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ABSTRACT

The Internet of Things (IoT) consists of embedded devices that sense
and manage our environment in a growing range of applications.
Large-scale IoT systems such as smart cities require signi�cant in-
vestment in both equipment and personnel. To maximize return on
investment, IoT platforms should support multiple third-party ap-
plications and adaptation of infrastructure over time. Realizing the
vision of shared IoT platforms demands strong security guarantees.
That is particularly challenging considering the limited capability
and resource constraints of many IoT devices.

In this paper, we present SPEED, an approach to secure erasure
with veri�ability in IoT. Secure erasure is a fundamental property
when it comes to share an IoT platform with other users which
guarantees the cleanness of a device’s memory at the beginning
of the application deployment as well as at the time of releasing
the underlying IoT device. SPEED relies on two security primitives:
memory isolation and distance bounding protocol. We evaluate
the performance of SPEED by implementing it on a simple bare-
metal IoT device belongs to Class-1. Our evaluation results show a
limited overhead in terms of memory footprint, time, and energy
consumption.
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1 INTRODUCTION

The IoT envisions a future where billions of Internet-connected
devices are deployed in our environment to support novel Cyber-
physical applications. Contemporary IoT networks are large and
growing in scale from smart buildings to smart cities. Research
deployments such as City of Things [20] already incorporate tens
of thousands of IoT devices. The majority of such devices are very
tiny and belong to Class-1 [7]. The Internet Engineering Task Force
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(IETF) identi�es Class-1 IoT devices with 10KB RAM and 100KB
ROM as having the minimal resources necessary to communicate
securely with the Internet [7]. The ideal multi-app IoT platform
would execute e�ciently on typical Class-1 embedded devices and
enable the secure execution of coexisting third-party applications.

However, commercial deployments of similar scale have been
slow to appear. One reason for this slow adoption is the unclear
Return-on-Investment (RoI) for large-scale IoT networks that de-
mand signi�cant upfront investment in the infrastructure as well
as technical sta� to deploy, manage and maintain the system. Sup-
porting multiple applications enables IoT infrastructure providers
to increase their RoI. Multi-app nodes allow an IoT deployment to
satisfy multiple stakeholders and therefore to cover hardware and
associated sta� costs arising from the deployment, management
and maintenance of the infrastructure. IoT infrastructure providers
could, for example, lease out resources on underutilized devices to
third parties to increase revenue or specialize in deploying IoT in-
frastructure as a service. Realizing the idea of shared IoT platforms
requires security mechanisms that ensure among other things that:
(i) the memory of a public shared IoT device does not store any
unwanted software or malware, (ii) the user can delete the entire
memory footprint when he releases the IoT device, and (iii) any
user can use the public IoT platform, so no complex key distribution
and management is required.

This paper addresses the problem of secure remote erasure of IoT

with veri�ability without depending on pre-shared secret keys. A
proof of secure erasure (PoSE) is the ability of the end user to verify
the outcome of the erasure operation of a black-box system such
as a remote IoT device. In spite of its importance, the topic of the
provable secure erasure in IoT has been neglected and started to
attract attention recently by some proposals [15]. This is an impor-
tant omission that we aim to address in this research work. Our
approach, SPEED, targets Class-1 IoT devices [7]. We build on two
security primitives: (i) memory isolation and (ii) distance bounding
protocol (DB). An isolated and secure portion of memory is needed
to store the security-relevant functions for deletion and communi-
cation with the outside world. DB is implemented in this trusted
part of the memory, and needed for proximity-based authentication
and preventing man-in-the-middle (MITM) attack, as explained in
Section 5. Henceforth, the term veri�er refers to the user who wants
to erase the memory of a target IoT device and verify the outcome
of this remote erasure operation; and the term prover refers to the
target IoT device that has to give a proof of erasure. In particular,
the veri�er should be able to securely erase the prover’s memory
and get a proof of erasure if he is in vicinity. The prover has to
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verify the distance of the veri�er and give a proof of secure era-
sure if the veri�er’s distance is less than the prede�ned maximum
threshold, where the threshold is an application-dependent value.
Please, notice that there is an interesting swap of roles between the
veri�er and the prover, where the veri�er has to verify the secure
erasure and the prover has to verify the distance bounding.

