Speed Scaling for Weighted Flow Time

Nikhil Bansal*

1 Introduction

In addition to the traditional goal of efficiently man-
aging time and space, many computers now need to
efficiently manage power usage. For example, In-
tel’s SpeedStep and AMD’s PowerNOW technologies al-
low the Windows XP operating system to dynamically
change the speed of the processor to prolong battery
life. In this setting, the operating system must not only
have a job selection policy to determine which job to
run, but also a speed scaling policy to determine the
speed at which the job will be run. These policies must
be online since the operating system does not in general
have knowledge of the future. In current CMOS based
processors, the speed satisfies the well known cube-root-
rule, that the speed is approximately the cube root
of the power [Mud01, BBS*T00]. Thus, in this work,
we make the standard generalization that the power is
equal to speed to some power o > 1, where one should
think of « as being approximately 3 [YDS95, BKP04].
Energy is power integrated over time. The operating
system is faced with a dual objective optimization prob-
lem as it both wants to conserve energy, and optimize
some Quality of Service (QoS) measure of the resulting
schedule.

By far the most commonly used QoS measure in the
computer systems literature is average response/flow
time or more generally weighted average response/flow
time. The flow time F; of a job i is the time lag between
when a job is released to the system and when the
system completes that job. Pruhs, Uthaisombut, and
Woeginger [PUW04] studied the problem of optimizing
total flow time (>, F;) subject to the constraint that
the total energy does not exceed some bound, say the
energy in the battery, and showed how to efficiently
construct offline an optimal schedule for instances with
unit work jobs. For unit work jobs, all job selection
policies that favor a partially executed job in favor of
an unexecuted job are equivalent. Thus the job selection

~ FIBM T.J. Watson Research, P.O. Box 218, Yorktown Heights,
NY. nikhil@Qus.ibm.com.

fComputer Science Department. University of Pittsburgh.
kirk@cs.pitt.edu. Supported in part by NSF grants CNS-0325353,
CCF-0448196, CCF-0514058 and IIS-0534531.

tDepartment of IEOR, Columbia University, New York, NY.
cliff@ieor.columbia.edu.

Kirk Pruhs’

CIiff Steint

policy is essentially irrelevant.

If there is an upper bound on energy used, then
there is no O(1)-competitive online speed scaling policy
for total flow time. To understand intuitively why
this is the case, consider the situation when the first
job arrives. The scheduler has to allocate a constant
fraction of the total energy to this job; otherwise, the
scheduler would not be O(1)-competitive in the case
that no more jobs arrive. However, if many more jobs
arrive in the future, then the scheduler has wasted a
constant fraction of its energy on only one job. By
iterating this process, one obtains a bound of w(1) on
the competitive ratio with respect to total flow time
(See Appendix Section A for the details).

Albers and Fujiwara [AF06] proposed combining
the dual objectives of energy and flow time into the
single of objective of energy used plus total flow time.
Optimizing a linear combination of energy and total flow
time has the following natural interpretation. Suppose
that the user specifies how much improvement in flow
time, call this amount p, is necessary to justify spending
one unit of energy. For example, the user might specify
to the Windows XP operating system that he is willing
to spend 1 erg of energy from the battery for a decrease
of 3 micro-seconds in response time. Then the optimal
schedule, from this user’s perspective, is the schedule
that optimizes p = 3 times the energy used plus the
total flow time. By changing the units of either energy
or time, one may assume without loss of generality that
p=1

[PUWO04] observe that in any locally-optimal nor-
mal schedule, each job i is run at a power proportional
to the number of jobs that depend on i. Roughly speak-
ing, normal means that no job completes exactly when
another job is released, and a job j depends on a job
1 if delaying ¢ would delay j. In the online setting, an
obvious lower bound to the number of jobs that de-
pend on the selected job is the number of active jobs,
where an active job is one that has been released but has
not yet completed. Thus Albers and Fujiwara [AF06]
propose the natural online speed scaling algorithm that
always runs at a power equal to the number of active
jobs. They again only consider the case of unit work
jobs. They do not actually analyze this natural algo-
rithm, but rather analyze a batched variation, in which



jobs that are released while the current batch is running
are ignored until the current batch finishes. They show
that this batched algorithm is 8.3¢( % )*-competitive
with respect to the objective of total flow time plus en-
ergy. They also give a dynamic programming algorithm
to compute the offline optimal schedule for unit work
jobs.

The reason that both [PUWO04] and [AF06] consider
only unit work jobs is that it seems that the optimal
schedule for arbitrary work jobs is quite difficult to
characterize.

1.1 Owur Results We give significantly stronger re-
sults for the problem of minimizing (weighted) flow time
and energy. We both improve the algorithm and analy-
sis in the special case (unit jobs, no weights) considered
previously [AF06] and then we give algorithms for the
more general problem with weights and arbitrary work
jobs.

