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Abstract
This paper describes an inter-procedural technique for computing
symbolic bounds on the number of statements a procedure executes
in terms of its scalar inputs and user-defined quantitative functions
of input data-structures. Such computational complexity bounds
for even simple programs are usually disjunctive, non-linear, and
involve numerical properties of heaps. We address the challenges
of generating these bounds using two novel ideas.

We introduce a proof methodology based on multiple counter
instrumentation (each counter can be initialized and incremented at
potentially multiple program locations) that allows a given linear
invariant generation tool to compute linear bounds individually on
these counter variables. The bounds on these counters are then
composed together to generate total bounds that are non-linear and
disjunctive. We also give an algorithm for automating this proof
methodology. Our algorithm generates complexity bounds that are
usually precise not only in terms of the computational complexity,
but also in terms of the constant factors.

Next, we introduce the notion of user-defined quantitative func-
tions that can be associated with abstract data-structures, e.g.,
length of a list, height of a tree, etc. We show how to compute
bounds in terms of these quantitative functions using a linear in-
variant generation tool that has support for handling uninterpreted
functions. We show application of this methodology to commonly
used data-structures (namely lists, list of lists, trees, bit-vectors)
using examples from Microsoft product code. We observe that a
few quantitative functions for each data-structure are usually suf-
ficient to allow generation of symbolic complexity bounds of a
variety of loops that iterate over these data-structures, and that it is
straightforward to define these quantitative functions.

The combination of these techniques enables generation of pre-
cise computational complexity bounds for real-world examples
(drawn from Microsoft product code and C++ STL library code)
for some of which it is non-trivial to even prove termination. Such
automatically generated bounds are very useful for early detection
of egregious performance problems in large modular codebases
that are constantly being changed by multiple developers who make
heavy use of code written by others without a good understanding
of their implementation complexity.
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1. Introduction
Modern software development has embraced modular design and
data abstraction. While this increases programmer productivity by
enabling code reuse, it potentially creates additional performance
problems. Examples include hidden algorithmic complexity where
a linear-time algorithm encapsulated inside a simple API call gives
rise to quadratic complexity, when embedded inside an O(n) loop.
Software performance testing attempts to address these issues but
faces two fundamental limitations–it is often too little or too late.
First, due to resource constraints a program is typically tested on
only a small subset of its inputs and the performance problem
may not manifest on these inputs. Second, these performance tests
are time consuming and are typically only run periodically for
large software projects. Consequently, many performance problems
show up very late in the software development process when it is
hard to redesign/re-architect the system to correctly fix the prob-
lem, or even worse, after software ships.

In this paper, we present a static analysis that can compute
symbolic complexity bounds for procedures in terms of their inputs.
Even though this information does not mirror the real running time
of programs (which also depends on low-level architectural details
like caches and pipelines), it can be used to provide useful insights
into how a module performs as a function of its inputs at an abstract
level, and can produce early warnings about potential performance
issues. The same analysis can also be used for bounding other kinds
of resources (e.g., memory) consumed by a procedure.

The hard part in computing complexity bounds is to bound
the total number of loop iterations (or recursive procedure call
invocations). There are 4 challenges in computing these bounds.

1. Even for simple arithmetic programs, these bounds are disjunc-
tive (i.e., they involve use of Max operator, as in Example Dis1
in Figure 2 and Example NestedMultiple in Figure 4, for
both of which the bound is Max(0, n − x0) + Max(0, m −
y0)) and non-linear (Examples SimpleMultipleDep and
NestedMultipleDep in Figure 4, for both of which the bound
is n × (1 + m), assuming n, m ≥ 0). This usually happens in
presence of control flow inside loops.



2. For complicated programs (Example Equals in Figure 1, Ex-
ample Dis2 in Figure 2, Example 4 in Figure 6, Example
Traverse in Figure 9), it is hard to even prove termination,
and computing bounds ought to be an even harder task.

3. It is desirable to compute precise bounds (in terms of both
the computational complexity as well as the constant fac-
tors) as opposed to computing any bound. Consider Example
SimpleSingle2 in Figure 3 and Examples SimpleMultiple
and SimpleMultipleDep in Figure 4. The termination ar-
gument for each of these examples (as provided by termi-
nation techniques based on disjunctively well-founded rela-
tions [26, 6, 1]) is the same: between any two successive (not
necessarily consecutive) loop iterations either x increases and
is bounded above by n, or y increases and is bounded above
by m. This implies a total bound of (n + 1)× (m + 1) (along
with the observation that both x and y start out with a value of
0 and assuming n, m ≥ 0) for each of these examples. In con-
trast, our technique can produce precise bounds of Max(n, m),
n + m, and n× (1 + m) respectively for these examples.

4. For loops that iterate over data-structures, expressing bounds
requires use of some numerical functions over data-structures
(e.g., length of a list, height of a tree). and computing those
bounds may require some sophisticated shape analysis, which
is a difficult task.

We address the first two challenges by using a counter instru-
mentation methodology (Section 3), wherein multiple counters are
introduced at different cut-points (back-edges and recursive call
sites) and are incremented and initialized at multiple locations (as
opposed to simply using a single counter for all cut-points). These
counters are such that the individual bound on each counter is lin-
ear (and hence can be computed using a linear invariant genera-
tion tool). Furthermore, these individual bounds can be composed
together to yield a total bound, which may be disjunctive or non-
linear (Section 3.1). We describe an algorithm that produces such a
counter instrumentation scheme (Section 4).

The third challenge is addressed by ensuring that our algorithm
produces a counter-optimal instrumentation scheme, which uses an
optimal number of counters with an optimal number of dependen-
cies between them – a criterion that we illustrate usually leads to
precise estimation of bounds (Section 3.2).

We address the final challenge for abstract data-structures 1

by introducing the notion of user-definable quantitative functions,
each of which is a numeric function over some tuple of data-
structures. (Whenever we use the term data-structure, we mean
abstract data-structure.) The user specifies the semantics of these
functions by means of annotating each data-structure method with
how it may update some quantitative attribute of any object. Given
such a specification, we show how to use a linear invariant genera-
tion tool with support for uninterpreted functions to generate linear
bounds on counter variables in terms of quantitative functions of
input data-structures. We show application of this methodology to
commonly used data-structures (namely lists, trees, lists of lists,
bit-vectors) from Microsoft product code, wherein we observe that
usually a few quantitative functions are sufficient to allow computa-
tion of precise loop bounds, and that it is straight-forward to define
these quantitative functions.

We have implemented these ideas inside a tool called SPEED
that computes precise symbolic bounds for several real-life exam-
ples drawn from Microsoft product code as well as C++ Standard
Template Library (STL) code. For some of these examples, even
proving termination is non-trivial. Note that our technique for es-
timating computational complexity does not assume program ter-

1 those that are referenced and updated through a well-defined interface

mination. Instead, existence of an upper bound on the number of
loop iterations provides a free termination argument and may even
yield a simpler and more efficient alternative to termination strate-
gies pursued in [1, 6], which rely on synthesizing ranking functions
for loops [26, 5, 4].

We start with a brief description of our overall methodology
along with some examples in Section 2.

2. Overall Methodology
The basic idea of our methodology is to instrument monitor vari-
ables (henceforth referred to as counter variables) to count the num-
ber of loop iterations and then statically compute a bound on these
counter variables in terms of program inputs using an invariant gen-
eration tool. In principle, given a powerful invariant generation or-
acle, it is sufficient to instrument a single counter variable (which is
initialized to 0 at the beginning of the procedure and is incremented
by 1 at each back-edge) and then use the invariant generation ora-
cle to compute bounds on the counter variable. However, even for a
simple program, such an approach would require the invariant gen-
eration tool to be able to compute invariants that are disjunctive,
non-linear, and that can characterize sophisticated heap shapes. No
such invariant generation tool exists, and even if it did, it would not
be scalable.

We present a two-tiered approach to address the above chal-
lenges: (a) Introduce multiple counters, each of which may be ini-
tialized and incremented at multiple locations. This avoids the need
for disjunctive and non-linear invariants. (b) Require the user to de-
fine some quantitative functions over abstract data-structures. This
avoids the need for sophisticated shape analysis.

Example 1 Consider the Equals procedure (taken from Mi-
crosoft product code) for string buffer data-structure StringBuffer
in Figure 1. A string buffer is implemented as a list of chunks. A
chunk consists of a character array str whose total size is bounded
above by a global variable size and its len field denotes the total
number of valid characters in the array str.

It is non-trivial to prove whether the outer loop in the Equals
function even terminates. The only way to break out of the outer
loop is when chunk1.str[i1] 6= chunk2.str[i2] (Line 7) or when
(i1 < 0) ∨ (i2 < 0) (Line 25). Since there is no information
provided regarding the contents of chunk1.str and chunk2.str,
we can restrict our attention to tracking (i1 < 0) ∨ (i2 < 0). The
value of both i1 and i2 decreases in each iteration of the outer loop
as well as in the first inner loop; hence if this were the only update
to i1 and i2, the outer loop would terminate. However, note that the
value of i1 and i2 may increase in the second and third inner loops
(at Lines 15 and 22 respectively). Instead, consider the following
(counter-intuitive) proof argument:

• The total number of times the second inner loop at Line 11
executes (or, more precisely, the back-edge (17, 11) is taken) is
bounded above by the length of list s1, denoted by Length(s1).
(This is because everytime the back-edge (17, 11) is taken,
chunk1 advances forward over the list s1.) This information
can be obtained by computing a bound on counter variable c1

that has been instrumented in the procedure to count the total
number of times the back-edge (17, 11) is taken.

• Similarly, the total number of times the third inner loop at
Line 18 executes (i.e., the back-edge (24, 18) is taken) is
bounded above by the length of list s2, denoted by Length(s2),
and this information can be obtained by computing a bound on
counter c2.

• The number of times the first inner loop (at Line 6) as well
as the outer loop (at Line 5) executes for each iteration of the
second inner loop or third inner loop is bounded above by size.



int size;
Equals(StringBuffer s1, StringBuffer s2) {

1 c1 := 0; c2 := 0; c3 := 0;
2 chunk1 := s1.GetHead(); chunk2 := s2.GetHead();
3 Assume(0 ≤ chunk1.len, chunk2.len < size);
4 i1 := chunk1.len− 1; i2 := chunk2.len− 1;
5 for(; ;) {
6 while (i1 ≥ 0 ∧ i2 ≥ 0) {
7 if (chunk1.str[i1] 6= chunk2.str[i2]) return 0;
8 i1−−; i2−−;
9 c3 := c3 + 1;

10 }
11 while (i1 < 0) {
12 chunk1 := s1.GetNext(chunk1);
13 if (chunk1 == null) break;
14 Assume(0 ≤ chunk1.len < size);
15 i1 := i1 + chunk1.len;
16 c1 := c1 + 1; c3 := 0;
17 }
18 while (i2 < 0) {
19 chunk2 := s2.GetNext(chunk2);
20 if (chunk2 == null) break;
21 Assume(0 ≤ chunk2.len < size);
22 i2 := i2 + chunk2.len;
23 c2 := c2 + 1; c3 := 0;
24 }
25 if (i1 < 0) return (i2 < 0);if (i2 < 0) return 0;
26 c3 := c3 + 1;
27 }
28 return 1;
29 }

Figure 1. The Equals method of String Buffer data-structure as im-
plemented in one of Microsoft’s product code. The bold instrumen-
tation of counter variables c1, c2, c3 is part of our proof methodol-
ogy, which implies a bound of Length(s1)+Length(s2)+size×
(1 + Length(s1) + Length(s2)) on the total number of loop iter-
ations for this procedure.

