonlinear dynamics rapidly selects a unique soluvhere the first equation is the balance equatiomfand the
tion. The speed at which the front moves towards the stabl&econd one is the transport equation for the fujor mi-
state is referred to as the selected speed. There already exgpscopic derivations of Eq¢l) and (2), see Refs[9] and
several proposed criteria in the literature for the analysis of12l- F(n) is the source function corresponding to the reac-
the dynamical velocity selection: a minimum speed f@g tive processD is the diffusion coefficient, and is the re-
structural stability[3], marginal stability[2,4], and many laxation(or delay time. WhenF(n) =0 the systems¢l) and
others. The marginal stability approach was studied initially(2) reduce to the telegrapher's equation of diffusiof,

by Dee and Lange2] and Ben-Jacolet al. [4]. According ~ Whereas forr=0 we have the classical, PRD description of
to the marginal stability hypothesis, for most sufficiently lo- reaction diffusion(see, e.g., Ref.1]).

calized initial conditions, the propagation velocity of well-

developed fronts generically approaches the marginal- IIl. LINEAR ANALYSIS

stability point which apparently coincides with the minimal

velocity. This point may be calculated explicitly from the ~ From Egs.(1) and (2) it is easy to obtain the so-called
linearized leading-edge approximation, in which only the lin-HRD equation,

earized equation of motion is studied near the front. In the

literature, this is sometimes referred to as the linear- N+ N=Dny,+F(n)+ 7F'(n)n,. 3
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Here 7 is the mean collision time for chemical reactidig],
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number density of particles, it cannot be negative for any

[13], time between two consecutive generations in humarmossible value of, thus\. e R. It therefore follows from
migrations[12], mean ignition time in forest fire models Eq. (7) that

[10], etc., and the primed symbol denotesd/dn. It is con-
venient to rescale Eq3) for further purposes as follows:

t* =kt,

x* =x\k/D,

and writeF(n)=kf(n), where 1K is a characteristic time of

the reactive process. We defime=kr. Then Eq.(3) be-

comes, omitting asterisks for notational simplicity,
an;+n=n.+f(n)+af’(n)n,.

(4)

In the absence of a delay time<€0), this reduces to the
classical(or PRD equationn,=ny,+ f(n), which has been

~ 2\f(0)
c=c =——"—, (9)
1+af’(0)

where it has been assumed tH&{0)>0. If this does not
hold, the approach we shall present in this section breaks
down. This happens, e.g., in forest fire modglscussed in
Sec. IVD in the present papernd in such cases one may
resort the variational analysis we will develop in Sec. Ill.

In the limit z— + one hasm— 0 as boundary condition,
so \. must be negative. If onér both values of\ were
positive, then in the limiz— + one would haver— +«
and we would not be dealing with a solution connecting the
equilibrium statesm=1 andn=0, thus the solution under

recalled in Sec. I. For simplicity we will consider reaction consideration would not satisfy the definition of a wave

terms f>0 which vanish ain=0 andn=1. It has been
shown[8] that Eq.(4) has traveling wave fronts with profile
n(x—ct) and moving with speed>0, which will satisfy
the equation
(1—ac®)n,,+c[1—af'(n)]n,+f(n)=0, (5)
where z=x—ct, and with boundary conditions liyn.n
=0, lim,_,_.,n=1, andn,<0 in (0,1); n, vanishes forz

— o0 [8]. We will now analyze how linear stability analysis
can be applied to HRD equations, in order to study the speeﬁ

of the front.

Linear analysis makes it possible to study the behavior o
the wave front near the equilibrium states, which according

to Eq. (1) are the solutions to the equatidn) =0, sayn
=0 andn=1. In Ref.[9] the lower bounct>2/f"(0)/[1

front, given in Sec. |. Therefore, EG?) yields the conditions

c<1//a, (10
1-af’(0)>0. (11
B.n=1

We now introduce e(z)=1—n(z)>0 and f(n)=
—f'(1)(1—n)=|f'(1)|e, assumingf’(1)<O0 (this is nec-
ssary in order to avoid an unbounded population growth in
biological applicationg14]). The linearized Eq(5) nearn
f:1 is

(1—ac®) e, +c[1+a|f'(1)|]e,—|f'(1)]e=0. (12

This equation holds fon~1 and is the analog to Ed6),

+af’(0)] was derived by analyzing the trajectories in thewhich holds forn~0. Similarly, forn~1 Eqs.(7) and(8)
phase spacen(n,). Here we will summarize an alternative are replaced by
approach that yields the same conditions on the front veloc-

ity but, in contrast to the one in RgM], it will allow us to
analyze the asymptotic behaviormfz) near the equilibrium

points. This behavior will in turn be used in the derivation of

better bounds on the speed in the next section.

A. n=0

Settinge(z) =n(z)<1, we linearize Eq(5) to obtain the
front equation nean=0. We get

(1—ac?)e,,+c[1—af’(0)]e,+f'(0)e=0. (6)
Solutions of the forme~e? provide us with the following
characteristic equation:

(1—ac®)A\2+c[1—af'(0)]A+f'(0)=0. 7
So, the solution of the linearized equati@®) nearn=0 is
given by

e(z)=A,erM?+A_et-?, 8

where A, and A_ are integration constantslepending on
the initial and boundary conditionand\ .- are the solutions
of the characteristic equatiofY). Since €(z)=n(z) is the

(1—ac®)\2+c[1+alf'(D)|IN—|f"(1)]=0, (13

e(z)=B.eM?+B_e*-?, (14
respectively. Here we note that there are real two solutions
for A, one of them being positivesay\ ;) and the other one
negative(say \ _). Thus, contrary to what happened in the
casen~=0 (where\, and\_ could both be required to be
negative in order to ensure that-0 for z—oo for arbitrary
initial conditiong, here we have. . >0 and\_<0. Now
since we must require that—1 for z— —«, we see that it

is necessary tha&_=0, i.e., forn=1 only A, >0 will ap-
pear in the asymptotic solutioil4), whereas fon~0 both

N, <0 and\ _<0 appear in the corresponding soluti().