First, we show that the natural online speed scaling
algorithm proposed in [AF06] is 4-competitive for unit
work jobs. This guarantee is independent of a. In
comparison, the competitive ratio 8.36(%)‘1 obtained
in [AF06] is bit over 400 when the cube-root rule holds
(a = 3).

More importantly, we consider the case of arbitrary
work jobs, and consider a much more general QoS mea-
sure: weighted flow. We assume that each job has a
positive integer weight w;. The weighted flow objec-
tive is then the weighted sum of flow times, >, w;F;.
Weighted flow generalizes both total flow time, and to-
tal/average stretch, which is another common QoS mea-
sure in the systems literature. The stretch/slow-down
of a job is the flow time divided by the work of the job.
Many server systems, such as operating systems and
databases, have mechanisms that allow the user or the
system to give different priorities to different jobs. For
example, Unix has the nice command. In our setting,
the weight of a job is indicative of the flow time versus
energy trade-off for it. The user may be willing to spend
more energy to reduce the flow time of a higher priority
job, than that for lower priority jobs.

Our analysis consists of two steps. We first relax
the objective to fractional weighted flow plus energy,
instead of weighted flow plus energy. In the fractional
weighted flow time measure, at each time step a job
contributes its weight times the fraction of unfinished
work to the objective (see Section 2 for details). In the
second step we show how to modify our algorithm for
fractional weighted flow plus energy to obtain results for
weighted flow plus energy at the loss of a small factor in
the competitive ratio. The main reason for this two step
analysis is that fractional flow is substantially easier to

analyze than total flow. For example, for a constant
speed processor, computing the optimal weighted flow
schedule is NP-hard [LLLK84], but the simple algorithm
Highest Density First (HDF) is optimal for fractional
weighted flow. HDF is the algorithm that always
runs the active job with the maximum density, where
the density of a job is the ratio of its weight to its
work. HDF is still the optimal job selection policy for
fractional weighted flow when speed scaling is allowed.

Our algorithm is a natural generalization of the
algorithm proposed in [AF06]. We define the algorithm
A to be the one that uses HDF for job selection, and
always runs at a power equal to the fractional weight of
the active jobs. In Section 4 we consider the case of unit-
work unit-weight jobs. We show that algorithm A is
2-competitive with respect to the objective of fractional
flow plus energy. As a corollary to this, we show that the
algorithm B (proposed by [AF06]), that runs at power
equal to the number of unfinished jobs is 4-competitive
for total flow plus energy.

In Section 5 we consider jobs with arbi-
trary work and arbitrary weights. Let v =

max (2, % . We show that algorithm A

is y-competitive with respect to the objective of frac-
tional flow plus energy. For any a > 1, the value of
v < max(2, 2« — 2). For large values of «, 7 is approxi-
mately o/ In o (ignoring lower order terms) and for o =
3, v~ 2.52. We then use A to define an algorithm C.,
which is parameterized by € > 0, and is yu.-competitive
with respect to the objective of total weighted flow plus
energy, where p. = max(1 + 1, (1 + €)*). When the
cube-root, rule holds, by picking € = .463, pe is about
3.15, and the competitive ratio yu. is a bit less than 8.
For large values of «, picking € ~ In«/« implies that C,
is approximately o/ In? a competitive.

The analysis in [AF06] was based on comparing
the online schedule directly to the optimal schedule.
However, even for the case of unit work jobs, the optimal
schedule can be rather complicated [PUWO04, AF06].
Our analyses of algorithm A are based on the use of a
potential function, and do not require us to understand
the structure of the optimal schedule. There are two
advantages to this approach. First, our analysis is
simpler and tighter than the analysis in [AF06] in the
case of unit-work unit-weight jobs. Second, we can
extend our analysis to the case of arbitrary work and
arbitrary weight jobs. We give an overview of our
potential function analysis technique in Section 3.

Further, our results also give a way to compute
the schedule that optimizes weighted flow subject to a
constraint £ on the energy used. It is not too hard to see
that if we trace out all possible optimal weighted flow
schedules for all energy bounds F, and we traced out all



optimal weighted flow plus p times energy schedules for
all possible factors p, that the resulting schedules are
the same. That is, a schedule S is an optimal weighted
flow schedule for some energy bound E if and only if it
is an optimal weighted flow plus p time energy schedule
for some factor p. Thus, by performing a binary search
over the possible p, and applying our algorithm C, one
can find an O(1)-approximate weighted flow schedule
subject to an energy bound of F.