This information can be obtained by computing a bound on
counter variable c3 that has been instrumented appropriately
in the procedure to count the total number of iterations of
the first inner loop as well as the outer loop in between any
two iterations of the second or third inner loops. (Note c3 is
initialized to 0 whenever c1 or c2 is incremented).

• Hence, the total number of loop iterations (both inner and outer)
is bounded above by Length(s1)+Length(s2)+size×(1+
Length(s1) + Length(s2)).

Example 2 Consider the example Dis1 shown in Figure 2. It
is easy to see that the loop terminates because the if-branch is
executed inside the loop until y < m, followed by execution of
the then-branch until x < n. However, computing a bound on the
number of loop iterations is a bit subtle. We cannot simply say that
the loop executes for (m−y0)+(n−x0) iterations since y0 may be
greater than m (which would make the expression m−y0 negative)
and/or x0 may be greater than n (which would make the expression
n− x0 negative). Instead consider the following proof argument.

• If the then-branch is ever executed, it is executed for at most
m− y0 iterations. The bound m− y0 can be obtained by com-
puting a bound on counter variable c1 (inside the if-branch),
which has been instrumented to count the number of iterations
of the if-branch (or, equivalently, the number of times the back-
edge (5, 3) is taken).

Dis1(int x0, y0, n, m) {
1 c1 := c2 := 0;
2 x := x0; y := y0;
3 while (x < n)
4 if (y < m)
5 y := y + 1; c1++;
6 else
7 x := x + 1; c2++;
8 }

Dis2(int x0, z0, n){
1 c1 := c2 := 0;
2 x := x0; z := z0;
3 while (x < n)
4 if (z > x)
5 x := x + 1; c1++;
6 else
7 z := z + 1; c2++;
8 }

Figure 2. These examples have disjunctive bounds (which require
use of max operator). Example (a) is quite a simple example, yet
its bounds are subtle: Max(0, n− x0) + Max(0, m− y0). Example
(b) is a more sophisticated example taken from [6], where it is
used to motivate the technique of well-founded disjunctive ranking
functions for proving termination. Its timing bound is Max(0, n −
x0)+Max(0, n−z0). The bold instrumentation of counter variables
c1, c2 is part of our proof methodology that can can compute
precise bounds for both examples with equal ease.

• If the else-branch is ever executed, it is executed for at most
n−x0 iterations. The bound n−x0 can be found by computing
a bound on counter variable c2 (inside the then-branch), which
has been instrumented to count the number of iterations of the
then-branch (or, equivalently, the number of times the back-
edge (7, 3) is taken).

• Hence, the total number of loop iterations is bounded by
Max(0, m− y0) + Max(0, n− x0).

Note that in this example, it is important to use different counters to
count the number of iterations of each branch (or, equivalently, each
back-edge). This is because if the same counter variable would have
been used on both the back-edges, then a linear invariant generation
tool would not be able to compute bounds on it, for the simple
reason that the bound is disjunctive (i.e., it involves use of max
operator). Also, consider the example Dis2 in Figure 2, where the
if-branch and then-branch alternate several times. This is a non-
trivial example even from the viewpoint of proving termination.
This example has been taken from [6], where it is used to motivate
the technique of well-founded disjunctive ranking functions for
proving termination. However, its timing bound can be estimated
to be Max(0, n− x0) + Max(0, n− z0) in a manner very similar to
that of example Dis1, wherein we compute bounds on the counters
c1 and c2 at back-edges (5, 3) and (7, 3) respectively, and then add
these bounds after maxing them out with 0.

Our methodology for automating such proof arguments for
computing timing bounds involves the following steps in the or-
der mentioned.

1. Defining Quantitative/Numerical Attributes for data-structures.
The user declares some numerical-valued functions over data-
structures. For example, length of a list, or height of a tree. The
semantics of these functions is defined by annotating each data-
structure method with its effect on the numerical functions as-
sociated with relevant data-structures. For example, the delete
method associated with a list reduces its length by 1. For pur-
pose of communicating the semantics of these functions to an
invariant generation tool (used in the next step), we instrument
each invocation of a data-structure method with its effect on
the quantitative functions as defined by the user. This allows
for treating the quantitative function as uninterpreted functions,
which eases up the task of an invariant generation tool. Sec-
tion 5 describes this methodology in more detail along with a
case-study of examples drawn from Microsoft product code.



2. Generating a proof structure. This corresponds to choosing a set
of counter variables and for each counter variable selecting the
locations to initialize it to 0 and the locations to increment it
by 1 (e.g., the bold counter instrumentation for the examples
in Figures 1 and 2). The counters are chosen such that the
given invariant generation tool can compute bounds on the
counter variables at appropriate locations in terms of the scalar
inputs and quantitative functions of input data-structures. We
use a linear invariant generation tool, with support for handling
uninterpreted functions, to generate these bounds. Section 3
describes the notion of a proof structure in more detail and also
introduces the notion of an counter-optimal proof structure to
enable generation of precise timing bounds. Section 4 describes
an algorithm to generate a counter-optimal proof structure.

3. Composing the bounds on counter variables to obtain the final
desired bound. Theorem 1 (in Section 3) describes how to
compose bounds on counters to obtain a bound on the number
of loop iterations. Theorem 4 (in Section 6) describes how to
obtain a bound on the total cost of a procedure, given any cost-
metric that maps atomic program statements to some cost.

3. Proof Structure
Obtaining a proof structure involves choosing a set of fresh counter
variables S and, for each counter variable, deciding the locations
(from among the back-edges or procedure entry point) to initialize
it to 0 and deciding the back-edges to increment it by 1 along with
the following constraints.

• Each back-edge q should be instrumented with an increment to
some counter variable (denoted by M(q)). 2

• There should be no cyclic dependencies between counter vari-
ables. A counter variable c1 is said to depend on another counter
variable c2 if c1 is initialized to 0 at a back-edge where c2 is in-
cremented by 1.

• The invariant generation tool is able to provide a symbolic
bound B(q) at each back-edge q on the counter variable M(q)
in terms of the inputs to the procedure.

We now formally define a proof structure.

DEFINITION 1 (Proof Structure for a procedure P ). Let S be a set
of counter variables and let M be a function that maps each back-
edge in P to some counter variable from set S. Let G be any DAG
structure over S ∪ {r} with r as the unique root node. Let B be
a function that maps each back-edge in P to some symbolic bound
over inputs of P . Then, the tuple (S, M, G, B) is a proof-structure
(with respect to a given invariant generation tool) if for all back-
edges q in procedure P , the given invariant generation tool can be
used to establish bound B(q) on counter variable M(q) at q in the
procedure Instrument(P, (S, M, G)).

DEFINITION 2 (Instrument(P, (S, M, G))). Let P be some given
procedure. We define Instrument(P, (S, M, G)) to be the proce-
dure obtained from P by instrumenting it as follows:

• Each back-edge q in P is instrumented with an increment (by
1) to counter variable M(q).

• Each back-edge q in P is instrumented with an initialization (to
0) of any counter variable c′ that is an immediate successor of
M(q) in G, i.e., (M(q), c′) ∈ G.

2 The effectiveness of our proof methodology can be increased by expand-
ing shared paths in a loop body into disjoint paths, each with its own back-
edge. In essence, what we really require is to associate each acyclic path
between two cut-points with a counter variable.

• The procedure entry point is instrumented with an initialization
(to 0) of any counter variable c′ that is an immediate successor
of the root node r in G, i.e., (r, c′) ∈ G.

EXAMPLE 1. The following tuple (S, M, G, B) is a proof struc-
ture for procedure Equals shown in Figure 1. This proof structure
also corresponds to the textual argument for the complexity of pro-
cedure Equals in Section 2.

S = {c1, c2, c3}
M = {(27, 5) 7→ c3, (10, 6) 7→ c3,

(17, 11) 7→ c1, (24, 18) 7→ c2}
G = {(r, c1), (r, c2), (r, c3), (c1, c3), (c2, c3)}
B = {(27, 5) 7→ size, (10, 6) 7→ size,

(17, 11) 7→ Length(s1), (24, 18) 7→ Length(s2)}
Above (27, 5) denotes the back-edge from program location 27 to
location 5 (and so on).

The instrumented procedure Instrument(Equals, (S, M, G))
corresponds to bold instrumentation of the counter variables c1, c2

and c3 as shown in Figure 1.

3.1 Computing Bounds from a Proof Structure
Theorem 1 below describes how to compute a bound on the total
number of loop iterations in a procedure, given a proof structure.
Later in Section 6, we show how to extend Theorem 1 to compute
symbolic bounds on the total cost of a procedure, given any cost-
metric that maps atomic program statements to some cost. Note
that it is this process that introduces disjunctions and non-linearity
in our computation of bounds on loop iterations.

THEOREM 1 (Bound on Loop Iterations). Let (S, M, G, B) be a
proof structure for procedure P . Then, U as defined below denotes
an upper bound on the total number of iterations of all loops in
procedure P .

U =
X
c∈S

TotalBound(c)

TotalBound(r) = 0

TotalBound(c) = Max
“
{0}

[
{B(q) |M(q) = c}

”
×0@1 +

X
(c′,c)∈G

TotalBound(c′)

1A
PROOF: We claim that TotalBound(c) denotes the sum of
the number of traversals of all those back-edges q such that
M(q) = c. This can be proved by induction on the topological
order of the DAG G.

The total number of loop iterations is given by the sum of the
number of traversals of each back-edge. The result now follows
from the fact that each back-edge is mapped to some counter

�

EXAMPLE 2. For the proof structure shown in Example 1, ap-
plication of Theorem 1 yields: TotalBound(c1) = Length(s1),
TotalBound(c2) = Length(s2), TotalBound(c3) = size ×
(1 + Length(s1) + Length(s2)). Hence, U = Length(s1) +
Length(s2) + size× (1 + Length(s1) + Length(s2)).

3.2 Counter-Optimal Proof Structure
A procedure might have multiple proof structures. Some of these
proof structures may be better than the others in terms of yielding
a better bound on the total number of loop iterations (as defined



in Theorem 1). We can define an optimal proof structure to be one
that yields a bound which is not larger than the bound provided
by any other proof structure. However, there are several practical
issues with this definition. It is not clear how to generate such
an optimal proof structure, or even check whether a given proof
structure is optimal. Even the simpler problem of comparing the
bounds implied by two proof structures is hard because it would
involve reasoning about multiplication and max operators (Note
that the bounds on loop iterations given by Theorem 1 involve both
multiplication and max operators). Instead we propose the notion
of counter-optimal proof structure that is usually an optimal proof
structure, and allows for efficient checking whether a given proof
structure is counter-optimal or not. We also give an algorithm (in
Section 4) to generate such a counter-optimal proof structure.