To sum up, the chief contributions of this paper are:

• Overcoming the security limitation of the majority of Class-1
IoT devices, identi�ed by the lack of the memory protection
unit (MPU), by designing and developing an e�cient mem-
ory isolation technique for low-end embedded devices that
acts as a software-based MPU.
• Designing a �exible and secure memory erasure primitive,
that can guarantee the deletion of anymemory contents with-
out any prede�ned information about the device (e.g. type,
size of memory, shared keys, etc.). The only requirement
is that the device should run our software-based memory
isolation mechanism or some related functions only if it has
a hardware-based MPU.
• Advancing the secure erasure in the IoT by brining it closer
to reality through a proper implementation of SPEED on one
of the Class-1 IoT devices and showing the e�ciency and
practicality of using DB to prevent MITM attack instead of
selective jamming, as assumed by other research papers.

Paper outline. The remainder of this paper is organized as fol-
lows. Section 2 reviews the related work. Design principles of mem-
ory isolation are presented in Section 3. Section 4 describes the
chosen distance bounding protocol. Section 5 proposes SPEED, our
approach to secure erasure. Implementation details and evaluations
are reported in Section 6 and 7 respectively. Section 8 concludes
and gives directions for future work.

2 RELATEDWORK

In 2010, Perito and Tsudik proposed an approach called Proofs of
Secure Erasure (PoSE) [15]. PoSE is a protocol to perform secure
erasure and secure code update. Both mechanisms are interleaved
since the secure erasure can be considered as a prelude to secure
code update. Remote attestation can be applied by erasing the mem-
ory each time and updating the code again. PoSE takes advantage
of the �ash memory which is common in all embedded devices by
designating a small portion of it to be read-only. This small ROM
on the prover side hosts the main functions needed for interacting
with the veri�er and erasing the contents of memory. The veri�er
starts the protocol by sending true randomness in order to �ll and
overwrite the prover’s memory. The last k bits of these randomness
are used as a session key by the prover to compute the message
authentication code (MAC) of the memory and send it back to the
veri�er. On the other side, the veri�er computes his own MAC
and compares it with the received one. If they match, then proof of
secure erasure holds. The security parameter k is known in advance
to both parties. Also, the size of prover’s memory has to be known
in advance to the veri�er. To prevent man-in-the-middle attack,
PoSE relies on the assumption of jamming all other nearby devices
during the run of the protocol. Moreover, the protocol incurs high
overhead in terms of communication as the veri�er has to send

random bytes equal to the size of the entire writable memory of
the target IoT device.

Dziembowski et al. [10] proposed a cryptographic scheme that
minimizes the communication complexity of PoSE [15]. The veri�er
sends a few number of bits (seed) to the prover. Using this seed,
the prover performs a set of deterministic computations and expan-
sion functions (e.g. calculation of a hash function recursively) that
require the usage of the whole memory and thus overwriting its
content. The secure erasure is proved if the computed hash value is
correct as it can only be generated once. The idea behind this is that
the prover stores a secret key in its memory. The size of this key
should be at least half of the size of the available memory. Assuming
bounded-retrieval model and restricted write/read operations, the
adversary can not leak the key or make a copy of it internally due
to its size. This key will be (at least partially) destroyed after recur-
sively executing a set of hash functions. Therefore, the adversary
can not preform the computations again. The main drawback of
this solution is the computational complexity. It is quadratic on the
size of the prover’s memory.