1.2 Related Results Theoretical investigations of
speed scaling algorithms were initiated by Yao, De-
mers, and Shenker [YDS95], who considered the prob-
lem of minimizing energy usage when each task has to
be finished on one machine by its deadline. [YDS95]
give an optimal offline greedy algorithm, and an O(1)-
competitive online algorithm AVR. The online algo-
rithm Optimal Available (OA), proposed in [YDS95],
was shown to be O(1)-competitive in [BKP04] using a
potential function analysis. OA runs at the speed that
would be optimal, given the current state and given that
no more jobs arrive in the future. The speed scaling
component of our algorithm A is similar in spirit as it
can be described as: run at a constant factor a—1 times
the optimal speed given the current state, and given
that no more jobs arrive in the future. The potential
functions that we use to analyze A are reminiscent, but
certainly not the same, as the one used in [BKP04] to
analyze OA.

Since the publication of [YDS95], most of the results
in the literature focus on deadline feasibility as the mea-
sure for the quality of the schedule. However, in general
computational settings, most processes do not have nat-
ural deadlines associated with them. As evidence of this
fact, observe that neither Linux nor Microsoft Windows
use deadline based schedulers. In general, algorithm de-
sign and analysis are significantly more difficult in speed
scaling problems than in the corresponding scheduling
problem on a fixed speed processor. But deadlines help
constrain how the energy can be distributed through-
out the schedule, thus making scheduling problems with
deadlines more amenable to analysis. Given the number
of papers that now have been published on speed scal-
ing problems with deadlines, we will not survey these
results here, but refer the reader to a relatively recent
survey by Irani and Pruhs[IP05].

There have been several papers in the literature on
speed scaling with the makespan objective. [PvSUOQ5]
give a poly-log approximation algorithm for makespan
on identical machines with precedence constraints give a
bound on the available energy. [Bun06] gives an efficient
algorithm to compute all Pareto optimal schedules for
tasks on one machine with release dates, and for unit-

work tasks on multiple machines with release dates.

[Bun06] also shows that even for unit-work jobs, op-
timal flow time schedules can not generally be expressed
with the standard four arithmetic operations, and the
extraction of roots.

2 Definitions

An instance consists of n jobs, where job i has a release
time r;, a positive work y;, and a positive integer
weight w;. The density of job ¢ is g— and the inverse
density is %— We assume without loss of generality that
r1 < re < ... <7, An online scheduler is not aware
of job ¢ until time r;, and, at time r;, learns y; and
weight w;. For each time, a schedule specifies a job to
be run and a speed at which the job is run. A job i
completes once y; units of work have been performed
on ¢. The speed is the rate at which work is completed;
a job with work y run at a constant speed s completes
in ¥ seconds. The power consumed when running at
speed s is 5%, where we assume that o > 1. The energy
used is power integrated over time. We assume that
preemption is allowed, that is, a job may be suspended
and later restarted from the point of suspension. A
job is active at time t if it has been released but not
completed at time ¢.

As an algorithm runs, we will keep track of the total
weight of jobs active at time ¢t. There are actually two
different notions of a job’s weight. When we just use
weight, we mean the original weight w; of the job. When
we say fractional weight of a job i at time ¢, we mean
the weight of the job times the percentage of work on
the job that has not yet been finished. We will use an
overbar for weight and omit it for fractional weight.

Let X be an arbitrary algorithm. Let w,(t) de-
note the weight of jobs active at time ¢ for algorithm
X. (Note that we make algorithms lower case in sub-
scripts for typographic reasons.) Let w,(t) denote the
fractional weight of the active jobs at time ¢ for algo-
rithm X. Let s,(t) be the speed at time ¢ for algorithm
x, and let py(t) = (s4(t))* be the power consumed at
time ¢ by algorithm X. Let E,(t) = [._ ps(k)dk be
the energy spent up until time ¢ by algorithm A.

Just as we defined weight and fractional weight, we
can define weighted flow time and fractional weighted
flow time analogously. We use the well-known ob-
servation that the total weighted flow time is the to-
tal weight of the set of active jobs, integrated over
time. Let W,(t) = fkt:o wy(k)dk be the fractional
weighted flow up until time ¢ for algorithm X. Let
W.(t) = [i_,@.(k)dk be the weighted flow up until
time t for algorithm X. Our objective function com-
bines flow and energy and we let G, (t) = W, (¢) + E,(t)
be the fractional weighted flow and energy up until time



t for algorithm X, and G, (t) = W(t) + E.(t) be the
weighted flow and energy up until time ¢ for algorithm
X. Let B, = E(c0), W, = Wy(00), W, = W(00),
G, = Gu(0) and G, = G,(o0) be the energy, frac-
tional weighted flow, weighted flow, fractional weighted
flow plus energy, and weighted flow plus energy, respec-
tively, for algorithm X. We use Opt to denote the offline
adversary, and subscript a variable by “o ” to denote the
value of a variable for the adversary. So W, is the frac-
tional weighted flow for the adversary.