This general result is reached here and is in agreement with
an explicit solution, which was derived previously for a very
specific source terrh(n) and initial condition(see Sec. V in
Ref. [9]).

Just to summarize, the linear analysis presented in this
section shows the existence of a traveling wave front, con-
necting the equilibrium states=0 andn=1, provided that
the front satisfies the conditior{9), (10), and(11).

The marginal-stability analysi@MSA), performed by van
Saarloos for PRD equatiorjd5], may also be applied to
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HRD equations. It is possible to show that the linear ap-The corresponding, obtained by integrating this equation,
proach we have presented and the corresponding MSA yielg given by

the same resulf9). Thus we will not develop the MSA for

HRD equations explicitly. Let us mention, however, that
there are thin differences between both analyses. In MSA
one does not assume uniformly translating fronts of the form

c (rl-af'(n) -

—aczjn0 p dnl 19

g(n)~p(n)exr{— 1

n(x—ct) but the procedure is more general and refers to the .

velocity of the envelope. The present paper is devoted to Eqvith 0<ny<<1. Evidently g(n) is a continuous positive
(3), which is a HRD equation that does not yield states befunction. We will now determine the behavior f;(n) near
hind the front that are periodic in space. In the case of equan=0 and see that the integrals in E4.8) exist. To verify
tions that lead to periodic states, a uniformly translating fronthis we recall, from the linear analysis, that the front ap-
cannot occur, so that it would be necessary to investigate theroaches1=0 exponentially. From this, it is easily seen that

envelope of the front by means of the MSA.

IIl. VARIATIONAL ANALYSIS

In this section we follow the variational analysis by Ben-
guria and Depassier for PRD equatida$]. We will extend
it to HRD equations. We start from Ed5) and define
p(n)=—n, with p(0)=p(1)=0 andp>0 in (0,1). Equa-
tion (5) may be written as

(1—acz)p¥—c[1—af’(n)]p+f(n)=0. (15

Let g(n) be an arbitrary positive function; multiplying Eqg.

(15) by g/p and integrating by parts we obtain
1 1 gf
0 0
(16)

whereh=—g’>0 as chosen for PRD equatio[ts7]. Now
for any positive numbensands, it follows from (r —s)? that
(r+s)=2yrs. If 1—ac?>0 orc<1/a, sincef, g, h, andp
are positive, we may choose= (1—ac?)hp ands=gf/p to
get a restriction ort which eliminatesp,

f
(1—ac®)hp+ gFzz«l—aczx/fgh, (17
and therefore,
1
f Vvfghdn
c 0
(18)

=2 .
Vi-ac? flg[l—af’(n)]dn
0

If the effect of the delay timer is neglected(i.e., for a

the dominant term in E(8) yieldsp= —dn/dz~ un, where

m s Lc[1-af’(0)]

B 2(1—ac’)

+c1+af’(0)]?—4f'(0)].

For =0 this reduces, as it should, to the result derived for
PRD equations by Aronson and Weinberdét (see also
Ref.[17]). Thus, from Eq(19) we get, nean=0,

g(n)~nt"7,
where

_c[1-af'(0)]
 p(l-acd)

We also get in this limityfgh~gf’(n)~n’~”. Hence the
integrals in Eq(18) exist if y<<2. This condition is satisfied
provided thatc>2+/f’'(0)/[1+af’(0)], which is in agree-
ment with the condition(9) derived form the linearization
method.

Therefore, we have shown that the asymptotic speed of
the front is given by

1
J Vvfghdn
0

=max| 2 (20

1-ac 4 flg[l—af’(n)]dn
0

It is important to notice that the variational result given by
Eqg. (20) requires two strong conditions, in order to be appli-
cable, namelyc<1/\a and 1-af’(n)>0. The second re-
striction is  equivalent to a<1/M, with M
=max,.o1)f'(n), and will be used explicitly in the deriva-

=kr~0), this reduces to the Benguria-Depassier principléetion of upper bounds for the front velocit$ec. 11l B below.

[16,17]. To see that Eq(18) is a variational principle we
must show that there is a functigr= g for which the equal-
ity holds. From the explanation above HG7) we see that
this happens when=s or (1—ac?)hp=gf/p, which ac-
cording to our HRD equatiofl5) implies thatg satisfies the
ordinary differential equation

! c

1-af’(n)
p

«>

p’
> +F.

l1-ac

<Q>|

In the following two subsections we analyze whether the
variational result leads to lower and upper bounds for the
asymptotic speed and compare to the results from the linear
analysis(Sec. ). We will show that the lineakand mar-
ginal) stability value for the speed, Eq. (9) also follows
from the variational expressiofi8). More importantly, we
shall also show that the variational res(20) makes it pos-
sible to obtain a better upper bound on the speed than that
following from linear stability, i.e.c<cn,=1/\a [see Eq.