Karame et al. [12] introduced a lightweight version of the previ-
ously mentioned PoSE [15] approach which reduces the overhead
of computations. This scheme does not rely on the computation of
MAC but on the correct structure of data in the prover’s memory.
The veri�er selects a random secret K and a seed s of size m bits
each. Then, he generates n random data blocks of length m bits
each, where the result of multiplying m and n equals the size of
the writable memory at the prover side. The veri�er computes K’
after performing a procedural set of cyclic shifts and XOR functions.
The prover has to compute and send K back after receiving the n
random data blocks in addition to the s and K’ from the veri�er.
If both values of K match, the proof of secure erasure holds due
to the idea of designing the ShiftXOR function, where K can not
be computed correctly on the �y without storing the random data
blocks in their exact locations. Similarly to PoSE, this approach still
depends on the assumption of selective active jamming of nearby
devices and does not solve the high overhead of the number of the
transmitted packets.

In nutshell, we show that SPEED enhances over all of the pro-
posed approaches in the following:

• Excluding the assumption of selective jamming to prevent
MITM attack. Selective jamming of all other nodes around
the prover is di�cult to implement and su�ers from some
limitations (e.g. illegal at the standard wireless bands, not
fully secure and can be bypassed [16], cost ine�ective which
requires an extra hardware, etc.).
• The communication overhead required is veryminimalwhich
limited to the exchange of few bytes regardless the size of the
remote IoT device’s memory. The computational overhead
also is limited to the computation of a simple MAC function.
Moreover, no prior keys have to be stored and known in
advance.
• Suitable for a wide range of legacy IoT devices, where the
implementation of SPEED requires a minimal memory foot-
print and takes into account the lack of hardware security
features.
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3 MEMORY ISOLATION

Memory isolation is a security feature that provides a way to control
memory access rights and prevent damage or leakage of private data
through the unauthorized access that could happen by a software
bug or a malware infection. The class of IoT devices (e.g. IETF Class-
1), we are targeting, depends on the commercial o�-the-shelf (COTS)
microcontrollers that are optimized for low cost and low power
consumption. So, they are deployed without any security properties.
Furthermore, the existing hardware protection mechanisms can
not be applied on such devices due to the restrictions of their own
hardware architectures.

The basic property required to implement any form of secure
erasure is memory isolation. It allows to control the memory ad-
dresses and reserve a part of it to store the private data and the
security-related functions. Therefore, as a �rst step to build the se-
cure erasure approach, we had to overcome the problem of lacking
MPUs in Class-1 IoT devices by designing and implementing a pure
software-based memory isolation technique. This security feature
is required to isolate and guarantee the integrity of the Trusted
Software Module (TSM) that running within a single address space
from other untrusted software modules. The TSM refers to the
cryptographic primitives, secrets keys, private data, and all other
helping functions that we trust to execute. Our technique can be
easily applied to any MCU with the following characteristics: (i)
has no memory protection unit, (ii) supports disabling of global
interrupts to ensure atomic execution of SPEED, (iii) does not sup-
port multi-threading, and (iv) still has su�cient �ash memory to
store the TSM code as a requirement of SPEED.

Design of Software-based Memory Isolation. Our design of
the memory isolation shares similarities with the Software-based
Fault Isolation (SFI) approach proposed by Whabe et al. [19]. As SFI
approach has been designed for computer systems, we are taking
advantages of it by designing and implementing a pure software-
based memory isolation approach for embedded systems in an
optimized way.