3 Amortized Local Competitiveness

A common notion to measure an on-line scheduling al-
gorithm is local competitiveness, meaning roughly that
the algorithm competitive at all times during the execu-
tion. Local competitiveness is generally not achievable
in speed scaling problems because the adversary may
spend essentially all of its energy in some small period
of time, making it impossible for any online algorithm
to be locally competitive at that time. Thus, we will
analyze our algorithms using amortized local competi-
tiveness, which we now define. Let X be an arbitrary
online scheduling algorithm, and H an arbitrary objec-
tive function, Let d};?) be the rate of increase of the
objective H at time t. The online algorithm X is amor-
tized locally ~y-competitive with potential function ®(t)
for objective function H if the following two conditions
hold:

Boundary Condition: @ isinitially 0, and and finally
nonnegative. That is, ®(0) = 0, and there exists
some time t' such that for all ¢ > ¢ it is the case
that ®(t) > 0.

General Condition: For all times ¢,

dH,(t)  dH,(t) d®(1)
a4 dt

(3.1) <0

We break the general condition into three cases:

Running Condition: For all times ¢ when no job
arrives,
dH,(t) dH,(t) d®(t)

. _ <
(3.2) @ Ta Ta =0

Job Arrival Condition: ® does not increase when a
new job arrives.

Completion Condition: ® does not increase when ei-
ther the online algorithm or the adversary complete
a job.

Observe that when ®(t) is identically zero, we have
ordinary local competitiveness. It is well known that

amortized local ~-competitiveness implies that when
the algorithm completes, the total cost of the online
algorithm is at most v times the total cost of the optimal
offline algorithm.

LEMMA 3.1. If online algorithm X s amortized locally
~-competitive with potential function ®(t) for objective
function H, then H, < vyH,.

Proof. Let t1,...,t3, be the events that either a job
is released, the online algorithm = completes a job, or
the adversary completes a job. Let A(®(¢;)) denote the
change in potential in response to event t;. Let tg =0
and r3,41 = +00. Integrating equation 3.1 over time,
we get that

3n+1
Hx + Z A((I)(tl)) S FYHO
i=1

By the job arrival condition, and the completion condi-
tion, we can conclude that H, + ®(c0) — ©(0) < vH,,
and finally, by the boundary condition, we can conclude
that H, < vH,.

Now consider the case that the objective function
is G, the fractional weighted flow plus energy. Then
d%t) = w(t) + p(t) = w(t) + s(t)*, and equation 3.1 is
equivalent to:

—Y(wo (t) + 80()") + ao(t) <0

wy(t) + 85 (1) o

For our purposes, we will always consider the algorithm
A, where s4(t)* = wg(t). Thus the above equation is
equivalent to:

2wa(t) — y(wo (t) + so(1)) + dfl)_(t)

(3.3) —

0.

IN

To compute our competitive ratio, we will find the
minimum v which satisfies equation 3.3.

4  Unit Work and Unit Weight Jobs

In this section we restrict ourselves to jobs with unit
work and unit weight. We first show that the speed
scaling algorithm A, where s,(t) = w,(t)/* is 2-
competitive for the objective function of fractional flow
time plus energy. We then show how to modify A
to obtain a 4-competitive algorithm for the objective
function (integral) flow time plus energy.

THEOREM 4.1. Assume that all jobs have unit work
and unit weight. The speed scaling algorithm A, where
sa(t) = wa(t)V* is 2-competitive with respect to the
objective G of fractional flow plus energy.



Proof. We prove that algorithm A is amortized locally
2-competitive using the potential function

2
B+1)

where = (o —1)/a.

We first need to verify the boundary condition.
Clearly ®(0) = 0, as wqe(0) = wy(0), ®(t) is always
non-negative. ® satisfies the job completion condition
since the fractional weight of a job approaches zero
continuously as the job nears completion and there is
no discontinuity in wq(t) or w,(t) when a job completes.
® satisfies the job arrival condition since both w(t)
and w,(t) increase simultaneously by 1 when a new job
arrives

We are left to establish the running condition. We
now break the argument into two cases. In the first case
assume that that w,(t) < wy(t). This case is simpler,
since the offline adversary has large fractional weight.
Here ®(t) = 0 and %ﬁt) = 0 by the definition of ®.
Thus inequality (3.3) is satisfied by setting v to 2.

We now turn to the interesting case that wg(t) >
w,(t). For notational ease, we will drop the time ¢ from
the notation, since all variables are understood to be
functions of ¢t. We consider d®/dt.