Our definition for counter-optimal proof structure is inspired
by the following two observations that hold for almost all of the
examples that we have come across in practice.

Fewer counters usually lead to a better bound. Use of fewer
counters, if possible, usually leads to generation of a better bound.
This is illustrated by a variety of examples described in Figure 3.
Each of these examples have two back-edges. Use of a single
counter for the two back-edges in each of the first three examples
produces a bound of n. On the other hand, use of multiple counters
leads to bounds of 2n or n2 depending on the relative ordering of
the counters in the DAG G (i.e., depending on where the counters
are initialized). However, note that we cannot always use a single
counter. The examples in Figure 4 illustrate some situations when
multiple counters can be used to compute bounds, but a single
counter is not sufficient.

Lesser dependency between counters usually leads to a bet-
ter bound. Multiple counters, when used, might need to have
some dependency between them (in the DAG G). This is defi-
nitely the case when the total number of loop iterations are non-
linear as is illustrated by the examples SimpleMultipleDep and
NestedMultipleDep in Figure 4. However, in some case, multiple
counters need not have a dependency between them. This is usu-
ally the case when the bounds are max-linear (i.e., a disjunction of
linear bounds) as is illustrated by the examples SimpleMultiple
and NestedMultiple in Figure 4. Use of extraneous dependencies
usually leads to imprecise bounds. For example, if a dependency
is introduced among the two counter variables (in case of exam-
ples SimpleMultiple and NestedMultiple), then it leads to a
quadratic bound as opposed to a linear bound.

The above two observations motivate the following transforma-
tions respectively over a triple (S, M, G) that is part of a proof
structure (S, M, G, B).

DEFINITION 3 (Node Merging Operation). Given a triple
(S, M, G), and any two counters c1, c2 ∈ S, none of which is tran-
sitively dependent on the other in G, the node merging operation
yields a triple (S′, M ′, G′), where S′ = S − {c2}, M ′ is same as
M except that it maps those back-edges q to c1 that were mapped
by M to c2, and G′ is obtained from G by removing the node c2

and adding the successors/predecessors of c2 to those of c1.

DEFINITION 4 (Edge Deletion Operation). Given a triple
(S, M, G), and an edge (c1, c2) ∈ G, the edge deletion operation
yields a triple (S′, M ′, G′) where S′ = S, M ′ = M and G′ =
G− {(c1, c2)}.

We are now ready to define a counter-optimal proof structure.

DEFINITION 5 (Counter-Optimal Proof Structure). A proof struc-
ture (S, M, G, B) is counter-optimal if

• It has a minimal number of counters. More formally, any node
merging operation over (S, M, G) yields a triple that is not part
of any proof structure.

• It has a minimal number of dependencies between counters.
More formally, any edge deletion operation over (S, M, G)
yields a triple that is not part of any proof structure.

Next, we describe how to generate a counter-optimal proof
structure.

4. Algorithm for constructing a counter-optimal
proof structure

In this section, we describe an efficient algorithm for constructing
a proof structure, and in fact, one that is counter-optimal. Our
algorithm runs in time that in worst-case is quadratic in the number
of back-edges (modulo the time taken by the invariant generation
tool). In contrast, note that the number of triples (S, M, G) is
exponential in the number of back-edges. Hence, a naive full state
space search to find any proof structure (S, M, G, B) would be too
expensive.

The algorithm strikes the right balance between two opposite
challenges.

• Introducing more counters and more dependencies between
counters increases (not decreases) the ability of an invariant
generation tool to generate bounds on counters. It is always
possible to map each back-edge to a distinct counter, but the
algorithm cannot simply make all counters depend on all other
counters. This would lead to a cyclic dependency of counters,
and G would not be a DAG, and hence (proof of) Theorem 1
would break down. So the challenge is to find an appropriate set
of acyclic dependencies between counters in DAG G. One may
wonder if the dependencies between counters correspond to
the nesting relationship between the corresponding back-edges.
This is unfortunately not the case; the example in Figure 1
aptly illustrates that the flow-graph structure of the program can
sometimes be quite misleading.

• To generate a counter-optimal proof structure, the algorithm
would want to use a minimum number of counters, and a mini-
mum number of dependencies between counters.

The algorithm for constructing a proof structure (S, M, G, B)
for a given procedure P is described in Figure 5. Each iteration
of the loop in Line 8 attempts to map a new back-edge q to a
counter. The algorithm first tries to use any existing counter vari-
able (to ensure that the number of counter variables generated are
optimal/minimal, which is one of the necessary requirements for a
proof structure to be counter-optimal). If it fails, the algorithm tries
to introduce a new counter variable c. The new counter c can be in-
troduced in an exponential number of ways, each corresponding to
choosing some subset of other existing counters as the immediate
predecessors of c in DAG G. This exponential search is avoided by
the following two observations.

• Creation of an additional dependency preserves the ability of
the invariant generation tool to compute bounds.

• The counter-optimality requirement enforces minimality of de-
pendencies between counters.

Lines 17-21 make use of the above two observations to search
for minimal dependencies for the new counter by starting with
all possible dependencies and then removing them one by one
if possible. However, it is possible that even adding all possible
dependencies may not be sufficient for the invariant generation
tool to compute bounds at back-edge q. In that case, the algorithm



SimpleSingle(int n)
x := 0;
while (x < n)

if (∗) x := x + 1;
else x := x + 1;

SequentialSingle(int n)
x := 0;
while (x < n && nondet())

x := x + 1;
while (x < n)

x := x + 1;

NestedSingle(int n)
x := 0;
while (x < n)

while (x < n && nondet())
x := x + 1;

x := x + 1;

SimpleSingle2(int n,m)
x := 0; y := 0;
while (∗)

if (x < n) x++; y++;
else if (y < m) x++; y++;
else break;

Figure 3. This set of simple diverse examples demonstrate that use of fewer counters, whenever possible, leads to better bounds. Each of
these examples have two back-edges. Use of single counter for the two back-edges in each of the first three examples produces a bound of
n. On the other hand, use of multiple counters leads to bounds of 2n or n2 depending on the relative ordering of the counters in the DAG G
(i.e., depending on where the counters are initialized).

SimpleMultiple(int n, m)
x := 0; y := 0;
while (x < n)

if (y < m) y := y + 1;
else x := x + 1;

NestedMultiple(int x0, y0, n, m)
x := x0; y := y0;
while (x < n)

while (y < m && nondet())
y := y + 1;

x := x + 1;

SimpleMultipleDep(int n, m)
x := 0; y := 0;
while (x < n)

if (y < m) y++;
else y := 0; x++;

NestedMultipleDep(int n, m)
x := 0;
while (x < n)

y := 0; x := x + 1;
while (y < m)

y := y + 1;

Figure 4. (a) This set of diverse examples demonstrate the need for multiple counters. This is because if a single counter is used, then the
invariants required to establish bounds are either disjuntive (SingleMultiple or NestedMultiple) or non-linear (SingleMultipleDep
or NestedMultipleDep). (b) Also, the examples SingleMultipleDep and NestedMultipleDep demonstrate the need for creating a
dependency edge between two counters in DAG G (which corresponds to initializing one of the counters to 0 whenever the other counter is
incremented). This is because if multiple counters are used, but are not related in the DAG G, then the invariant required to establish bounds
is still non-linear.

postpones the decision of choosing a counter for the back-edge q
for a future iteration of the outer loop in Line 6.

There might be multiple iterations of the outer loop in Line 6
since a back-edge q that could not be mapped to a counter in
an earlier iteration of the loop in Line 8 may now be mapped
to a counter since some new back-edges have been mapped to
new counters in an earlier iteration. This allows for initializing the
counter corresponding to back-edge q to 0 at those back-edges,
which in turn, may lead to the generation of a bound at back-edge
q by the invariant generation tool.

EXAMPLE 3. We briefly illustrate the working of the algorithm on
Equals procedure in Figure 1 to generate the proof structure in
Example 1. If the loop in Line 8 starts out by mapping back-edges
corresponding to the outer loop and the first inner loop to some
counter variable(s), it won’t succeed. However, the loop would
succeed in mapping the back-edges for the second and third inner
loops to new counters c1 and c2 respectively that need be dependent
only on r; in this setting, invariant generation tool is able to
bound c1 and c2 by Length(s1) and Length(s2) respectively
at the respective back-edges. The algorithm then performs one
more iteration of the outermost loop in line 6 and now the loop
in Line 8 succeeds in mapping the back-edges corresponding to
outer loop and the first inner loop to a new counter. The algorithm
further realizes that they can be mapped to the same counter c3,
but c3 should be dependent on r, c1, c2; in this setting, invariant
generation tool is able to bound c3 by size at both the back-edges.

4.1 Correctness
It is not difficult to see that the algorithm generates a counter-
optimal proof structure (if it generates one). However, the inter-
esting part is that the algorithm, in spite of its greediness to be
counter-optimal, does generate a proof structure, if there exists one.
The following theorem establishes these properties.

THEOREM 2. The algorithm always generates a proof structure, if
there exists one. Furthermore, if the algorithm generates a proof
structure, it generates a counter-optimal one.

PROOF: It is easy to see that if the algorithm generates a
proof structure, then it generates a counter-optimal one. This
is because the algorithm generates a new counter for a back-
edge (Line 13) only when the back-edge cannot be mapped to
an existing counter (see conditional in Line 9). This implies that
the new counter cannot be merged with the existing counters.
Hence, the proof structure generated has a minimal number of
counters. Also, the number of dependencies created for a new
counter is minimal as is evident from the loop in Lines 19-21
that exhaustively tries to remove any redundant dependency.

We now show that the algorithm generates a proof structure, if
there exists one. This follows from the fact in each iteration of
the loop in Lines 8-21, the tuple (S, M, G, B) forms a exten-
sible partial-proof structure (as defined below in Definition 6),
which can be extended to form a proof structure. This fact can
be proved by induction on the number of loop iterations using
Theorem 3 stated below, whose proof is given in Appendix A.

�

DEFINITION 6 (Extensible Partial-proof Structure).
A partial-proof structure is a tuple (S, M, G, B) that satisfies all
properties of a proof structure except we allow M and B to be
partial functions over back-edges (in which case the definition of
Instrument(P, (S, M, G)) is the same as in Definition 2 except
that we only instrument those back-edges that are mapped by M ).
A partial-proof structure (S, M, G, B) is extensible if it can be
extended (by extending the maps M and B, as well as the DAG
G) to yield a proof-structure.