We use selective software virtualization and assembly-level code
veri�cation to provide sandboxing between software modules. At
initialization time, the TSM should be installed using a physical
programming device (e.g. JTAG) through an edited toolchain. Upon

successful installation, the occupied portion of the memory by TSM
acts like an isolated and virtual ROM. The TSM memory can not be
written or even read after the deployment of the microcontroller
without a physical access. Furthermore, the execution of this area
is only allowed from speci�c entry points as we see later. Therefore,
the access to this part of the memory is protected by the employed
virtualization mechanism. The TSM has no restrictions at all and
has full access over other parts of the memory. As shown in Figure 1,
the remaining part of the memory, denoted as Application Memory,
should host other (untrusted) software modules. It consists of two
subareas: the Instruction Memory, that holds the application code,
and the Data Memory for data. In contrast to the TSM memory, the
Application Memory is subject to the following restrictions:

• Control Transfer: branch and jump operations can only target
either the instruction memory or speci�c entry points in the
TSM memory.
• Read and Write: read and write operations address only the
data memory and Memory Mapped IO (MMIO) registers.
• Deployment: updating the application memory can only
occur by the TSM. Restrictions on the application code are
enforced at the instructions level by verifying the adherence
of the instructions to the listed rules and replacing unsafe and
essential instructions by safe virtualized ones. Applications
that violate the rules are rejected instantly by the TSM.

During the deployment process of an application, the TSM takes
care of checking each instruction at the assembly level. Two types
of illegal instructions can be identi�ed:

• static jump operations: instructions that have a target address
encoded in it statically, and this target address refers to a
restricted point of memory.
• dynamic jump operations: instructions that access any mem-
ory dynamically as the target address is encoded in a pointer
register.

Any application with at least one unsafe instruction will be
rejected by the TSM. The vast majority of the control transfer in-
structions (e.g. program counter relative branches) have a direct
target address and thus they can be checked statically at deployment
time. Dynamic jump operations that use indirect addressing mode
will be replaced by virtual safe instructions. The actual veri�cation
of their safety takes place at runtime rather than the deployment
time. If at least one of these operations is unsafe (e.g. access re-
stricted memory), the MCU will perform a soft reset preventing
illegal operation. From a practical point of view, replacing the un-
safe indirect call with a safe virtual indirect call takes place between
the assembly and linking stages, as we add a post-processor to do
this substitution during the compilation of the application code.

4 DISTANCE BOUNDING PROTOCOL

Distance Bounding (DB) protocols allow to establish an upper-
bound on the physical distance between two parties which are
typically denoted as veri�er and prover. The �rst DB protocol was
introduced by Brands and Chaum [8] in order to prevent ma�a
fraud (relay) attacks on bank ATMs [9], a special version of MITM
attack. Brands and Chaum’s DB is a challenge-response protocol
which estimates the distance between two entities by measuring
the round-trip time (RTT) of challenges and responses that travel at
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Prover  Verifier

mi ∊R {0,1} ai ∊R {0,1}
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          Bi

       End of rapid bit exchange

X ← a1 | B1 | … | ak | Bk X ← a1 | B1 | … | ak | Bk

  (open commit), sign(X)

           Verify commit

           Verify sign(X)

Figure 2: Distance bounding protocol of Brands and Chaum

the speed of light. Relying on this fact, we guarantee to obtain the
upper bound of the distance between two parties, as the dishonest
party can not claim to be closer than he really is because nothing
propagates faster than the light. Thus preventing distance fraud
attack too. The relay attack is prevented by forcing the adversary to
come closer to the victim, which increases the possibility of being
detected even by o�ine methods (i.e. visual detection).

An important feature of implementing distance bounding proto-
col is to rule out the assumption of selective jamming. To the best
of our knowledge, all related approaches depend on this assump-
tion. Jamming techniques work in theory as they depend on the
noise level or channel properties, and such methods are not easy to
implement [11]. Also, jamming techniques have a negative impact
on the network performance and can be bypassed as demonstrated
in [16]. On the other hand, Time Of Flight (ToF) based distance
bounding protocols (e.g. the one we use) are more reliable, and
often used to authenticate and evaluate the distance of the node
in many applications such as keyless entry systems in vehicles,
RFID door access systems, payment systems, and real time location
systems (e.g. RADAR) [6].