(10)].
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A. Lower bounds B. Upper bounds

As we have mentioned in the study above, one may obtain Here we derive upper bounds for the asymptotic speed by
a lower bound for the asymptotic speed, by means of a giveextending to HRD equations the recent development by Ben-
functiong(n). This trial function must satisfy thag(n)>0 guria and Depassidrl6]. We need the particular case of
andg’(n)<0 in (0,1). Consider the simple sequence of trial Jensen’s inequalit{18]
functionsg=n®"1! in the limit «—0. These functions are

ositive and have negative derivative foc@ <1, as re- ! ISy !
SUired in the derivatigns above. According to E48) or Jo p(n)ye(njdn fo p(na(mdn
(20), n < n . (23
1 | e | o
f na—S/Z\/f(_n)dn
L;Z\/ﬁ 0 where u(n)>0 and «(n)=0. If we defineu(n)=g(n)[1
1-ac® —af’(n)] and a(n)="f(n)h(n)/{g(n)[1—af’'(n)]?}, then

Jo n“‘l[l—af’(n)]dn.

the left-hand side of the above inequality may be written as

- _ . . L )
In the limit a—0, the integrands diverge at=0, as in the f mJamdn f fahdn
case of PRD equatiorj46], thus only the singular point will 0 p(n)a(n) 0 9

contribute in the limit. The surviving contributions are then

1 T '
f,u(n)dn Jg(l—af’)dn
e 0 0
fn”‘*?”z\/f(n)dn
0

C and inside the square root in the right-hand side we have
222\/1—a . . q g
1-ac f n* 11— af’'(n)]dn 1 1 fh
0 f pm(n)a(n)dn f dn
0 ol—af’

We may expand the integrands in Taylor series mea0. 1 o1 ) '
Only the leading term in the expansions will contribute as fo p(n)dn fo g(1-af’)dn
a—0 and we have, assumirfg(0)+0,
We have then, from Eq$20) and (23), a relatively simple

J na-32,/f7(0)ndn expression which will allow us to find upper bounds
c 0
———=2\J1-a . fl\/—
— & fghdn
1-ac f ne-1[1—af’(0)]dn c o V'Y
o A
1-ac

1
9 f g(1—af’)dn
Performing the integrals and taking the lirait-0 we obtain 0

112
c 2F7(0) o fl fh
1—ac 1-af'(0)’ <oma 2
g _ !
thus fo g(l1—af’)dn
24f'(0) Wel now observe 'ghat.integ_ration by parts makes it possible
= =——. (22)  to find an expression in which=g’ no longer appears,
1+af’(0)
1 fh 1 f'ta(ff"—f'?)
This reduces, as it should, to the classical or PRD value f dn= g—zdn. (25)
ol—af’ 0 (1—af’)

=2f'(0) [1] if the effect of the delay time is neglected
(a~0). Itis seen that the lower bour{@2) is the same as \joreover, in order to get an upper bound independer, of
Eq. (9), which is also known from the derivation of the varia- \e write Eq.(25) in a more useful form,

tional principle above. We conclude that the variational prin-

ciple we have derived does not provide better lower boundsr1  {h

| f 4 a(ff —f2)
for the speed of wave fronts than the linear or MSA ap- o dn= Jo g(l-at’)—————dn

proaches if we choosg(n) =n<"1. As we shall see in detail ~°1~ (1-af’)?

in the following subsection, the opposite happens for upper frrafi—2)] (1

bounds. Moreover, the method presented abovegfor) < sup —11 g(1—af')dn,
=n%"1is of interest since it does yield better lower bounds ne(0,1) (1—af’)3 0

for other trial functiongg(n), depending on the source func- (26)

tion considered(an explicit example will be presented in
Sec. IVD. were we have applied the condition-{&af")>0. Finally,
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c
————<2 | sup ®(n) (27)
1-ac? ne(0,)
where
f'+a(ff"—f'?)
o(nN)=—r—""77— (28)
(1—af")?®
Hence the upper bound may be written as
2q(a)
Cy= (29

J1+4agd(a)

whereq(a) = Vsup,c (o,y®(n). This result may be written in
a simpler form if we assume that the source functién) is

continuous and concave, i.€./<0, in (0,1). Then, since
f(0)=f(1)=0 we havef’(0)>0 andf’(1)<0. We may
write

f/ ff/l

P e ey

where, recalling the condition-1af’(n)>0, we see that the
second term is negativ@ only vanishes ah=0,1). More-
over, since we have assumed tlas continuous and that
f”<0, the first term decreases for increasing values.of
Thus,

f'(0)

sup ®(n)=m.

ne(0,1)

and we have the simpler result

_ 2O
C=sCy=——m"7"—",
Y 1+af'(0)

(30
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been applied essentially to biological processes. This is rea-
sonable since the value of the delay time in E).is diffi-

cult to estimate in most physical systems: even for mon-
atomic gases, Eq2) provides a very rough approximation
since additional, higher-order terms are usually of the same
order of magnitude as that in which appears, and it is
necessary to take an infinite number of such terms and renor-
malize the corresponding expressions under suitable assump-
tions[31]. In this section we apply our results to a variety of
source functions that are useful in the description of some
interesting biological phenomena.

A. Logistic growth

Logistic growth has been used in hyperbolic reaction-
diffusion equations to describe the dynamical and thermody-
namical properties of delayed population groy&j. Very
recently, logistic growth in HRD equations has also been
applied to the study of human migrations in the Neolithic
transition[12]. The logistic source term i§(n)=n(1—n),
which is a realistic function driving the reproduction of many
biological specie$14]. This function satisfies the condition
f’(0)#0, is continuous and ha¥'<0. Whereas the linear
analysis(Sec. ) gives only the lower bound), the varia-
tional results(22) and(30) show that the speed of the fronts
is

2

c= 1Ta (31)

This result is in agreement with the recent work by Fedotov,
which is based on the path-integral approach, the scaling
procedure and singular perturbation techniques involving
large deviation theory32]. The result(31) is rather impor-
tant in the context of the Neolithic transition, for in REE2]

we obtained good agreement with observations assuming
that c=2/(1+a) is not just a lower bound but the actual
speed of the population wave of the advance. If the effect of

which holds provided that is continuous and concave in the delay time is neglecte@ = 7k=0), we recover the well-
(0,1). Some examples are discussed in Sec. IV. To the bekfown resultc=2 [20,1], which is the basis of the classical
of our knowledge, these results are the first ones for uppeior PRD theory of the Neolithic transitiof21]. Section VB
bounds in HRD equations. We note that the lower and uppéin the present paper contains a refined model of the Neolithic
bounds are the sanfsee Eq(22)], so the asymptotic speed transition.

may be predicted without uncertainty. This generalizes the We have solved Ed4) numerically for the logistic source

corresponding theorem for PRD equatiores=0), which
states that=2+/f'(0) provided that (n) is continuous and
concave1,17,19.