THEOREM 3. Let (S, M, G, B) be any extensible partial-proof
structure. Let (S′, M ′, G′, B′) be any partial-proof structure such
that the triple (S′, M ′, G′) is obtained from (S, M, G) by a node
merging operation (Definition 3) or an edge deletion operation
(Definition 4). Then, (S′, M ′, G′, B′) is an extensible partial-proof
structure.



GenerateCounterOptimalProofStructure(ProcedureP )
1 S := ∅;
2 foreach back-edge q
3 M(q)← undefined; B(q)← undefined;
4 G := Empty DAG;
5 change := true;
6 while change
7 change := false;
8 foreach back-edge q s.t.M(q) is undefined
9 If ∃c ∈ S s.t.((B′ := Gen(S, M [q ← c], G)) 6= ⊥)

10 M(q)← c; B := B′;
11 change := true;
12 Else
13 Let c be some fresh counter variable.
14 S′ := S ∪ {c}; M ′ = M [q ← c];
15 G′ := G ∪ {(c′, c) | c′ ∈ S, c′ 6= c} ∪ {(r, c)};
16 if (B′ := (Gen(S′, M ′, G′)) == ⊥) continue;
17 (S, M, G, B) := (S′, M ′, G′, B′);
18 change := true;
19 foreach (c′, c) ∈ G:
20 if ((B′ := Gen(S, M, G− {(c, c′)})) 6= ⊥)
21 G := G− {c′, c)}; B := B′;
22 if ∃ backedge q s.t.M(q) is undefined, then Fail
23 return (S, M, G, B);

Gen(S, M, G)
1 P ′ := Instr(P, (S, M, G));
2 Run invariant generation tool on P ′ to generate

invariant Iq at any back-edge q in P ′.
3 B′ := empty map;
4 foreach back-edge q in P ′ s.t. M(q) is defined
5 I ′q := Existentially eliminate all variables

from Iq except counter M(q) and inputs.
6 If I ′q implies an invariant of form M(q) ≤ u,
7 B′ := B′[q ← u];
8 Else return ⊥;
9 return B′;

Figure 5. Algorithm to construct a counter-optimal proof-structure
for an input procedure P , if there exists one. The function
Gen(S, M, G) returns a map B that maps each back-edge q, s.t.
M(q) is defined, to some bound on counter variable M(q) at back-
edge q in the procedure Instrument(P, (S, M, G)) (obtained by
running the invariant generation tool and existentially eliminating
the temporary variables from the invariant at q); if no bound could
be computed for any such back-edge q, it returns ⊥.

5. Quantitative Functions over Data-structures
In this section, we introduce the notion of user-definable quanti-
tative functions over abstract data-structures (those that are refer-
enced and updated through a well-defined interface). These func-
tions serve two purposes.

• They allow a linear invariant generation tool with support for
uninterpreted functions to discover linear bounds over counter
variables (in terms of these quantitative functions of input data-
structures). The invariant generation tool need not bother about
sophisticated heap shapes.

• They are very readable since they have been defined by the
user herself. Hence, these allow the user to get a quick sense of
the complexity of a procedure (which is otherwise expressible
using only a sophisticated logical formula over heap shapes).

Each quantitative function is associated with a tuple of abstract
data-structures. In that regard, a quantitative function is similar to

a ghost field except that a quantitative function can be associated
with a tuple of data-structures, while a ghost field is associated with
a single data-structure.

EXAMPLE 4. Consider a List data-structure that maintains a
linked list of objects whose type is ListElement. We can associate
a quantitative function Len with a List L (supposed to denote the
length of list L) and we can associate a quantitative function Pos
with a pair of ListElement e and List L (supposed to denote the
position of a list-element e inside list L, if e belongs to L; otherwise
it is don’t care).

The user annotates each method of an abstract data-structure
with how it may affect the quantitative attributes of the input data-
structures, and how it determines the quantitative attributes of the
output data-structures. These effects are specified in an imperative
style by a sequence of (possibly guarded) assignments and assume
statements using the program syntax except that the user may
also use quantitative functions (applied to appropriate arguments)
wherever numeric variables can be used. The user can use only
those variables that are in scope at the method declaration level (i.e.,
the inputs to the method, and the outputs of the method) with one
exception. We also allow for use of fresh variables on the left side of
an assignment with the interpretation being that the assignment is
for all possible instantiations of that fresh variable. This is because
a method may change the quantitative attributes associated with
multiple objects that are not in scope when the method is invoked.

EXAMPLE 5. Figure 6(a) describes the effects of some List
methods on quantitative functions Len and Pos . The methods
L.GetNext(e2), L.GetPrevious(e2), L.Remove(e) all have the
precondition that e2 belongs to L. The method L.Insert(e) and
L.Append(e) have the precondition that e does not already be-
long to L. L.Insert(e) inserts e at the front of list L, while
L.Append(e) appends e at the end of list L. The method L.Splice(L′)
moves all elements from L′ to the end of list L. The method
L1.MoveTo(e, L2) removes element e from list L1 and inserts it
at beginning of list L2 (and has precondition that e belongs to L1).
The effect of method call L1.MoveTo(e, L2) involves decrementing
Len(L1) and incrementing Len(L2) by 1. Furthermore, inserting
an element at the beginning of L2 increases position Pos(e′, L2)
of all list-elements e′ in L2 by 1. Stating this requires use of a free
variable e′. Similarly, removal of an element from L1 decreases (by
1) position Pos(e′, L1) of all list-elements e′ that are after e in L.

Principles There are two principles to keep in mind when defin-
ing these quantitative functions.

• (Precision) In general, defining more quantitative functions in-
creases the possibility that the invariant generation tool will be
able to compute a bound. However, we observed that for several
commonly used data-structures in the source code of a large MS
product code, the number of quantitative functions required for
computing bounds is small.

• (Soundness) Whatever quantitative functions the user defines,
they are always sound from the tool’s viewpoint since it takes
the semantics of these functions is what the user defines them to
be. However, the user has an intended semantics for these func-
tions in her mind. It is thus the user’s responsibility to ensure
that the user has conservatively estimated the effect of different
methods over the quantitative attributes of different objects with
respect to the intended semantics. (A recent work [13] can be
used to check the soundness of the user specifications w.r.t. the
intended semantics, if the intended semantics can be described
as the size of some partition in an appropriate logic.)

We carried out an exhaustive case-study of the source code of a
large Microsoft product to identify commonly used data-structures:



List Operation Effect on Quantitative Functions
e := L.Head() Assume(e = null⇒ Len(L) = 0); Assume(e 6= null⇒ Len(L) > 0); Pos(e, L) := 0;
e := L.Tail() Assume(e = null⇒ Len(L) = 0); Assume(e 6= null⇒ Len(L) > 0); Pos(e, L) := Len(L)− 1;
t := L.IsEmpty() Assume(t = true⇒ Len(L) = 0); Assume(t = false⇒ Len(L) > 0)
e1 := L.GetNext(e2) Pos(e1, L) := Pos(e2, L) + 1; Assume(0 ≤ Pos(e2, L) < Len(L));
e1 := L.GetPrevious(e2) Pos(e1, L) := Pos(e2, L)− 1; Assume(0 ≤ Pos(e2, L) < Len(L));
L.RemoveHead() if (Len(L) > 0) { Len(L) := Len(L)− 1; Pos(e′, L) := Pos(e′, L)− 1 };
L.Remove(e) Len(L) := Len(L)− 1; if (Pos(e, L) < Pos(e′, L)) Pos(e′, L) := Pos(e′, L)− 1;
L.Insert(e) Len(L) := Len(L) + 1; Pos(e′, L) := Pos(e′, L) + 1; Pos(e, L) := 0;
L.Append(e) Len(L) := Len(L) + 1; Pos(e, L) := Len(L)− 1;
L.Splice(L′) Len(L) := Len(L) + Len(L′); Len(L′) := 0; Pos(e, L)
L1.MoveTo(e, L2) Len(L1) := Len(L1)− 1; Len(L2) := Len(L2) + 1; Pos(e, L2) := 0; Pos(e′, L2) := Pos(e′, L2) + 1;

if (Pos(e, L1) < Pos(e′, L1)) Pos(e
′, L1) := Pos(e′, L1)− 1;

(a) Semantics of Quantitative Functions Len and Pos

Some looping patterns over lists (from Microsoft product code) Loop Invariant Complexity
1. for (e := f ; e 6= null; e := L.GetNext(e)); c = Pos(e, L)-Pos(f, L) Len(L)−

∧ Pos(e, L) ≤ Len(L) Pos(f, L)
2. for (; !L.IsEmpty(); L.RemoveHead()); c = Old(Len(L))− Len(L) ∧ Len(L) ≥ 0 Old(Len(L))
3. for (e := L.Head(); e 6= null; ) c = Pos(e, L) + Old(Len(L))− Len(L) ∧ Old(Len(L))

tmp := e; e := L.GetNext(e); if (*) L.Remove(tmp); Pos(e, L) ≤ Len(L)
4. ToDo.Init(); Done.Init(); L.MoveTo(L.Head(), T oDo);

while (!ToDo.IsEmpty()) c1 ≤ Old(Len(L))− Len(L)− Len(ToDo) Old(Len(L))
e := ToDo.Head(); ToDo.RemoveHead(); ∧ c1 = Len(Done) ∧ Len(L) ≥ 0 ∧
Done.Insert(e); Len(ToDo) ≥ 0
foreach successor s in e.Successors()

if (L.Contains(s)) L.MoveTo(s, ToDo);
for (e := Done.Head(); e 6= null; e := Done.GetNext(e)); c2 ≤ Pos(e, Done)

∧ Pos(e, Done) ≤ Len(Done)) Old(Len(L))
∧Len(Done) ≤ Old(Len(L)

(b) Examples

Figure 6. In Table (b), Column 1 contains examples of looping patterns over lists from MS product code. Column 2 describes (interesting
part of) the inductive loop invariant (computed by our invariant generation tool) that relates an instrumented loop counter c with appropriate
quantitative attributes. Column 3 shows an upper bound on loop iterations as obtained from the invariant in Column 2.

lists, list of lists, bit-vectors, trees. We found that the above men-
tioned principles are easy to satisfy for these data-structures. In
particular, we found that a few quantitative functions are effective
enough to express the timing complexity (as well as the invariants
required to compute the timing complexity) of a variety of loops
that iterate over the corresponding data-structure. We also observe
that it is easy and natural to write down the update to these quan-
titative functions for the methods supported by the corresponding
data-structure.

5.1 Invariant Generation over Quantitative Functions
In order to allow for invariant generation over quantitative func-
tions, we need to communicate the meaning of the quantitative
functions to the invariant generation tool. We do this by instrument-
ing each data-structure method call-site with the effect that it has on
the quantitative functions of inputs and outputs of the method call.
This is done by substituting the formals input and return parame-
ters in the user specification by the actuals at the call site. The only
issue is with respect to the assignments that involve free variables
in the specification. These can be handled by instantiating these
assignments with all expressions of appropriate type that are live
at that program point. However, this (potentially expensive) eager
approach can be avoided by instantiating these assignments (dur-
ing the invariant generation process) with only those expressions
that are present in the invariants computed by the (flow-sensitive)
invariant generation tool immediately before the method call site.