(max(0, wq(t) — wo(t)))ﬁJrl

dd(t) 2x d ((wa(t) - U’O(t))ﬁﬂ)
dt (B+1) dt
d(wg — w,)
dt

(4.4) = 2a(w, — w,)’
Since jobs have unit density, the rate at which the
fractional weight decreases is exactly the rate at which
unfinished work decreases, which is just the speed of
the algorithm. Thus 42 = Moreover as sq(t) =
w,(t)'/*, by the definition of A, equation 4.4 can be
written as

—S.

dd (1)

dt
(4.5) =

= —2a(wa — wo)ﬁ(sa - 50)

—20(wg — wo)? (Wl/* — s,)

Since w, > w, — w,, it follows that —wd* < —(wq —
w,)"/* and as B + 1/a = 1 by definition of 3, equation
4.5 implies that

do(t

dt

~—

(4.6) < =20 (we — we) + 20 (wa — we)" s,

Applying Young’s inequality (c.f. Corollary 6.1) with
:UJ:laa’:SOap:aab:(wa_wO)ﬁa a’ndq: %a we
obtain that (w, — w,)%s, < B(wa — w,) + 8% /a. Thus

(4.6) can be written as

dd (1)

T < -2 a— Wo
o S alw, — we) +
200(we — wo) + 285

(4.7 = —2(wq — wo) + 255

Plugging (4.7) into 3.3 and solving for ~, we obtain a
bound on the competitive ratio of:

2w, + %
(4.8) 7 < W+ 50
(4.9) < 2w + (—2wq + 2w, + 28%)
- Wo + 8§
(4.10) < 2w, + 285
Wo + 8§
(4.11) - 2

Note that for any instance, there is always one
job that algorithm A never completes. This does not
contradict our analysis since the fractional weight for
A will be geometrically decreasing at the end of the
schedule.

We now modify the algorithm A to handle integral
flow time. Consider the algorithm B that at all times
gives preference to the (there is at most one) partially
finished job, and works at power equal to the (integral)
weight of unfinished jobs. That is s(t) = wg/ “. To
analyze algorithm B, we relate B to algorithm A. For
the optimum algorithm we use its total fractional flow
time plus energy as a lower bound to the integral
objective. =~ We begin by observing that under any
algorithm each job incurs a flow time plus energy of
at least 1.

LeEMMA 4.1. If all jobs have unit work and unit weight,
then for any instance with n jobs, G, > n.

Proof. Suppose a job has flow time f, then by convexity
of the power function its energy is minimized if it is
run at speed 1/f throughout, and hence it uses at least
f-@/H* = (1/f)>! amount of energy. It suffices to
show that f+(1/f)*! > 1 for any f > 0. Clearly, this
is true if f > 1. If f < 1, then (1/f) > 1 and hence
1/flrrt>1as (a—1)>0.

LEMMA 4.2. Assume that all jobs have unit work and
unit weight. The algorithm B, where sy(t) = w(t)'/®,
is 4-competitive with respect to the objective G of total
flow plus energy.

Proof. Consider B and A running on the same input
instance. At any time ¢, the fractional weight wy(t)
under B never exceeds that under A, since if they were



ever equal, then algorithm B must run at least as fast as
algorithm A. As B has at most one partially executed
job at any time this implies that wy(t) < wy(t) + 1.
Since B runs at speed at least 1 when it is not idling,
it follows that W, < W, 4+ n. Since E, = W} and
E, = W, it follows that G, = W, + E, = 2W,, <
2Wy 4+ 2n = G4 + 2n. By Theorem 4.1, we have
that G, < 2G, and since G, < @0, it follows that
Gy < G +2n < 2G, +2n < 4G,. The last step follows

as G, > n by Lemma 4.1.

Before we proceed to the general case in the next
section, we wish to point out (details deferred to the
full version) that the above analysis works identically
for the slightly more general case where jobs have unit
density (i.e. when the weight of a job is equal to its
work). Thus we can generalize Lemma 4.2 to obtain

COROLLARY 4.1. Assume that all jobs have unit den-
sity. The algorithm B, where sy(t) = w(t)"/*, is 4-
competitive with respect to the objective G of total flow
plus energy.

5 Arbitrary Size and Weight Jobs

In this section we consider jobs with arbitrary work and
arbitrary weight. We first show that the algorithm A is
Y = max(2, =S
to fractional weighted flow plus energy. In particular,
v =2 for a € [1,2] and v = 2(a — 1)/(a — (a0 —
1)-Ye=1)" For a = 3, v is about 2.52 and varies
asymptotically as a/ In« for large values of «

Later we show how to use A to obtain an algorithm
for (integral) weighted flow time plus energy. This
algorithm will be parameterized by e and denoted as
C.. The competitive ratio of C. will be yu. where
pe = max(l + 1, (1 + €)*). Choosing € optimally as
a function of «, the competitive ratio of C. will be
approximately a?/In” o (ignoring lower order terms).