IV. APPLICATIONS

function in order to determine the speed of the fronts for
different values of.. The results of the simulations are com-
pared to the analytical expressior 2/(1+a) in Fig. 1. The
numerical simulations of Eq4) have been performed by
assuming that initiallyn=1 in a localized region and=0
elsewhere, and making use of the splitting operator technique

PRD equations have been studied for more than 60 yeaf33]. The profilen(x) was plotted at different times, and this
[20]. During this time, many important applications have has allowed us to determine the asymptotic speed selected by
been found, including the spread of advantageous genele smooth front that is observed after an initial transient. As

[20,21], population dynamic$21,27, the development of
epidemicq 23], nerve conductiof24], models of mithocon-
drial tissug[25], cellular sensitivity{ 26], and other biological

far as we know, Fig. 1 presents the first simulations of hy-
perbolic wave fronts, and one may observe a rather satisfac-
tory agreement between the numerical results and ¥ij.

phenomena, in addition to physical applications such as su-

perconductorg27], solidification[28], liquid crystals[29]

and chemically reacting systerf0]. HRD equations have a
comparatively much shorter histof§] and, as happened in

B. Generalized Fisher-Kolmogorov kinetics

The logistic function is the simplest one leading to some

the first applications of PRD equations, have for the momenteasonable results such as the saturation of populations with
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20— T T T T T T T morphogenetic field of a multicellular ensemi@5]. The
L , i source function32) has also been useful because it can be
v FK solved exactly when the delay time is not accounted &or (
1.8 9 o Logistic — _ 0) [4 17]'

- . A lower bound for the speed of the fronts can be obtained
‘ from Eq. (9) or Eq. (22), namely 2/(%a). On the other
hand, the source tern32) is a concave function for (1
—b)/3<n<1 and a convex function for@n<(1—b)/3, so
1.4 - the upper bound31) cannot be applied and we cannot obtain

\ the exact asymptotic speed. However, we shall see that it is
s possible to constrain the speed. Let us first obtain a better
1.2~ m lower bound. As in the case of PRD equations with the
| i source term(32) [17], we chooseg(n)=(1—n)?*2Pn=2°,

Ny We now apply the method in Sec. Ill A for this single trial

0.0 0.2 0.4 0.6 0.8 1.0 function instead of the sequengén)=n®"1. Equation(20)
a yields, after some algebra,

1.6 -1

speed
1

FIG. 1. Comparative plot between the analytical expression for
the dimensionless speed=2/(1+a) and the dimensionless speed
obtained from numerical integration of E@) as a function of the l-ac
dimensionless parametarfor logistic growth(circles and gener-

C
2

alized FK kinetics,p=2 (rhombs. There is good agreement be- _\/Zb+ El—_Zb
tween numerical and analytical results. I'c4) b I'(5)

=2 ,
a limited amount of available resourddst]. However, other 1-a 6a(1-b)(1-2b) 2a(1-b)(1-2b)
source functions are important in biological applications. A I'(4) b I'(6) b I'(5)
particularly relevant case is the Fisher-Kolmogor@K)
source function, namel§(n)=n(1—n?), which is impor-
tant in genetic$20,19. Here we will assume a generalized
Fisher-Kolmogorov function,

where the integrals have been solved making use of formula
(3.191-3 in Ref. [18], which applies under the assumption
that 0<b<1/2—, T'(2) is the gamma function and we have
applied thatl'(z+1)=zI'(z). From this we find the lower

f(n)=n(1—nP), bound
with p=1. As in the logistic case, we havé(0)+0, f is c(a,b), 0<b<1/2
continuous and” < 0. Thus using the variational resu{&2) cL=
and(30) we can predict the speed of wave fronts without any 1+a’ 1/2<b<1,
uncertainty,c=2/(1+a). It means that this result for the
selected speed holds not only for the logistic case but also faghere
more general situations of practical interest. From Fig. 1, we
see that this prediction agrees with the simulations of(&x. J2b+1/\2b
for the FK source functiong=2). We have also checked c (a,b)=
that there is good agreement for other valuep.of al+2b+2b%\?2 a

C. HRD generalization of a cubic PRD model

Consider next the cubic source function Notice that for 1/2b<1 the integrals in Eq(20) diverge,
so that we have resorted to the lower bou8gor (22). In

n the PRD caseg=0), we recover the result found by Ben-
f(n)=(1=n)(b+n) (82 Jacob, namelyc,=\2b+1/\2b for 0<b<1/2 and 2/(1