The above instrumentation allows for treating the quantitative
functions as uninterpreted functions because their semantics has
explicitly been encoded in the program. Now, we can simply use a
linear invariant generation tool that has been extended with support
for uninterpreted functions and aliasing 3 to compute linear invari-
ants over quantitative functions.

We know of two techniques that extend a linear invariant gener-
ation tool with support for uninterpreted functions.

• Abstract Interpretation based technique. Gulwani and Tiwari
have described a general mechanism for combining the transfer
functions of two given abstract interpreters to generate an ab-
stract interpreter than can discover invariants over combination
of domains [15]. We can use this methodology to combine an
abstract interpreter for linear arithmetic (such as the one based
on polyhedron domain [7]) with an abstract interpreter for un-
interpreted functions [14]. We have implemented our invariant
generation tool using this methodology.

• Constraint-based invariant generation technique. Beyer et al.
have described how to extend constraint-based techniques for
generating numerical invariants to synthesis of invariants ex-
pressible in the combined theory of linear arithmetic and unin-
terpreted function symbols [2]. Unlike fixed-point computation
based techniques like abstract interpretation, constraint-based

3 Aliasing is required to reason whether an update to an uninterpreted
function such as Len(L1) can affect Len(L2): this is done by checking
whether or not L1 and L2 are aliased.



techniques are goal-directed and do not suffer from precision
losses due to widening. However, these advantages come at the
cost of programmer specified invariant templates. Our applica-
tion is a good fit for such a scenario because we are indeed
looking for a specific kind of invariant, one that relates the loop
counter with quantitative functions.

Examples Figure 6(b) shows some examples of looping patterns
over lists from Microsoft product code. Column 2 of the table lists
the interesting part of the inductive loop invariant generated by our
invariant generation tool after these loops have been instrumented
with a single counter c. Column 3 lists the bounds computed from
these invariants (by existential elimination of all temporary vari-
ables or variables that get modified in the program). Some of these
invariants use the term Old(t) that refers to the value of t at the be-
ginning of the procedure (It is useful to create a copy of the quanti-
tative functions of input data-structures at the beginning since these
might get destructively updated in the program).

Example 1 iterates over a list starting from a list-element f in
list L and following the next links. Example 2 iterates over a list
by deleting its head in each iteration. Example 3 is more interest-
ing and combines list enumeration with destructive update of the
list. Note that the inductive loop invariant (which is automatically
discovered) is a bit tricky in this case.

Example 4 is the most challenging example because the while
loop iterates over a ToDo list whose length may decrease as well
as increase in each loop iteration. Overall, elements are moved
from the input list L to the ToDo list, which are then moved to
Done list. However, the order in which the vertices are moved
to Done list is the depth-first traversal order of the list-elements
e, which are also graph nodes whose successors are given by the
Successors method. Bounding the loop iterations of the outer
while loop requires computing the non-trivial invariant c1 ≤ 1 +
Old(Len(L)) − Len(L) − Len(ToDo), which is something that
is easily computed by our invariant generation tool. Also, note
that it is easy to see that an upper bound on the number of loop
iterations of the for-loop (after the while-loop) is the length of the
Done list. However, computing this upper bound in terms of the
inputs requires relating the length of the Done list in terms of
the length of the input list L; this relationship is: Len(Done) ≤
Old(Len(L)). Discovering this relationship requires computing the
loop invariant Len(Done) ≤ 1 + Old(Len(L)) − Len(L) −
Len(ToDo) in the first loop, which is again easily computed by
our invariant generation tool. This illustrates another advantage of
the quantitative functions in the overall process. The quantitative
functions are not only useful for expressing loop bounds, but also
allow the invariant generation tool to relate numerical properties
of different data-structures, which is important to express the loop
bounds in terms of inputs.

5.2 Composite Data-structures
Composite data-structures like list of lists, array of lists (hastables)
or n-ary trees, may have more interesting quantitative attributes
that can be associated with constituent data-structures. This hap-
pens when the quantitative attribute of a top-level data-structure
may be a function of the quantitative attributes of the nested data-
structures.

A challenge that arises in such situations is that update of a
nested data-structure may not only affect the quantitative functions
of the nested data-structure, but may also affect the quantitative
functions of the top-level data-structure. To address this, we pro-
pose defining another function at the level of a nested data-structure
that maps it to the top-level data-structure of which it is a part of. A
disadvantage of this approach is that it is not modular. However, we
feel that this will not be a problem in practice since the annotations
are only provided at the data-structure level.

We illustrate this methodology for some useful quantitative
functions that can be associated with a list of lists, besides the
functions Len and Pos defined earlier. Let L be any top-level list of
elements e, where each element e is a list of nodes f .

• TotalNodes(L): Sum of length of all lists e′, where e′ is an
element of L.

TotalNodes(L) = Sum{Len(e′) | L.BelongsTo(e′)}

• MaxNodes(L): Maximum length of any list e′, where e′ is an
element of L.

MaxNodes(L) = Max{Len(e′) | L.BelongsTo(e′)}

• TotalPos(e, L): Sum of lengths of all lists e′, where e′ lies
before e in L (i.e., if e belongs to L, otherwise it is don’t care).

TotalPos(e, L) = Sum{Len(e′) | L.BelongsTo(e′) ∧
Pos(e′, L) < Pos(e, L)}

Note that the quantitative attribute TotalNodes(L) of the top-level
list L gets affected whenever any change is made to list e. In order
to appropriately update TotalNodes(L) in such cases, we propose
introducing a function Owner that maps e to its top-level list L.
This idea is borrowed from the literature on ownership fields [21].

• Owner(e): Top-level list L to which the nested list e belongs.
(If e is not a nested list, then Owner(()e) is don’t care.)

Table (a) in Figure 7 describes the updates to these functions by
some list operations. Rows 1-5 show how these functions are af-
fected by some list operations when invoked over a list of lists.
Row 6 shows how these functions are affected by Remove opera-
tion when invoked over a nested list.

Table (b) in Figure 7 shows some examples of looping patterns
over list of lists from Microsoft product code. Example 1 iterates
over the top-level list, and hence its complexity is simply the length
of the top-level list. Example 2 iterates over the top-level list, but
also processes all nodes in the nested lists, and hence its complexity
is the sum of the top-level list and the lengths of all the nested lists,
which can be expressed using the quantitative functions Len and
TotalNodes. Example 3 finds a specific node in the nested list and
does this by walking over the top-level list and then walking over
an appropriate nested list. Its complexity can be expressed using
the quantitative function MaxNodes.

Example 4 is most interesting since it walks over the top-level
list L as well as all the nested lists deleting each element one by
one. Its complexity is expressible using the quantitative functions
Len and TotalNodes. However, the interesting point to note here
is that the top-level list as well as the nested lists are being de-
structively updated while they are being traversed. The destructive
update to a nested list e also requires an update to the quantitative
attributes of the top-level list L, which is accessed using Owner(e).

5.3 Applicability of Quantitative Functions
The methodology of quantitative functions need not be restricted to
recursive data-structures, but can also be applied to data-structures
like bit-vectors (which are otherwise hard to reason about). Bit-
vectors have quite a few interesting quantitative functions associ-
ated with them. E.g., total number of bits: Bits(a), total number
of 1 bits: Ones(a), position of the least significant 1 bit: One(a),
etc. Appendix B describes these quantitative functions in more de-
tail and the effect of bit-wise operators on these functions, and also
gives examples of several looping patterns from Microsoft prod-
uct code-base that can be analyzed using these functions. Figure 8
describes one of such examples Iterate, which masks out the
least significant consecutive chunk of 1s from b in each loop it-
eration. Our tool is able to compute the inductive loop invariant



List Operation Effect on Quantitative Functions
1. e := L.Head() Assume(e = null⇒ Len(L) = 0); Assume(e 6= null⇒ Len(L) > 0); Pos(e, L) := 0;

TotalPos(e, L) := 0; Assume(Len(e) ≤ MaxNodes(L)); Owner(e) := L;
2. t := L.IsEmpty() Assume(t = true⇒ TotalNodes(L) = 0 ∧ MaxNodes(L) = 0);

Assume(t = false⇒ TotalNodes(L) > 0);
3. e1 := L.GetNext(e2) TotalPos(e1, L) := TotalPos(e2, L) + Len(e2); Assume(TotalPos(e1, L) ≤ TotalNodes(L));

Assume(Len(e1) ≤ MaxNodes(L)); Owner(e1) := L;
4. L.Remove(e) TotalNodes(L) := TotalNodes(L)− Len(e);

{int tmp := MaxNodes(L); MaxNodes(L) :=?; Assume(MaxNodes(L) ≤ tmp);}
if (Pos(e, L) < Pos(e′, L)) TotalPos(e′, L) := TotalPos(e′, L)− Len(e);

5. L.Insert(e) TotalNodes(L) := TotalNodes(L) + Len(e); MaxNodes(L) := Max(MaxNodes(L), Len(e));
TotalPos(e′, L) := TotalPos(e′, L) + Len(e); TotalPos(e, L) := 0; Owner(e) := L;

6. e.Remove(f) TotalNodes(Owner(e)) := TotalNodes(Owner(e))-1;
if (*) MaxNodes(Owner(e)):=MaxNodes(Owner(e))-1;
if (Pos(e, Owner(e)) < Pos(e′, Owner(e))) TotalPos(e′, Owner(e)) := TotalPos(e′, Owner(e))− 1;

(a) Semantics of Quantitative Functions TotalNodes,MaxNodes,TotalPos and the function Owner.

Looping patterns over list-of-lists (from MS product code) Loop Invariant Complexity
1. for (e := L.Head(); e 6= null; e := L.GetNext(e)); c = Pos(e, L) ∧ Pos(e, L) ≤ Len(L) Len(L)
2. for (e := L.Head(); e 6= null; e := L.GetNext(e)) c = Pos(e, L) + TotalPos(e, L) ∧

for (f := e.Head(); f 6= null; f := e.GetNext(f)); Pos(e, L) ≤ Len(L) ∧ Len(L)+
TotalPos(e, L) ≤ TotalNodes(L) TotalNodes(L)

3. for (e := L.Head(); e 6= null; e := L.GetNext(e)) c = Pos(e, L) + Pos(f, e) ∧
if (rand()) break; Pos(f, e) ≤ Len(e) ∧ Len(L)+

for (f := e.Head(); f 6= null; f := e.GetNext(f)); Len(e) ≤ MaxNodes(L) MaxNodes(L)
4. for (e := L.Head(); e 6= null; e := L.RemoveHead()) c = Old(Len(L))− TotalNodes(L)

for (f := e.Head(); f 6= null; f := e.RemoveHead()); +Old(TotalNodes(L))− Len(L) ∧ Old(Len(L))+
Owner(e) = L Old(TotalNodes(L))

(b) Examples

Figure 7. In Table (b), Column 1 contains some examples of looping patterns over lists of lists from MS product code. Column 2 describes
(interesting part of) the inductive loop invariant, as computed by our tool, after the back-edges in each example were all instrumented with
the same counter c. Invariants shown are for outer loop (Examples 1,2,4) and for the second loop (Example 3). Column 3 shows an upper
bound on loop iterations as obtained from the invariant in Column 2.