) competitive with respect

THEOREM 5.1. The speed scaling algorithm A, where
the job selection policy is HDF and sq(t) = w(t)*/®, is
2(a—1
to the objective G of fractional weighted flow plus en-

ergy.

~ = max (2 competitive with respect

Proof. For technical reasons it will be very convenient
to work with inverse density which is defined as the
ratio of the work of a job divided by its weight. In this
terminology the algorithm HDF is the one that works
on the job with the least inverse density at any time.
Let wq (h) and w,(h) be functions of time ¢ denoting
the total fractional weight of the active jobs which have
an inverse density of at least h, for algorithm A and

some fixed optimum algorithm Opt respectively. Note
that for A = 0, these terms simply correspond to the
total fractional weight at time ¢. We will prove that A
is amortized locally y-competitive using the potential
function ®(t) defined by:

(5.12) n/:o (wa(h)? (wa(h) — (B + D)wo(h))) dh

where § = (o — 1)/a, and 7 is some constant that we
will set later.

That @ satisfies the boundary condition follows
easily since wq(h) = wo(h) = 0 for all values of
h at time ¢ = 0 and as time approaches infinity.
Similarly, ® satisfies the job completion condition since
the fractional weight of a job approaches zero as the job
nears completion, and there are no discontinuities.

Now consider the arrival condition (which is some-
what non-trivial in this case). Suppose a job ¢ with
inverse density h; and weight w; arrives at time t. If
h < h; then both we(h) and wy(h) increase simulta-
neously by w;. If h > h; then both we(h) and w,(h)
remain unchanged. Thus after the arrival of job ¢ the
change in the potential function is

(5.13)
h;
an

The fact that each summand

[(wa () + wi) (wa(h) — (B + L)wo(h) — Buw;)

—wa(h)’ (wa(h) — (B4 1wo(h))] dh

(5.14)  (wa(h) +ws)” (wa(h) = (8 + Lwo(h) — w;)

= wa(h)? (wa(h) = (8 + 1)wo(h))

in the integral above is not positive follows from Lemma
6.1 by setting ¢ = wq(h),r = wo(h),d = w; and
w = 3+ 1. Thus the arrival condition holds.

We now consider the running condition. Let m, and
m, denote the minimum inverse density of a job that is
alive under A and Opt at time ¢, respectively. Assume
algorithm A is running job ¢ with inverse density h; =
mgq. Then for h < mg, let us consider the rate at which
wq(h) changes with t. The remaining work decreases at
rate —s, and hence the fractional weight decreases at
rate —sg - (w;/y;) where y; is the (original) work of this
job. Thus,

dwa(h) _ Wi Sa
a ¢ Yi T mg
and if A > m, then dw;—t(h) = 0. Similarly,

dw, (h) _

o —2>if h < m, and is 0 otherwise. We now



evaluate % to be:

s o [ (2

=0

dwq(h
wa(h)ﬁwT()dh

gdwo(h)
dt

=n(B+1) [/:O
—/ho_oowa(h)

B e 5 dwg(h)
B h:Owa(h) IU’O(h) dt

dh

i

We now focus on the first integral in equation 5.15.
Since A works on job with minimum inverse density m,,
there is non-zero contribution only when h € [0,m,].
Further, for h € [0,m,), it is the case that w,(h) =

wqe(0) = w,. Thus,
gdwa(h)

we(h
Ma dwg(h)

- {(z)

—

(5.16) dh

—Wq

The fact that —wfsa = w, follows by the definition of
A, as s, = wlll/a.
We now focus on the second integral in equation

5.15.

I R TR )
/h:O a(h) dt

_ / wa(h)? 2 dh
h

(5.17) dh

—0 mo
Mo
S
< / w? > dh
h=0 Mo
-

The inequality in equation 5.17 follows since wq(h) is
non-increasing function of h, and wg(0) = wg.

We now focus on the third integral in equation 5.15.
Recalling that w,(h) = w, for h € [0,m,), and w,(h) is

non-increasing with h, we get,

_ Oow B=1y, dwa(h)
| =

_ / " wa ()M, 2 dn
h

(5.18) dh

—0 Mq
me s
—_ a
< / wg Lwe—2dh
h=0 Mg

-1
= wg WoSaq = Wo

Combining equations 5.15, 5.16, 5.17 and 5.18 we

get that:
dd 3

(5.19) at < (B4 Dn(—wa + Pwo + wy So)

We now consider two cases depending on whether
a € [1,2] or whether « > 2. For a < 2, we apply
Young’s inequality (c.f. Corollary 6.1), with a = w?,
b=s0,p=1/8, and ¢ = «, and p = 1, which yields
that

(5.20) ws, < P, + 22

a
Plugging this in the inequality (5.19) we obtain that %
is at most

(03

(5:21) (B4 1)(~wa + 2w, + =2)

o

Plugging the bound on % given in equation 5.21 into
equation 3.3, and regrouping terms, we obtain a bound
on the competitive ratio of

< 2— 77(6 + 1)wa + 2776(6 + 1)wo + 77(6 + 1)53/04
= Wo + 8§

Setting n = 2/(8 + 1) to eliminate the w, term, and
observing that 5= (1 —1/«a) < 1/2 for o < 2 and that
2/a < 2, we obtain the desired competitive ratio of 2
for this case.