+a) for 1/2<b<1 [4]. For the upper bound we cannot ap-

with 0<b<1. This function has been applied in severalply Eq. (30), as explained above, but we can still derive an
reaction-diffusion studies on genetics, among them in theipper bound from Eq928) and (32). Equation(28) yields,

description of inferior heterozygotes select[@4] and of the  after some algebra,

1+2 2 32
En an a

2(1-b)  2(1-2b+b? 4(1—Db) 3
n+ n%— né— 4

b b2 b2 2"
3

1+

®(n)=
1-a

1 2 2 32
+6n— n=gn
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1.450 — 77 f(n)=nf(1—-n)
1.425 has been used. F@#=1, this reduces to the logistic case
dealt with in Sec. IVA, so we will assume thgt>1. The
1.400 parametep3 quantifies the number of burning trees needed in
order to set fire to a nearby, green tree. For high valugs of
§ 1375 it is expected intuitively that the speed of the fire front will
& be smaller. Here we havie (0)=0, thus the linear analysis
does not hold. Therefore, we resort to the variational analy-
1350 sis. Still, sincef’ (0)=0, Eq.(22) does not apply, and since
f”<0 does not hold everywhere {0,1) Eq. (30) cannot be
1325 . applied either. As in Sec. Il A, let us consider the simple
- sequence of trial functiong=n%"1, with 0<a<1. The in-
1.300 T e tegrals in Eg.(20) are
0.2 0.4 0.6 0.8 1.0
b B 1
FIG. 2. Comparative plot between lower and upper bounds and 1 r §+ a— E) I'(3/2)
the results from simulations of E¢4) for the cubic source function f \/fg_hd n=yl—a«a ,
(32). Herea=1/2, and the range of values bfis constrained be- 0 I a+r1+ E
cause of the range of validity of the variational approach. Lower 2
and upper bounds are plotted in solid lines and numerical results in
circles. l-«a

1 1
fog(l_af = A BT (-1t )

Thus the best lower bound is given by

and the speed is given by E®9). In the limitb—1, f(n)
is a concave function and sdp(n)=®(0), thuscy—2/(1
+a). The variational analysis for the lower and upper

bounds is restricted to the condition—Raf’>0, which is cL
equivalent toa<M ~*, with M =max, (o 1f’(n). For this ———== max{G(«,p)},
case one find$1=(1+b+b?)/3b and the restriction is (5 vi—acy ac(oy)
—\21)/2<b<1 if a=1/2. We have plotted the bounds for
A ) .~ where
a=1/2 in Fig. 2, as well as the results from numerical simu-
lations of Eq.(4) with the source functio32), as a function B 1
of b. We observe good agreement between the simulations Za\/l—ar(§+a— E)F(3/2)
and the lower and upper bounds. G(a,B)= 5 i
—a)a
D. Forest fire models F(a+1+§ 1_a(,8+a)(,8—1+a)

HRD equations have been used to model the propagatio\we have calculated the value ot which maximizes
of forest fireg 10]. In this model a reaction term of the form G(a, B) numerically fora=1/2 and for different values o8

16— —T——— T between 1 and 7. The corresponding results for the lower
- c boundc, are plotted in Fig. 3.
1.4 For the upper bound we have to consider the function
12 ®(n), see Eq(28). It reads
— 2_gnB 2_
1.0 CID(n):nﬁ’Z'Bn (B+1)n“—an’[B+(B+1)n“—28n]
b (1-a[pnf~i1=(B+1)n"])°
g 08
w

We set, as for the lower bound= 1/2 and find the valua*

at which sup. o.1y®(n)=®(n*) for different values of8
between 1 and 7. For high values gBf ®(n*) must be
computed numerically. The upper bound may be calculated
finally from Eq.(27) or Eq.(29),

0.6

04

0.2

0.0 1 | 1 | 1 | 1 | 1 | 1 CU

p V1-ac)
FIG. 3. Comparative plot between lower and upper dimension- )
less bounds and the numerical integration of @jyfor the dimen-  TNhe results for the upper bound are plotted, together with the
sionless speed of fire fronts as a function of paramgtewith a  lower bounds and the numerical solution for the speed, in
=1/2. The numerical values for the speed lie between both curvesig. 3 fora=1/2. The numerical solution is seen to lie be-
as they should. As it is expected for forest fire models, the speed igveen the upper and lower bounds, as it should, and it is a
a decreasing function for increasing valuesgof decreasing function with increasing valueg®fas expected.

=2\d(n*).
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One could certainly try other trial functiong(n) and find LB L U R L SNSRI RS
other bounds. We have used the same trial functions as in L Cmaz -
Sec. Il A since they yield relatively simple results which
illustrate fairly well the usefulness of the new variational
principle here derived. It is also seen from Fig. 3 that the
new upper bound derived here is much better thag,,,
=1/\Ja= 2 [see Eq.(10)], which had been derived previ-

ously[9].

speea

E. Bistable systems

In several problems arising in biologguch as nerve con-
duction[36]), physics(electrothermal instability37]), and
chemistry (kinetic of bimolecular reaction$38,39) it is
found that the source term is given by 0.0 0.2 0.4 0.6 0.8 1.0

f(n)=n(1-n)(n—o) for 0<o<1. (33 )
FIG. 4. Comparative plot between lower and upper bounds and

the numerical solution for the dimensionless speed of fronts in
In these cases the system is called bistable. The reason is thigtable systemgEq. (33)], for a=1/2. Note the change of sign for
following: the parameter has a critical valuer=1/2 for ~ the speed atr=1/2.
which the stability of the states=0,1 is inverted and the

front changes its direction of propagation. Fex 1/2 the 1- 20

front connect:1=0 ton=1 andc>0, for o=1/2 we have cL= ,
c=0 and finally, for /220 <1 the front connecta=1 to a 2

n=0 andc<O0. This can be seen in Fig. 4. We look for \/2 1—5(1—20+202) +a(1-20)?

bounds for the speed. We use the trial functgm)= (1
—n)2729n27  as in the cubic HRD modgSec. IV Q. By
following the same steps as in Sec. IV C, we now obtain thavhich holds for anyo e (0,1). Equation(28) yields, after
following lower bound: some algebra,

—o+2n(1+0)—3n>—a[—3n*+4n3(1+0)—2n?%(1+ 20+ 0%+ 2no(1+ o) — o?]