Iterate(unsigned int a) {
1 b := a;
2 while ( BitScanForward(&id1, b))

//set all bits before id1 in b
3 b := b | ((1 << id1)− 1);
4 if ( BitScanForward(&id2,∼ b)) break;

//reset all bits before id2 in b
5 b := b & (∼((1 << id2)− 1));
6 }

Figure 8. One of many loops that iterate over bit-vectors taken
from MS product code. The BitScanForward(&id, b) function
returns a non-zero value iff the bit-vector b contains a 1 bit, in which
case id is set to the position of the least significant 1 bit.

2c ≤ 1 + One(b)− One(a) ∧ c ≤ 1 + Ones(a)− Ones(b) when
the loop is instrumented with the counter variable c. This implies
bounds of both Ones(a) as well as (Bits(a) − One(a))/2 on the
total number of loop iterations.

Appendix C describes interesting quantitative functions for
trees, namely number of nodes in a tree, or the height of a tree,
and also describes several looping patterns from STL library code-
base that can be analyzed using these quantitative functions. One
such example is also provided in Figure 9.

6. Inter-procedural Computational Complexity
Theorem 1 described in Section 4 describes a strategy to com-
pute symbolic bound on the total number of loop iterations given

a proof structure. We can use a similar strategy to compute sym-
bolic bounds on the total cost of a procedure given any cost met-
ric that maps atomic program statements (i.e., non procedure-call
statements) to some cost. For example, if we associate a unit cost
with each statement, then we obtain a symbolic bound on the total
number of statements executed by the procedure. If instead we as-
sociate each statement with the amount of resources it consumes 4

(e.g., memory it allocates), we obtain a bound on the total resource
consumption of the procedure.

The cost of procedures in a program is computed in a bottom-
up ordering of the call graph. Since the call graph can have cycles
because of recursive procedures, we decompose the call graph into
a DAG of maximal strongly connected components (SCCs) and
process this DAG in reverse topological order.

Non-recursive Procedures For a non-recursive procedure (not a
part of any non-trivial SCC), we use the approach mentioned below.

We define the cost ‖q‖ of a back-edge q between locations `
and `′ to be the maximum of the costs of any (acyclic) path that
starts at procedure entry or any counter instrument location, and
ends at ` without visiting any other counter instrument location.
We define the cost of any acyclic path to be the sum of the cost of
all statements on the path and the cost of executing any procedure
call. The cost ‖call Q(~v)‖ of executing procedure call Q(~v) is
obtained from the cost ‖Q‖ of procedure Q, which has already

4 Sometimes resources can also be released by a statement (as in case of
memory deallocation), in which case, one needs to obtain a lower bound L
on the amount of resource released by the statement, and then associate that
statement with a cost of −L.



been computed in terms of the formal parameters ~y of procedure
Q. We first replace the formal parameters ~y in Q by actuals ~v.
Since ~v might not be the inputs of the procedure whose summary is
being computed, we need a way to express ‖Q‖[~v/~y] as a function
of procedure inputs ~x. We do this by making use of the invariant
(generated by the invariant generation tool) at the call site Icall
(which relates the actuals ~v with the procedure inputs ~x) as follows.

‖call Q(~v)‖ := Projectupper(‖Q‖[~v/~y], Icall, ~x)

where the function Projectupper(e, φ, V ) denotes an upper bound
on variable t that is implied by the formula ∃V ′ : t ≤ e∧φ, where
V ′ is the set of all variables that occur in e and φ except V , and t
is some fresh variable.5 See an example below.

EXAMPLE 6. Suppose we are computing a summary for procedure
P (x1, x2) that calls a procedure Q(y1, y2) whose summary is
already computed as y1 − 2y2. Suppose P calls Q with arguments
v1, v2, where v1, v2 are such that (v1 − v2 ≤ x1) ∧ (v2 ≥ x2).
Then, the above Projectupper operation helps estimate an upper
bound on the cost of calling Q inside P as x1 − x2 by existentially
quantifying out v1, v2 from the formula ∃v1, v2[t ≤ v1 − 2v2 ∧
(v1 − v2 ≤ x1) ∧ (v2 ≥ x2)] to obtain t ≤ x1 − x2.

Having defined the cost of a back-edge q (with respect to any
given cost metric over statements), we now describe in the theorem
below how to compute the total cost of a non-recursive procedure.
Proof of Theorem 4 follows easily from the proof of Theorem 1.

THEOREM 4. The total cost ‖P‖ of a procedure P given a cost
metric for atomic statements, and a proof structure (S, M, G, B)
can be computed as

‖P‖ =
X
c∈S

(1 + TotalBound(c))× Max{‖q‖ |M(q) = c}

where TotalBound(c) is as defined in Theorem 1.

Recursive Procedures Let P1(~x), . . . , Pn(~x) be some set of mu-
tually recursive procedures. For each procedure Pi(~x), we create a
new procedure P ′

i (~x) that simply calls Pi(~x) after copying ~x into
global ~x′. Now, to compute the complexity of any procedure Pi, we
simply put the procedures P ′

i along with the procedures P1, . . . , Pn

into a module, and marking procedure P ′
i as an entry point. We now

run the algorithm in Figure 5 for generating an optimal proof struc-
ture over this module with the following differences.

The proof structure now has an additional requirement. The map
M is required to map back-edges in all the procedures as well as
the locations immediately before any recursive procedure call site
to some global counter variable. A global counter variable is in-
cremented and initialized in Instrument(P, (S, M, G)) in exactly
the same manner as local counter variables with one exception. If r
is an immediate predecessor of c in the DAG G, then c is initialized
to 0 at the beginning of the entry point procedure P ′

i (as opposed to
any of the recursive procedures). The correctness of the algorithm
now follows from the observation that a global counter introduced
before a recursive call-site is counting how many times is that call-
site invoked (just as a counter variable at a back-edge counts the
number of iterations of the back-edge).

5 The function Projectupper is used to compute bound on complexity of a
procedure call Q(~v) in terms of the procedure inputs ~x. (Note ‖Q‖ has been
computed in terms of formals ~y. We replace that by actuals ~v, but we still
need to relate that to ~x). The existential formula ∃V ′ : t ≤ e∧φ formalizes
the meaning of Projectupper . Essentially, we want to eliminate variables
from a bounds expression in presence of some invariants, but the notion of
existential elimination is only defined for formulas. Use of variable t allows
us to model the problem of existential elimination from an expression to the
problem of existential elimination from a formula.

Traverse(Tree T, TreeElt e)
1 y := e;
2 while (y 6= null)
3 c := c + 1;
4 r := T.GetRight(y);
5 Traverse(T, r);
6 y := T.GetLeft(y);
7 c := c + 1;

Tree T′;
TreeElt e′;
int c;
Traverse′(Tree T, TreeElt e)

T′ := T; e′ := e; c := 0;
Traverse(T, e);

Figure 9. An example of a recursive procedure Traverse that
calls itself recursively inside a loop in presence of recursive data-
structures. The bold instrumentation of global counter variable
c inside procedure Traverse and the construction of procedure
Traverse′ is part of our proof methodology for bounding number
of recursive procedure call invocations as well as loop iterations in
the procedure Traverse.

Also, another difference is that the invariant generation tool is
supposed to compute bounds on the global counter variables in
terms of the globals ~x′ (as opposed to the procedure inputs ~x) in an
inter-procedural setting. (After computation of these bounds, we
simply replace ~x′ by ~x). An intra-procedural invariant generation
tool can be extended to an (context-insensitive) inter-procedural
setting using the standard two phased approach. The first phase
computes procedure summaries that relate the inputs of a proce-
dure to the outputs. The actual results are computed in the second
phase, wherein inputs are propagated down the call graph from the
entry points. We implemented this algorithm and we give below an
example of the invariants and bounds that were generated.

EXAMPLE 7. Consider the recursive procedure Traverse in Fig-
ure 9 taken from C++ STL library code. The procedure calls it-
self recursively inside a loop to traverse a tree. The procedure
has been instrumented with a global variable c to keep track of
the number of recursive procedure call invocations and loop itera-
tions. The global counter c is initialized inside the entry procedure
Traverse′, which simply invokes Traverse after copying its ar-
guments T and e into globals T ′ and e′. Let Nodes(e, T ) refer
to a quantitative function that denotes the number of nodes be-
low node e in tree T . The inter-procedural invariant generation
scheme described above computes the inter-procedural invariant
c ≤ 2(1 + Nodes(e′, T ′) − Nodes(e, T )) 6 (after computing the
procedure summary cout−cin = 2+2(Nodes(e, T )), which in turn
requires the inductive loop invariant c− cin = 2(Nodes(e′, T ′)−
Nodes(y, T )) at program point 3). Existential elimination of input
parameter e yields the relation c ≤ 2(1 + Nodes(e′, T ′)), thereby
implying a bound of 2(1 + Nodes(e, T )) (after we rename e′ back
by e in the relation) on the recursive call invocations and loop iter-
ations.

Having obtained an appropriate proof structure (which has
counter increments at recursive call-sites), we now use the same
process that we used for non-recursive procedures (described in
Theorem 4) to compute the total cost. The cost of a recursive call-
site location s is defined in a similar way that we define the cost of
a back-edge. Note that now an acyclic path will not refer to any of
the recursive procedures P1, . . . , Pj , since we have instrumented

6 In other words, the value of global counter c is proportional to the number
of nodes that have been traversed, which is equal to difference of total
nodes Nodes(e′, T ′) and nodes yet-to-be traversed Nodes(e, T ). Observe
that this inductive invariant requires reference to original inputs with which
Traverse was first invoked. This reference is provided by copying of the
inputs T and e to fresh global variables T ′ and e′ in procedure Traverse′.
A similar technique is used in program verification to allow for relating pre
and post states.



a counter increment at those locations (in the extended notion of
proof structure for recursive procedures).

7. Preliminary Evaluation
We have built a prototype tool called SPEED that implements the
ideas described in this paper and automatically computes symbolic
complexity bounds of procedures (written in C/C++) in terms of
the scalar inputs of the procedure as well as any user-defined quan-
titative functions. Our implementation uses the Microsoft Phoenix
compiler infrastructure [25] for the front-end. We have imple-
mented the abstract interpretation based invariant generation tool
in C#, as a Phoenix plug-in.

Our tool operates by slicing a procedure with respect to the
statements that affect the number of loop iterations (by track-
ing statements that affect the conditionals in loop exit nodes).
The sliced version is usually much smaller, and is thus a useful
optimization for our invariant generation tool. We avoid inter-
procedural invariant generation for non-recursive procedures by
simply inlining part of the called procedures that affect the number
of loop iterations. This happens for a relatively very few cases.