Figure 2 shows the basic principles of the distance bounding pro-
tocol proposed by Brands and Chaum. The protocol encompasses
three general phases. In the �rst phase, both the veri�er and the
prover generate a series of random bits. The number of bits depends
on a chosen security parameter, k, that expresses the degree of con-
�dence desired. The prover has to commit to the chosen values
using a secure commitment scheme in order to avoid cheating. The
backbone of the protocol is the second phase, which is the rapid
exchange of bits to measure the distance, where both parties ex-
change challenges and responses represented as single bits. The
basic idea is to precisely measure the round-trip time between two
unpredictable messages (a challenge and a response). The process
is repeated k times and each time the veri�er computes the elapsed
time. The veri�er’s challenges are unpredictable and each response
has to be computed as a function of the corresponding challenge to
ensure sending it after receiving the correct challenge. This helps in
estimating the upper bound of the real distance of the prover node.
Since we are interested in the propagation time, the processing

delay should be very small and negligible compared to the time of
�ight, taking into account that 1 nanosecond processing time yields
30 cm accuracy of RTT (15 cm of propagation time). This prevents
a computationally powerful malicious node claiming false position.
The proposed operation in the protocol is a simple XOR between
two bits. In the last phase, the prover opens the commit. The veri�er
veri�es it and computes the upper bound of the distance according
to the following equation:

(
max (RTTi ) − α

2
) × C

where α is the processing time and C is the speed of the light.
If node authentication is required, public key cryptography can

be used in the last phase to sign and verify the exchanged nonces.
Public key identi�cation schemes such as Fiat-Shamir can also be
used for authentication, as described in the original paper [8].

5 SPEED

SPEED is a challenge-response protocol dedicated for secure erasure
by allowing a node (e.g. a user of mobile phone) to securely and
remotely delete the memory of another node (e.g. IoT device) and
to get a proof of secure erasure without any pre-knowledge in
advance. PoSE is given by the construction of SPEED itself without
the requirement to run other protocols. Node authentication occurs
by verifying the proximity of the two corresponding nodes through
the implementation of a secure version of the DB protocol.

We start by outlining the attacker model. We then introduce and
analyze SPEED, and explain the working mechanism behind the
integration of the aforementioned building blocks in Section 3 and
Section 4.

5.1 Adversarial Model

As a consequence of the advances in the IoT domain, attention
started to shift from designing architectures relying on dedicated
infrastructure to new trends of design using shared and distributed
infrastructure [3, 14]. Hence, our case reference is that a single
infrastructure provider deploy a set of smart devices for the public
use as a shared hardware where any user can deploy his software
and data over a custom IoT device for a period of time. Upon ac-
complishing the work, the user releases the underlying IoT device
after verifying the cleanness of its memory and that nothing is left
in it. Also, the user can perform the secure erasure of the memory
before the software deployment in order to ensure that it doesn’t
store any unwanted software or malware.

We consider two types of adversaries based on the recently
proposed taxonomy [1]:

• Remote adversary: exploits software bugs remotely at the
prover side to infect it with malware.
• Local adversary: a standalone device, located in vicinity of
the prover to eavesdrop on and interfere with the prover’s
communication.

As most other related work, we rule out all types of physical attacks.
Also, denial-of-service (DoS) attacks are beyond the scope of this
paper. Furthermore, we assume that TSM code is bug and exploit
free and is deployed on the IoT device by a trusted party.
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Figure 3: Overview of SPEED

5.2 Design Rationale

SPEED relies on the integration of two security primitives; memory
isolation and distance bounding protocol. The latter is needed for
the prover to verify the distance of the veri�er, where the veri�er is
the node that wants to clean the memory of another node (prover)
and get a proof of erasure. If the veri�er is within range, the target
device (prover) executes the request of secure erasure, otherwise,
no change occurs. All necessary functions needed to run SPEED
are located in the TSM. Memory isolation is guaranteed by the
sandboxing technique we designed and implemented in Section 3.