(= [1—a(—o+2n(1+0)—3n?)]°

and the speed is given by E@9). Figure 4 shows the lower systems of equations are called Lotka-Volterra equations.
and upper bounds fa=1/2, as well as the speed obtained Two-variable systems are also important in the propagation
from numerical simulations of Eq$4) and(33). According  of domain walls in superconductors; harecorresponds to

to Fig. 4, the upper bound from the variational method isthe superconducting order parameten, to the gauge-
better than the bound,,,=1/va=+/2, which has been dis- invariant vector potential and they follow Ginzburg-Landau
cussed previously in the context of bistable syst¢iig. It  equations[27] which have in fact the same mathematical
is worth noting that in this case there is excellent agreemerform of Lotka-Volterra equations.

between the lower bound we have been able to derive and

the numerical solution. In Fig. 4 we also observe the change A. General theory

of sign for the speed at=1/2. The restriction for the valid-

ity of the variational method a<M~! for M Let us consider the system

=max,.of'(n) yields to a<3/(o?~o+1), which im- M+ Ne=Dny,+ F(n)+ 7F' (n)n+ ynm,
poses no additional restriction far=1/2. (34)
M+ my=Dmy,+ F(m)+ 7F ' (m)n,— ynm,
V. TIME-DELAYED LOTKA-VOLTERRA EQUATIONS which is a pair of coupled HRD equatiofsee Eq(3)]. The

In this section we consider a system with two variatsies Superscript refers to the species with number densityand
andm undergoing reaction-diffusion dynamics. In biological the last term in these equations corresponds to the interaction
app"cationS, they may represent the predator and prey Sp@.etween both species. This S’!mple term means that In,e.g., a
cies[22], the farmers and hunter-gatherers in the expansiopredator-prey system witkh=7=0, the predators increase
of agricultural communitie$21], the infected and suscep- their population densityn because of their interaction with
tible individuals in the spread of a pandenp0], etc. Such preys, which in turn experience a decrease in their popula-
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tion densitym. It should be emphasized that here we area PRD equation withf(n)+ ynm instead off(n), and we
assuming that the interaction ragam is small compared to have assumed tha~m, nearn=0. The PRD limit(38)

the other terms, since otherwise higher-order terms?m, agrees with previous research, where it has been applied to
etc. could be important in the description of the interactionpredator-prey systemgt1] and to the propagation of inter-
among both species. For=7=0 we recover the usugbr  faces in superconductof42].

PRD) Lotka-Volterra system with spatial inhomogeneities It should be noted that Eq37) provides just a lower
(see Chap. 12 in Ref22]). Wave-front solutions to Eqs. bound, simply because it is based on the linear approach
(34) have not been reported up to now in the literature, to oufSec. ). We now make use of our variational approach to
knowledge. Here we shall tackle this problem by extending?RD Egs.(Sec. Il). First of all we note that we cannot make
the theory presented in Secs. Il and Ill. As said above, welse of Eq.(30) with f'(0)+ ymy instead off’(0), because
consider HRD equations, thus the results applying to PRI3he evolution equation corresponding to the first E34) is
equations will follow in the limitz— 0. In order to illustrate

our procedure, let us consider for a moment a specific prob-  (1—ac?)n,,+c[1—af’(n)]n,+f(n)+7ymen=0,

lem: in the Neolithic transition, the population wave fronts of (39
farmers(with number densityn) traveled into areas where

they encountered a population of preexisting hunter-and this is not reducible to an equation such as(ky.since
gatherers with a number densitythat is usually assumed to [ f(n)+ymyn]’ =f’(n)+ymy#f’'(n). Thus we have to

be approximately uniform, say, [21,40. Both populations  generalize the approach in Sec. Ill. Since the steps are ex-

mixed to some extent, and this interaction is regarded as thgctly the same as there, it will suffice to sketch the deriva-
cause of the gradients observed in the present spatial disttion. Equation(15) is generalized into

bution of human gend®1]. We may describe the process by
following exactly the same procedure as in Sec. Il but mak- dp _

ing use of the coupled Eq$34) instead of Eq(3): the pro- (1—ac2)pd——c[l—af’(n)]p+f(n)+ ymgn=0.
cedure is essentially the same as in Sec. Il, so we shall only n

give the main steps. Since the problem we have in mind is

the expansion of, say, farming communities, we consider th
corresponding equation in the leading edge of the frant (

(40

e multiply this byg/p, with p=—n, andg>0, and inte-
We multiply this byg/p, with dg>0, and i
grate by parts. As beford=—g’>0 and we apply the gen-

~0), eral inequality ¢+s)=2rs to get rid of p. This finally
(1—ac®) e, +c[1—af’(0)]e,+[f'(0)+ymole=0, yields
(35 L
wherey= y/k, and the rest of the notation is the same as in c Jo VILf(n)+ymgn]gh dn
Sec. II. This equation generalizes H6) and is decoupled \/1_—222 T , (41)
from the evolution equation of species Note that we can- ac f g[l—af'(n)]dn
0

not apply Eq(9) with f’(0)+ ym, instead off ' (0), because

the parentheses multiplying, in Eq. (35 does not contain ) )

f7(0)+ ymo but only f'(0), thus Eq.(35) does not have the Which generalizes Eq18).

same form as Eq(6). But it is clear that, as in Sec. Il, the ~ We can now derive lower and upper bounds from the
asymptotic solutions near=0 are given by Eq(8), with \ . variational analysis. If we consider again the trial functions
the solution to the characteristic equation, which now readg=n“"", Eq. (41) becomes