We now consider the case of @ > 2. Applying
Young’s inequality (c.f. Corollary 6.1), with a = w?,
b=sy,p=1/8,and ¢ = a, and p = (a — 1)~/ (@1,

we get that
afB
1 (67
1 !

As aff = a— 1 and in plugging the value of pu, this
implies that 4~ %% = a — 1 = a8 and hence,

(5.22) wPs, < phw, + Bs2.

Plugging equation 5.22 into equation 5.19 we get that
% is at most

(5.23)

N [=(8 + Dwa + B(8 + Dw, + B(B + 1) pwa + B(8 + 1)s5]



Plugging the bound on % given in equation 5.23
into equation 3.3, and regrouping terms, we obtain a
bound on the competitive ratio of

< 4B+ 1)(p6 —1))wa +nB(5 + 1)(w, + 55)
= Wo + 8§

We set n = —2/(5+1)(p8—1) to eliminate the w, term,
thus obtaining a bound on the competitive ratio of

28 _ 2(a—1) _
1—puf  a—(a—1)1-t(@=1 7

(5.24)

By bounding equation 5.24 for some values of a, we
get the following bounds on the competitive ratio for A:
If 1 <a<2then vy =2 if @« >2then v < 2(a—1),
if @ > 2+ e then v < o — 1, and finally, for large «,
v~ a/lna.

To obtain a guarantee for integral weighted flow
time, we define the algorithm C. to be the one that uses
HDF for job selection, and whenever there is unfinished
work, it runs at a power equal to (1+¢€) times the power
that algorithm A would run at. Note that C. must
simulate algorithm A, and is not the same algorithm as
run at power (1 + €) times the fractional weight of the
active jobs.

COROLLARY 5.1. Let pe = max((1+ 1), (1+¢€)®). The
algorithm C., where sc.(t) = (1 + €)sq4(t), 5 fey-
competitive with respect to the objective G of weighted
flow plus energy. For large values of «, choosing € ~
Ina/a optimizes pe = af Ina.

Proof. (Sketch) Using ideas from [BLMSPO01], it can be
easily shown that at any time ¢, if some job j is alive
under C., then j has at least an €/(1 + €) fraction of
its weight unfinished under A. Thus W,_ < (1+ 1)W,.
Moreover E., < (1 4 €)*E, as the speed under C. is
always within (1 4 €) times that of A. Together with
Theorem 5.1 the result follows.

6 Technical Facts

We use the following classic inequality and its corollary
from Section 8.3 of [HLP52]).

THEOREM 6.1. (YOUNG’S INEQUALITY) Let f be a
real-valued, continuous, and strictly increasing func-
tion on [0,c] with ¢ > 0. If f(0) = 0, and a,b such
that a € [0,c], and b € [0, f(c)], then [} f(z)dz +
fob fEY(x)dz > ab where (V) is the inverse function

of f.
COROLLARY 6.1. For reals a,b, p,p and q such a > 0,
b>0,p>1,p>0and 1/p+1/q¢ = 1, u%+

/P g
(l)q Pt > ab.
w q

The following lemma can be found in [BKP04].

LEMMA 6.1. Let q,7,0 >0 and p > 1. Then
(¢ +0)" Mg —pr— (u—1)8) —¢" (g — pr) 0.

References

[AF06] Susanne Albers and Hiroshi Fujiwara. Energy-
efficient algorithms for flow time minimization. In
Lecture Notes in Computer Science (STACS), volume
3884, pages 621 — 633, 2006.

[BBST00] David M. Brooks, Pradip Bose, Stanley E.
Schuster, Hans Jacobson, Prabhakar N. Kudva,
Alper Buyuktosunoglu, John-David Wellman, Victor
Zyuban, Manish Gupta, and Peter W. Cook. Power-
aware microarchitecture: Design and modeling chal-
lenges for next-generation microprocessors. IEEE Mi-
cro, 20(6):26-44, 2000.

[BKPO04] Nikhil Bansal, Tracy Kimbrel, and Kirk Pruhs.
Dynamic speed scaling to manage energy and temper-
ature. In IEEE Syposium on Foundations of Computer
Science, pages 520 — 529, 2004.