Measuring the round-trip-time (RTT) of a given message pro-
vides a bound on the distance and this helps in preventing MITM
attack and all of its related forms (e.g. ma�a-fraud attack) since
the simplest technique of relaying messages consumes an extra
time and consequently results in a longer distance. The security
of the DB protocol, we implement, is veri�ed in [17] and thus it
prevents against MITM attack as measuring RTT according to the
speed of light can’t be spoofed even if the adversary has a powerful
hardware. This advantage of the DB replaces the assumption of
using selective jamming, where DB is simpler to implement on the
resource-constraint devices and easier to prove its security.

Figure 3 illustrates SPEED. Denoting the veri�er as ν and the
prover (target device) as ρ, the protocol starts by generating random
nonces of length n bits at both sides. ν sends to ρ the hash value
(the commit) of the chosen nonce to avoid cheating of sending
responses in the future. Upon receiving the commit, ρ starts the
rapid bit exchange phase by sending a challenge composed of one
bit and wait for a response from ν . The rapid bit exchange process
is repeated n times. Assuming that we are in the ith iteration, the
response is the result of XORing the two corresponding bits (the
i
th challenge bit and the ith bit in ν ’s nonce). By the end of this

phase, ρ knows the maximum round-trip time (RTT) and is able
to compute the hash value of the nonce generated by ν . Hence, ρ
can verify the received commit (e.g. Verify(commit)) and establish
an upper bound of ν ’s distance (e.g. VerifyDB(Max(RTTi ))). If both
veri�cation steps are passed successfully, the secure erasure of
the memory takes place by resetting the value of each byte in the
memory to be equal to either a default value or to a value of one of
the random bytes in the nonces (e.g. EraseMemory(X)). In the last
step, ρ generates a session key by computing the MAC value of
the alternating bits-concatenated nonces and then computes the
message authentication code (MAC) of the entire memory using
this key (e.g. H = MAC(MAC(X)||(MeM))). ρ sends the result back to
ν along with its MAC value to ensure integrity. Finally, ν veri�es the
outcome by following the same deterministic steps of computing
the MAC. If both values are equal, secure erasure has occurred. We
notice that our protocol has minor modi�cations with regards to
the original DB. ν does not have to open the commit after the rapid
bit exchange phase, as we use the same public hash function used
for computing the MAC of the memory to compute the hash value
of the chosen randomness by ν in the initial phase. ρ can verify
it easily after the second phase. Moreover, we do not consider the
authentication using public key cryptography since our scenario
simulates the case where there is no prior knowledge between ν

and ρ. Any ν close to any ρ can execute the secure erasure of the
memory. The execution of SPEED occurs only from a valid entry
point and is not interruptible as all global interrupts are disabled
prior to the start and activated again after clearing the RAM from
all temporary variables used during the run of the protocol.

5.3 Security Analysis

To analyse the security of SPEED, we �rst present the existing and
related attacks on both Distance bounding [6] and similar challenge-
response (e.g. Remote Attestation) protocols [18] and then defend
against them considering the aforementioned adversarial model
(Section 5.1) and under the following assumptions:

• AS1: We assume a source of true and unpredictable ran-
domness on both sides, and all responses depends on the
corresponding challenges (e.g. r = f(c)).
• AS2: The cryptographic hash function used for commitment
and computing MAC is secure.
• AS3: The TSM guarantees that the prover device can only
communicate with the veri�er during the run of SPEED (e.g.
single uninterruptible thread of execution).