Our tool is able to automatically compute bounds for all the
examples presented in this paper and takes on an average 0.25
seconds for each of the examples. Even though the size of the
examples as described in the paper is small, these examples are
sliced versions of large procedures (ranging up to few hundreds of
lines of code) from real code.

We have also run our tool on several other examples from
Microsoft product code and C++ STL Library code. Our tool is able
to compute precise bounds for more than half of the loops that we
have seen in practice. Among the examples that our tool is able to
handle, there are several examples with loops whose nesting depth
goes up to 5, while their complexity is still linear or quadratic since
they iterate over the same variables in multiple loops. These are
loops for which an unsound analysis that simply estimates the cost
of a procedure by measuring the nesting depth would provide too
imprecise results. The cases that we have found our tool currently
cannot handle fall into one of two categories:

• Loop bounds depend on some environment assumption, discov-
ering which requires a global analysis (while our invariant gen-
eration tool performs only local analysis). These environment
assumptions range from class invariants (e.g., m > 0, required
to prove bounds in case of while(i ≤ n){i := i + m}, or
some precondition on the input (e.g., x < n, required to prove
bounds in case of for(i := x; i 6= n; i++) to some contract
between concurrently executing threads, or some liveness prop-
erty guaranteed by the operating system (e.g., a loop calling a
low-level system API until it returns true).

• Generating linear bounds on counter variables requires path-
sensitive invariant generation (while our invariant generation
tool is path-insensitive). For example,

while (0≤x≤n) {if (b) x := x+t; else x:=x−t;}
t := b? 1 : −1;
while (x ≤ n) {if (b) x := x+t; else x := x−t;}

We also identified an instance of a recursive procedure V where
our tool failed to compute a bound, and the reason was traced to the
bound being exponential in size of the input tree. This complexity
surprised the developer who wrote that code. The looping pattern
of the recursive function V(Tree T, TreeElement e) consisted of
if (e6=null) { V(T,T.GetLeft(e));V(T,T.GetRight(e));

if (b){V(T,T.GetLeft(e));V(T,T.GetRight(e));} }
We are currently working with some MS product groups to in-

corporate SPEED into their code check-in process. They are specif-
ically interested in creating a database of the symbolic complexities

of all the procedures in their huge code-base and then pointing out
any significant differences in symbolic complexity bounds when-
ever any developer checks in performance-critical code, e.g., code
that is executed within atomic boundaries (probably higher up in
the call graph), or code that touches hot data-structures.

8. Related Work
Type System Based Approaches Danielsson presented a type
system targeted towards reasoning about complexity of programs
in lazy functional languages [9]. Crary and Weirich presented a
type system for reasoning about resource consumption, including
time [8]. Hughes and Pareto proposed a type and effect system on
space usage estimation based on the notion of sized types for a
variant of ML such that well typed programs are proven to exe-
cute within the given memory bounds [20]. In these approaches, no
effort is made to infer any bounds; instead they provide a mech-
anism for certifying the bounds once they are provided by the
programmer. In contrast, our technique infers bounds. Hofmann
and Jost statically infer linear bounds on heap space usage of first-
order functional programs running under a special memory mecha-
nism [19]. They use linear typing and an inference method through
linear programming to derive these bounds. Their linear program-
ming technique requires no fix-point analysis but it restricts the
memory effects to a linear form without disjunction. In contrast,
our focus is on computing time bounds (which are usually disjunc-
tive and non-linear) for imperative programs.

Worst-case Execution Time Analysis There is a large body of
work on estimating worst case execution time (WCET) in the em-
bedded and real-time systems community [28, 29]. The WCET re-
search is more orthogonally focused on distinguishing between the
complexity of different code-paths and low-level modeling of ar-
chitectural features such as caches, branch prediction, instruction
pipelines. For establishing loop bounds, WCET techniques either
require user annotation, or use simple techniques based on pattern
matching [18] or some simple numerical analysis. [16] describes an
interval analysis based approach for automatic computation of loop
bounds. However, it analyzes single-path executions of programs
(i.e., using input data corresponding to one execution). Hence, their
bounds are in real seconds, while our bounds are symbolic func-
tions of inputs. [17] determines loop bounds in synchronous pro-
grams and linear hybrid systems by using a relational linear analy-
sis to compute linear bounds on the delay or timer variables of the
system. In contrast, our focus is on automatic computation of loop
bounds (in general purpose programs), which are usually disjunc-
tive, non-linear, and involve numerical properties of heap. None of
the WCET techniques can automatically detect such bounds.

Termination Techniques Recently, there have been some new ad-
vances in the area of proving termination of loops based on discov-
ering disjunctively well-founded ranking functions [26] or lexico-
graphic polyranking functions [4]. [6, 1] have successfully applied
the fundamental result of [26] on disjunctively well-founded rela-
tions to prove termination of loops in real systems code. It may
perhaps be possible to obtain bounds from certain kind of ranking
functions given the initial state at the start of the loop. However,
the ranking function abstraction is too weak to compute precise
bounds. As illustrated in Introduction, programs with significantly
varying computational complexity are proved terminating by [6, 1]
because of the same ranking function, and hence there is no way
to distinguish between the complexities of these procedures given
the same termination proof. In contrast, our technique can generate
more precise timing bounds.

Symbolic Bound Generation Gulavani and Gulwani have de-
scribed the design of a rich numerical domain to generate non-



linear disjunctive invariants [12], and they have applied it to gen-
erating bounds for timing analysis. However, their system requires
the user to describe the set of important expressions (over which
the linear relationships are to be tracked) as well as the set of vari-
ables that should occur within max operator for each loop. Further-
more, their technique only applies to arithmetic programs. How-
ever, their work can be better used as an instance of invariant gener-
ation tool within our framework (after extension with uninterpreted
functions).

ACE analyzes a functional language FP to derive a time-
complexity function [23] by repeatedly applying a large library of
rewrite rules to transform the step-counting version of the original
recursive program into a non-recursive bound function. However,
bound generation is very sensitive to the order in which the rules
are applied and the rules required to produce a bound are specific
to a programming practice. Rosendahl describes a system to com-
pute complexity bounds of programs written in a first-order subset
of LISP using abstract interpretation [27]. His system outputs a
time-bound program that is not guaranteed to be in closed form. In
addition, the technique only works for programs where recursion is
controlled by structural constraints, such as length of a list due to
limitations of the analysis.

[11] computes symbolic bounds by curve-fitting timing data
obtained from profiling. Their technique has the advantage of mea-
suring real amortized complexity; however the results are not sound
for all inputs.

[24] presents a formalism for user-defined resources on which
bounds can be computed in terms of input data sizes. In contrast,
we focus on computational-complexity bounds and present a for-
malism for user-defined input data-structure size measures for ex-
pressing computational-complexity bounds.

Reducing pointers to integer programs Our notion of quanti-
tative functions is related to recent work on reducing (primarily
singly linked list-based) pointers to integer programs [10, 3, 22]
after conducting alias analysis in a prepass. In comparison, our
approach is limited in two ways. It applies only to abstract data-
types, and aliasing has to be taken care of by the uninterpreted
functions domain. However, our approach has two key advantages:
It allows for arbitrary user annotations for any data-structure at
run-time (as opposed to encoding the semantics of the integer vari-
ables for a specific data-structure inside the analysis). Furthermore,
these annotations are not necessarily limited to pointer based data-
structures, but also apply to say bit-vectors, which are otherwise
quite complicated to reason about. Another technical advantage
that our approach offers is that use of uninterpreted functions avoids
the need for eagerly creating (several) integer variables (since con-
gruence based data-structures can represent uninterpreted function
terms with common sub-expressions succinctly).

9. Conclusion
This paper describes some fundamental principles for instrument-
ing monitor variables such that computing bounds on these monitor
variables and appropriately composing them yields a bound on the
total number of loop iterations. The importance of instrumenting
multiple counter variables, each of which may be initialized and
incremented at multiple locations, lies in being able to use linear in-
variant generation tools to compute precise bounds that are disjunc-
tive as well as non-linear (which is usually the case in presence of
control-flow inside loops). In particular, (a) We avoid the problem
of generating disjunctive invariants by introducing multiple coun-
ters. (b) We avoid the problem of generating non-linear invariants
by introducing dependencies between counters, i.e. initializing a
counter at multiple locations corresponding to increment of other

counters. (c) We address the issue of precision by introducing min-
imal number of counters with minimal number of dependencies.

The paper also introduces the notion of quantitative functions
over abstract data-structures that allow a linear invariant generation
tool with support for uninterpreted functions to compute bounds for
loops that would otherwise require sophisticated shape analysis.

Based on these ideas, our tool is able to automatically gener-
ate (with minimal user annotation for providing quantitative func-
tions) precise timing bounds for sophisticated real-life examples for
which it is non-trivial to even prove termination.
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A. Proof of Theorem 3

PROOF: Let (S, M, G, B) be any extensible partial-proof
structure that can be extended to a proof structure (S′, M ′, G′, B′).
Let (S1, M1, G1, B1) be a partial-proof structure such that the
triple (S1, M1, G1) has been obtained from (S, M, G) by ap-
plying either a node merging operation or an edge deletion op-
eration. We show below that in either case (S1, M1, G1, B1) is
an extensible partial-proof structure.
Let P ′ = Instrument(P, (S′, M ′, G′))
and P1 = Instrument(P, (S1, M1, G1)).

• Consider the case when the triple (S1, M1, G1) is obtained
from (S, M, G) by merging two counter variables c1, c2 into
c1. Consider the following choice for (S′

1, M
′
1, G

′
1, B

′
1).

S′
1 = S′ − {c2} ∪ {c′1, c′2}

M ′
1(q) = M1(q) if M1(q) is defined

= σ1(M
′(q)) otherwise

G′
1 = G1 ∪ {(σ1(c), σ1(c

′)) | (c, c′) ∈ G′ −G} ∪
{(σ2(c), σ2(c

′)) | (c, c′) ∈ G′ −G}
B′

1(q) = B1(q) if B1(q) is defined
= B′(q) otherwise

where σ1(c1) = c′1, σ1(c2) = c′2, and σ1(c) = c for any c that
is different from c1 and c2, σ2(c2) = c1 and σ2(c) = c for any
c that is different from c2.
It is easy to see that (S′

1, M
′
1, G

′
1, B

′
1) is an extension of

(S1, M1, G1, B1). To show that (S′
1, M

′
1, G

′
1, B

′
1) is a proof

structure, we need to show that for any back-edge q in P , the
invariant generation tool can produce a bound of B′

1(q) on
counter variable M ′

1(q) at back-edge q in
P ′

1 = Instrument(P, (S′
1, M

′
1, G

′
1)). Consider any back-edge

q. One of the following two cases arise.

B1(q) is defined. In this case, M ′
1(q) = M1(q). Note that

P ′
1 initializes and increments the counter variable M1(q) at

exactly the same locations (back-edges) where P1 initializes
and increments them respectively. Hence, B′

1(q) = B1(q).