1-ac®)\?+c[1—af'(0)]N+f'(0)+ymy=0. (36 1 =
( ) [ (0)] (0)+ymg (36) f ne=32\[f(n) + ymon] dn
As in Sec. Il, we require ImX)=0 in order to prevent the —  _=2/1-a 0

solution from oscillating. This yields 1-ac?

f/(0)+ymq
22\/ —. 3
¢ [1+af’'(0)]>+4aym, 37

C

flnafl[l—af’(n)]dn
0

In the limit «— 0, the integrands diverge at=0, as in Sec.
I, thus only the singular point will contribute. We expand
This result reduces, as it should, to the lower bo@dfor  the integrands in Taylor series nea+= 0, and only the lead-

noninteracting speciesy0). On the other hand, in the ing term in the expansions will survive. Thus, assuming

absence of a delay time (i.e., a= 7k=0) we obtain f'(0)#0,
c=21f(0)+ ymy, (39 fna*m £/(0)n+ymodn
c 0
and if we assume that both the effect of the interaction and —222\/1—(1 "
that of the delay are negligible we recover Fisher’s result for 1-ac f n*1—af’(0)]dn
0

PRD equations, namelg=2/f’'(0). Equation(38) could
have been obtained simply from the fact that in the nonde-
layed(or PRD model 7=0, the first Eq.(34) is nothing but  Performing the integrals and taking the lirsit-0 we obtain
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\/ £(0)+ymg
c=c =2 -,
[1+af’'(0)]>+4aym,

(42

in agreement with the resu(B7) from the linear analysis.

Thus also for interacting species, the linearization and varia-
tional methods yield the same lower bound. We now derive

upper bounds. Since the only change of E4l) relative to

Eq. (18) is that f+7ymyn appears instead df we define
w(n) anda(n) performing this change in the corresponding
definitions in Sec. IlI B, i.e.u(n)=g[1—af’] as before and

a(n)=(f+ymgn)h/[g(1—af')?]. We have then, from
Egs.(41) and(23),

(F+ymen)h 1%

J
=2ma

1
g f g(1—af’)dn
0

dn

c 1-af’

1—-ac?

We integrate by parts,

O
+f g IAYA
o \(1—af’)

o

We note that, in contrast to what happened in the case of
single speciefEq. (25)], the boundary term does not vanish.
But recalling thatg>0 and the condition +af’'>0, we

1

have
dnsf g(
0

. af”(f+75men)
(1—af’)3

~ g(1)ymg
1-af’(1)

1(f+ymgn)h

jo 1—af’

af”(f+75men)

(1-af’)3 “3

' +ym,

1(f+ymgn)h
(1-af’)?

jo 1-af’
)dn,

and, in order to get an upper bound independerg, of

1(f+ymyn)h ' +ym,
f—dns sup | ————
o 1—af’ ne(o| (1—af’)?
af’(f+ymgn)| 1
, A ymon) f g(1—af’)dn.
(1-afh® |Jo
(44)
Thus,
f'+ymy  af’(f+ymgn
B(n)= YMo n ( ymgn) (45)

C(1-af)?  (1-af’)?

As in Sec. llI B, if we assume that the source functiois

continuous and concave and recall again the condition 1

—af’>0, we see that the second termd{(n) is negative
(it only vanishes ah=0,1), whereas the first term decreases
for increasing values afi. Thus,
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3.2 T T T T T T T T T

speed

04 _ 06
Ymﬂ

0.8 1.0

FIG. 5. Comparison between analytical results and numerical
simulations for the dimensionless front speed in PRD Lotka-
Volterra equations, as a function of the interaction paramgtey.

The dots are results from numerical simulations of E48) for the
PRD case t=0) andf’(0)=1. The solid line is the prediction
given by Eq.(49).

f(0)+ymg

sup ®(n)= —[1—af’(0)]2'

ne(0,1)

and we have the simpler result

a f/(0)+ymq

CsCUZZJ , 2 ~ [
[1+af'(0)]°+4aym,

(46)

which reduces to Eq30) in the Iimit§/—>0, as it should, and
holds provided thaf is continuous and concave in (0,1).
Under these assumptions, our upper bound is the same as the
lower one Eq.(42), and the asymptotic speed of the fronts
for interacting species can also be predicted without any un-
certainty

\/ £(0)+ymg
[1+af’(0)]2+4aym,

(47)

If the delay time is not taken into accoufRRD approach,
a=0), this reduces to
c=2Vf'(0)+ymy, (48)
in agreement to previous wofk1,42. In Fig. 5 we compare
this analytical result for the expansion of specieswith
those obtained from numerical simulations for the case
=0. The numerical simulations have been performed by as-
suming that initiallyn=1 in a localized region anthi=0
elsewhere(as in Figs. 1-# and m=m, everywhere; the
equations used are E(4) in the same variables as Ed@),
ie.,

ang+n,=n,+f(n)+af’ (n)n+ynmg, (49)

amy +m,=m, + f(m)+af’ (m)m,+ynmy,
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3.0 — T T T T T T (i) PRD approachit is based on the assumption that the
§ _ role of the delay time can be neglected~0). Then we
L Y7, =0 7 have from Eq.(48)
v === Yz, =1/2
2.5 - = Ym,= — ;
A\ 17 Vpro= 2VD[F'(0) + ymo], (50
"§ 20 \\q‘\ i which becomes Fisher’s result/® F’(0) for noninteracting
8~ \\\‘R species, as it should.
L S ] (i) HRD approachit takes the delay time into account.
‘%a.\ Then Eq.(47) applies
1.5 ] ]
2
L = - 2\/D[F'(0)+ ymy]
VHRD™ : (51
b L+ 1 1. | VI1+7F/(0)]2+47ym,
0.0 0.2 0.4 0.6 0.8 1.0
a