[BLMSPO01] Luca Becchetti, Stefano Leonardi, Alberto
Marchetti-Spaccamela, and Kirk R. Pruhs. Online
weighted flow time and deadline scheduling. In Work-
shop on Approximation Algorithms for Combinatorial
Optimization, pages 36-47, 2001.

[Bun06] David Bunde. Power-aware scheduling for
makespan and flow. In Proceedings of the 2006 ACM
Symposium on Parallel Algorithms and Architectures,
2006. To appear.

[HLP52] G. H. Hardy, J. E. Littlewood, and G. Polya.
Inequalities. Cambridge University Press, 1952.

[IP05] Sandy Irani and Kirk R. Pruhs. Algorithmic prob-
lems in power management. SIGACT News, 36(2):63—
76, 2005.

[LLLK84] J. Labetoulle, E. Lawler, J.K. Lenstra, and
A. Rinnooy Kan. Preemptive scheduling of uniform
machines subject to release dates. Progress in Combi-
natorial Optimization, pages 245-261, 1984.

[Mud01] Trevor Mudge. Power: A first-class architectural
design constraint. Computer, 34(4):52-58, 2001.
[PUWO04] Kirk Pruhs, Patchrawat Uthaisombut, and Ger-
hard Woeginger. Getting the best response for your
erg. In Scandanavian Workshop on Algorithms and

Theory, 2004.

[PvSUO05] Kirk Pruhs, Rob van Stee, and Patchrawat Uthai-
sombut. Speed scaling of tasks with precedence con-
straints. In Workshop on Approzimation and Online
Algorithms, 2005.

[YDS95] F. Yao, A. Demers, and S. Shenker. A scheduling
model for reduced cpu energy. In IEEE Syposium on
Foundations of Computer Science, page 374, 1995.

A Online Lower Bound

In this section, we show that the problem of minimizing
flow time subject to a fixed energy bound online has no



constant competitive algorithm. This records into the
literature a fact that was generally known by researchers
in this area.

THEOREM A.l. Assume that there is some fized energy
bound E, and the objective is to minimize total flow
time. Then there is no O(1)-competitive online speed
scaling algorithm even for unit work and unit weight
imstances.

Proof. We will give an adversarial strategy for gen-
erating an input. The jobs are divided into batches
By, ..., Bg. All the jobs in B; arrive together some time
after the online algorithm has finished all the jobs in
Bifl.

Before describing how we generate B;, let’s consider
what happens when there are no unfinished jobs and a
set of jobs all arrive at the same time. This subproblem
is basically equivalent to the off-line problem without
release dates. Thus, with n; jobs and an energy budget
of E;, we can use the results in [PUWO04] to derive the
optimal strategy. These results say that we should run
job j at power equal to o = p(n; — (j — 1)) for some
constant p. Thus we are running at speed ¢/® and
it takes time o~ /® to finish job j. The total energy
expended is the integral of power over time, which is

ng
— plfl/a Zjlfl/a ,
j=1

nq

Z _ O,lfl/a

j=1
which implies that
o a/(a—1)
p= Ei/zljlfl/a
j=1

The sum of flow time for this set of jobs is

nq

Y (= (=)o

j=1
n;

pfl/a Zjlfl/a
Jj=1

-171/a)“/<“*”

(Z;‘l;l]
gl/(e=1)

We now approximate the sum by an integral (the error
is negligible for these calculations) and obtain a bound
of

(1.25) (n?‘lfl/((z _ 1/0[)E1_))1/(0¢*1) '

This term has F; in the denominator, so if F; were off by
more than a constant factor, the entire flow time would

be off by more than a constant factor. This motivates
our construction, in which we divide time into batches
and show that in each batch, the energy used has to
be within a constant factor of the total energy. Since
we will have a non-constant number of batches, we will
derive a contradiction.

Let batch B; contain n; = (2—1/a)'/(2a=1)2¢/(2a=1)
unit work jobs. Now we argue that if the online
algorithm doesn’t know ¢, the number of blocks, it can
not be O(1) competitive.

Plugging our choice of n; into (1.25), we get a flow
time of 2i/(@=D/EY (=Y for batch i. The adversary,
who knows ¢, could set E; = 2/E/Y % _ 2F. With
this choice, we clearly have that Zle E, = E, as
desired. We also get that the flow time of each batch is

(Zizl ok /E)WH) = (21 = 2)/E)" ™" and that

the total flow time is (¢ (271 — 2) /E)Y/(=1. Note also
that even by allocating all the energy on the last batch,
the flow time (2¢/F)"/(®=1 is only less by a factor of
O(¢). Thus, since the online algorithm does not know ¢
(or the future job arrivals), it must allocate an w(1/7)
fraction of the energy to each batch B;. Thus, after
seeing ¢ batches, it will have allocated Q(E log¥) energy,
which is impossible.