B1(q) is not defined. In this case M ′
1(q) = σ1(M

′(q)).
Note that P ′

1 initializes the counter variable M ′
1(q) at a

super-set of the locations where P ′ initializes M ′(q), and
P ′

1 increments the counter variable M ′
1(q) at a sub-set of the

locations (back-edges) where P ′ increments M ′(q). Hence,
the invariant generation tool will be able to compute a bound
that is at least as good as B′(q) on counter variable M ′

1(q)
at back-edge q.

• Consider the case when the triple (S1, M1, G1) is obtained
from (S, M, G) by deleting an edge (c1, c2). Consider the
following choice for (S′

1, M
′
1, G

′
1, B

′
1).

S′
1 = S′ ∪ {c′2}

M ′
1(q) = M1(q) if M1(q) is defined

= σ1(M
′(q)) otherwise

G′
1 = G1 ∪ {(σ1(c), σ1(c

′)) | (c, c′) ∈ G′ −G} ∪
{(c, c′) | (c, c′) ∈ G′ −G}

B′
1(q) = B1(q) if B1(q) is defined

= B′(q) otherwise

where σ1(c2) = c′2 and σ1(c) = c for any c that is different
from c2.
It is easy to see that (S′

1, M
′
1, G

′
1, B

′
1) is an extension of

(S1, M1, G1, B1). To show that (S′
1, M

′
1, G

′
1, B

′
1) is a proof-

structure, we need to show that for any back-edge q in P , the
invariant generation tool can produce a bound of B′

1(q) on
counter variable M ′

1(q) at back-edge q in
P ′

1 = Instrument(P, (S′
1, M

′
1, G

′
1)). The proof is now ex-

actly same as the above case.

�

B. Bit-Vectors
Bit-vectors can be associated with a few quantitative functions that
are useful to express and compute the complexity of loops that
iterate over bit-vectors. These quantitative functions are:

• Bits(b): Number of bits in b.
• Ones(b): Number of 1 bits in b.
• One(b): Position of the first 1 bit in b starting from right and

counting from zero, (i.e., if there is any 1 bit in b. Otherwise,
One(b) is don’t care.)

• LastOne(b): Position of the first 1 bit in b starting from left and
counting from zero, if there is any 1 bit in b (i.e., if there is any
1 bit in b. Otherwise, LastOne(b) is don’t care.)

Similarly, we can also define the quantitative functions Zeros(b),
Zero(b), and LastZero(b).

For simplicity, we assume that all bit-vectors have the same
number of bits. Table (a) in Figure 10 describes how somes of
these quantitative functions are affected by standard bit-vector op-
erations. The function BitScanForward(&id, b) returns true
iff the bit-vector b contains a 1 bit, in which case it sets id to the
position of the first 1 bit from the right side, and counting from
zero. The integer index by which a bit-vector is left-shifted in
a := b << index should be non-negative. The other bit-vector
operations are self-explanatory.

Table (b) in Figure 10 shows some examples of looping patterns
over bit-vectors from Microsoft product code. The loops in exam-
ples 1 and 2 iterate over a bit-vector b by setting the least significant



Bit-vector Operation Effect on Quantitative Functions
a :=∼ b Ones(a) := Zeros(b); One(a) := Zero(b); Zero(a) := One(b);
res := BitScanForward(&index, b) index :=?; Assume(res = true⇒ (Ones(b) = 0 ∧ Zero(b) = 0));

Assume(res = false⇒ (index = One(b) ∧ Ones(b) > 0 ∧ 0 ≤ One(b) < Bits(b)));
a := b << index One(a) := index + One(b); Ones(a) :=?; Assume(Ones(a) ≤ Ones(b));

if (index > 0) Zero(a) := 0;
a := b− 1 One(a) :=?; Ones(a) :=?; Zero(a) := One(b);
t := (b 6= 0) Assume(t = true⇒ (0 ≤ One(b) < Bits(b) ∧ Ones(b) ≥ 1));

Assume(t = false⇒ (Ones(b) = 0 ∧ Zero(b) = 0));
a := b & c Ones(a) :=?; One(a) :=?; Zero(a) :=?;

Assume(Zero(c) = One(b)⇒ Ones(a) ≤ Max(0, Ones(b)− 1) ∧ One(a) > One(b));
Assume(One(c) = Zero(b)⇒ Ones(a) ≤ Max(0, Ones(c)− 1) ∧ One(a) > One(c));
Assume(Ones(a) ≤ Ones(b) ∧ Ones(a) ≤ Ones(c)) ∧ One(a) ≥ One(b) ∧ One(a) ≥ One(c));
Assume(Zero(a) ≤ Zero(b) ∧ Zero(a) ≤ Zero(c));

a := b | c Ones(a) :=?; One(a) :=?; Zero(a) :=?;
Assume(One(c) = Zero(b)⇒ Zero(a) > Zero(b));
Assume(Zero(c) = One(b)⇒ Zero(a) > Zero(c));
Assume(Ones(a) ≥ Ones(b) ∧ Ones(a) ≥ Ones(c)) ∧ One(a) ≤ One(b) ∧ One(a) ≤ One(c));
Assume(Zero(a) ≥ Zero(b) ∧ Zero(a) ≥ Zero(c));

(a) Semantics of Quantitative Functions One, Ones, and Zero.

Some looping patterns over bit-vectors (from Microsoft product code) Loop Invariant Complexity
1. for (b := a; BitScanForward(&id, b); b := b&(∼ (1 << id))); c ≤ 1 + Ones(a)− Ones(b) Ones(a)
2. for (b := a; b 6= 0; b := b&(b− 1)); c ≤ 1 + Ones(a)− Ones(b) Ones(a)
3. for (b := a; b 6= 0; b := b << 1); c ≤ 1 + One(b)− One(a) Bits(a)− One(a)
4. for (b := a; BitScanForward(&id1, b); ) { 2c ≤ 1 + One(b)− One(a) ∧ Min{(Bits(a)− One(a))/2,

b := b | ((1 << id1)− 1); // set all bits before id1 c ≤ 1 + Ones(a)− Ones(b) Ones(a)}
if BitScanForward(&id2,∼ b) break;
b := b & (∼ ((1 << id2)− 1)); // reset all bits before id2

};
(b) Examples

Figure 10. Column 1 contains some examples of bit-vector looping patterns from Microsoft product code. Column 2 describes the
(interesting part of the) loop invariant, as computed by our tool, that relates an instrumented loop counter variable c with some quantitative
attributes of the bit-vectors modified in the loop. Column 3 shows an upper bound on the number of loop iterations in terms of the input
bit-vector a.

1 bit to 0. Example 3 iterates over a bit vector b by left shifting the
bit-sequence by one bit. Example 4 iterates over a bit-vector b by
setting the first chunk of all consecutive 1 bits (from the right side)
in b to 0. Observe that an upper bound on the number of iterations
of such a loop can be described in two orthogonal ways using the
quantitative attributes that we have introduced. Clearly Ones(a) is
an upper bound, but so is (Bits(a)− One(a))/2 because note that
the least significant one bit moves by at least 2 steps in each loop
iteration.

The quantitative functions LastOne(b) and LastZero(b) are
useful, for example, when the looping pattern involves right shift-
ing the bits (as opposed to left shifting).

C. Trees
The following quantitative functions are useful to express and com-
pute bounds on loops that iterate over trees.

• Height(T ): Height of tree T .
• Nodes(T ): Total number of nodes in tree T .
• Height(e, T ): Height of node (or tree-element) e in tree T (i.e.,

if e belongs to T ; otherwise it is don’t care).
• Nodes(e, T ): Total number of nodes below e in tree T . (i.e., if

e belongs to T ; otherwise it is don’t care).

The table in Figure 11(a) describes the effect of standard tree
methods on some of these quantitative functions. The method

T.Insert(e) has the precondition that e does not already belong
to T . The method T.Remove(e) has the precondition that e be-
longs to T . The Table (b) in Figure 11(b) shows some examples of
looping patterns over trees as taken from C++ STL library code.



Tree Operation Effect on Quantitative Functions
1. e := T.Root() Height(e) := Height(T ); Nodes(e) := Nodes(T );
2. e1 := T.GetRight(e2) Height(e1) :=?; Assume(Height(e1) ≤ Height(e2)− 1);

Nodes(e1) := Nodes(e2)− Nodes(T.GetLeft(e2))− 1;
3. e1 := T.GetLeft(e2) Height(e1) :=?; Assume(Height(e1) ≤ Height(e2)− 1);

Nodes(e1) := Nodes(e2)− Nodes(T.GetRight(e2))− 1;
4. T.Insert(e) Nodes(T ) := Nodes(T ) + 1; if (*) Height(T ) := Height(T ) + 1;

if (*) Height(e′, T ) := Height(e′, T ) + 1; if (*) Nodes(e′, T ) := Nodes(e′, T ) + 1;
Height(e, T ) :=?; Assume(1 ≤ Height(e, T ) ≤ Height(T ));
Nodes(e, T ) :=?; Assume(1 ≤ Nodes(e, T ) ≤ Nodes(T ));

5. T.Remove(e) Nodes(T ) := Nodes(T )− 1; if (*) Height(T ) := Height(T )− 1;
if (*) Height(e′, T ) := Height(e′, T )− 1; if (*) Nodes(e′, T ) := Nodes(e′, T )− 1;
Height(e, T ) :=?; Assume(1 ≤ Height(e, T ) ≤ Height(T ));
Nodes(e, T ) :=?; Assume(1 ≤ Nodes(e, T ) ≤ Nodes(T ));

(a) Semantics of Quantitative Functions Nodes and Height for both trees and tree-elements.

Some recursive calling patterns over trees (from C++ STL library code) Procedure Summary Complexity
1. Traverse(Tree T, TreeElt e) {

if (e 6= null)
Traverse(T.GetLeft(e));Traverse(T.GetRight(e)); cout − cin ≤ 1 + 2(Nodes(e, T )) 1 + 2(Nodes(e, T ))

}
2. Search(Tree T, TreeElt e) {

if (e == null) return false;
if (e.data > elt) return Search(T.GetRight(e)) cout − cin ≤ 1 + Height(e, T ) 1 + Height(e, T )
else if (e.data < elt) return Search(T.GetLeft(e))
else return true

}
3. Traverse2(Tree T, TreeElt e) {

for (y := e; y 6= null; y := T.GetLeft(e)) cout − cin ≤ 2(1 + Nodes(e, T )) 2(1 + Nodes(e, T ))
Traverse2(T.GetRight(e))

}
(b) Examples

Figure 11. In Table(b), Column 1 contains some examples of looping patterns over trees from C++ STL library code base. Column 2
describes the procedure summary computed by our invariant generation tool that relates the values cin and cout of the instrumented global
counter variable c (instrumented as per the strategy described in Section 6) at procedure entry and exit respectively with appropriate
quantitative attributes. Column 3 shows an upper bound on the number of recursive procedure call invocations in terms of quantitative
functions of the inputs.