E ) b wiical | q _In spite of the fact that the Neolithic transition took place in
_FIG. 6. Comparison between analytical results and numericay, " jimensions, our one-dimensional results are still valid.
simulations for the dimensionless front speed in HRD tlme' This can be seen from the fact that in two-dimensions, the
delayed Lotka-Volterra equations, as a function af (for ymg only change in Eqs(34) is that we havey2n instead ofn
=0,1/2,1). The symbols are results from numerical simulations Of(and V2m instead ofm ). However, in polar Coordingies
Egs. (4_9), and the solid lines are the predictions from E47). V2n= 02/ 9r2+ U an/arxi'azlarz as ,r—>oo which corre-
There is excellent agreement in all cases. sponds to the asymptotic frofd3]: it is the propagation of

A aa & o~ . this front that we are interested ifwe have assumed, as
wherea=kr, y=yl/k and, analogously to Ed4), 1k is a  ysual [43], thatn is independent of the polar angtd.
characteristic reactive time for species In the simulations In order to obtain numerical values for both speés@

we have assumed for definiteness linata,?/: v, aswellas and(51) we need values for the parameters appropriate to the
logistic growth functions, i.e.f(n)=n(1—n) and f(m)  Neolithic transition. As explained in Ref12], such values
=m(1-m). In Fig. 6 we compare the predictions of Eq. have been derived from observations independent of the
(47) to the simulations of Eqg49) for 7#0. There is good ~Neolithic expansion and their mean values &¢(0)
agreement in both the classi¢&ig. 5 and the time-delayed =0.032 yr ',D=15.44 kn/yr and r=12.5 yr (the latter
(Fig. 6) cases. By comparison to the results fan,=0, itis  value follows from the mean generation tinfe4]. On the
also seen that the interaction among both species leads toP#her hand, from the observations in Ref0] we have the
faster wave front, as was to be expected since the last term fRéan values for the other two parametens,=0.04
the first Eq.(34) corresponds to a numeric increase in thehunters/km andy=5.84 knf/(hunter yj [45]. Use of these
expanding species. This was conjectured in REZ] and is ~ Values in Eq.(50) yields vpgrp=1.6 km/yr, which is much
why the front speed increases with increasing valuégna. _h|gher than the spee_d derived from the archae_olog_lcal record,;
It had been pointed oUtL7] that a variational character- N contrast Eq(51) yields virp=1.1 km/yr, which lies en-
ization for a system such as E@4) (even in the PRD cage Ur€ly within the —experimental range, namely 1.0
was an important problem that remained to be studied. Hera 0-2 km/yr(see the text as well as Fig. 1 in Rg12]). This

we have presented a solution to this problem both for PRES & Strong point for the applicability of HRD equations to
and HRD equations. human populations, and seems to indicate that HRD equa-

tions could become very important in the understanding of

the range dynamics of biological species. In Ré®], we

showed that when the interaction among populations is not
Finally, we apply the results for interacting species to thetaken into account, an HRD approach gives better results for

waves of advance of farming populations in the Neolithicthe Neolithic transition than the usual, PRD approach. Here

transition. We already considered this problem in our previwe have shown that this conclusion remains valid if the ef-

ous papef12], but did not take into account the interaction fect of the interaction among farmers and hunter-gatherers is

between the expanding farmers and the preexisting huntenot neglected.

gatherers. This interaction is important, as mentioned in Sec.

V A, because it is thought to have caused the genetic clines

(or gradienty observed in human populations across Europe VI. CONCLUSIONS

and Asia[21]. This is why the two-species model has been |, this work we have performed numerical and analytical
proposed for this expansidi21,40, although no analytical = 5nalyses on the front speed problem in hyperbolic reaction-
results have been previously derived. Recalling that in Sec. Wjitfysion equations. We have made use of two analytical
we have introduced dimensionless variables, the speed of thgchniques. First, a linear analysis near the equilibrium

front v is related to the dimensionless speedhroughv  points of the systems. Second, we have used and generalized
=Dkc. We also recall that we have introducee=7k, 3 recent variational analysis derived by Benguria and De-

f(n)=F(n)/k and y=y/k. From Eq.(47) we have two passief16] for PRD equations. It is a very useful method for
cases for interacting populations: HRD equations also. The general form of this method takes

B. Application to the Neolithic transition
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into account the nonlinear effects of the source term, andiumerical results are in agreement. We have also extended
lower and upper bounds have been obtained. We have aneur model to a system of two reaction-diffusing equations,
lyzed the application of this method to several systems othe so-called Lotka-Volterra equations but incorporating a
biological interest. For logistic and generalized Fisher-delay time. Results are again in agreement with simulations,
Kolmogorov kinetics, linear and nonlinear analysis yield theand we have obtained estimations that are consistent with the
same results, the selected speed may be obtained exactly agghilable experimental measurements for the spread of farm-
coincides with that obtained from linear analysis and withing communities in the Neolithic transition.

numerical results. For forest fire models, linear analysis does
not hold and the variational method becomes especially use-
ful since a new, improved upper bound has been obtained.
We have found lower and upper bounds and the numerical
value for the speed of fire fronts. Both bounds and the nu- The authors would like to thank Professor Casageyez
merical solution for the speed are decreasing function witHor discussions. This work has been partially funded by the
increasingB as is expected in forest fire models. Also for aDGICYT of the Ministry of Education and Culture under
cubic source term and for bistable systems, analytical an@rant No. PB 96-0451J.F).
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