5.3.1 Security of TSM. The software-based memory protec-
tion unit (TSM), that we implement, is the core of providing the
security of SPEED. SPEED, similarly to all other challenge-response
protocols, can be vulnerable to one or more of the following at-
tacks [18]:

• Precomputation attack: The ability of the adversary to pre-
dict the challenges sent by the IoT device (e.g. the node (ρ)
that wants to verify the distance of another node (ν )) and
precompute valid responses in advance.
• Replay attack: The ability of the adversary to eavesdrop
to the correct outcome of the erasure routine from a non-
compromised node (ρ), store it, and then reply it when
needed.
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• Forgery attack: The adversary may alter the erasure routine
to forge a real but not valid outcome from (ρ) in order to
give a fake proof of erasure.
• Impersonation attack: The adversary might impersonate a
genuine node (ρ) and send valid but fake proofs of erasure
to ν .
• Proxy attack: A dishonest node (ν ) might relay the challenges
to a more powerful node that is able to compute a valid
response in its behalf.
• Collusion attack: The ability of a compromised node (ρ) to
collude with other nodes to provide a valid proof of erasure
without erasing the actual content of memory.
• Memory copy attack: If there is an enough free space in
the prover’s memory, the adversary can keep a copy of the
original memory contents. Then, he can modify the erasure
routine so it computes a response over the memory locations
where his copy is not maintained.
• Compression attack: The adversary might save a compressed
version of the prover’s memory in a random location and
decompress it after the execution of the erasure routine. It is
a special case of the memory copy attack.
• Return-oriented programming (ROP) attack: the adversary
may modify the control-�ow of the prover’s code to execute
arbitrary operations by linking together small sequences of
instructions, called gadgets, without making any changes to
the program memory.

Precomputation and replay attacks are no longer feasible as AS1
guarantees that the challenges are unpredictable and the hash value
of the memory is variable since it depends on the nonce generated
by these challenges.

The forgery attack aims to overcome the secure erasure routine
itself and tamper with the TSM code. This is prevented by the
access rules enforced by the TSM at deployment time, where read
and write operations to this part of the memory are not allowed,
whereas execution can only occur from speci�c entry points after
disabling all global interrupts to ensure atomicity. Moreover, AS1
and AS2 guarantee that MAC values can’t be forged.

Impersonation attack is prevented and can easily be detected
using either o�ine methods (e.g. visual detection) as we are con-
sidering small distances or by the responses which would re�ect
an invalid value of MAC.

Proxy and collusion attacks are not valid under the adapted
threat model and AS3. Moreover, Proxy attack is already prevented
by the countermeasure of the terrorist fraud attack as we see later.

Memory-copy, compression, and ROP attacks have the same goal
as the forgery attack, aiming to modify the TSM code and alter with
the secure erasure routine. This is totally prevented by the employed
sandboxing mechanism under the aforementioned threat model
(e.g. No physical access). Nevertheless, any bug of the deployed user
application (e.g. stack over�ow) increases the possibility of ROP
attack to occur. However, this attack is implementation-speci�c and
requires high e�orts to cause damage. The security of the TSM still
can not be broken by this attack. However, if succeeded, it executes
arbitrary lines of the TSM code without modifying or altering it.
This means that TSM still guarantees to provide a valid proof of

erasure by the end of a correct execution of the secure erasure
routine.

5.3.2 Security of Distance Bounding. There are four major
attacks that threaten the security of the DB protocol:

• Impersonation: An impersonation fraud is an attack where
an adversary acting alone purports to be a legitimate prover.
• Distance fraud: The claim of a dishonest party (ν ) to be closer
than (s)he really is.
• Ma�a fraud: A special type of man-in-the-middle attack, in
which, the third party is passive and simply relays messages
regardless of their content.
• Terrorist fraud: A variant of ma�a fraud attack, in which,
the prover (e.g. in our case: ν ) colludes with the adversary to
deceive the veri�er (e.g. in our case: ρ) that (s)he in vicinity
without disclosing the secret key to the adversary, where the
adversary performs the �rst two phases of the protocol (e.g.
see Figure 2) and the dishonest prover (ν ) performs only the
signing phase.

Countermeasures to such attacks are already proposed and dis-
cussed in literature [6, 17] and hence we just implement them.

In our case, the impersonation attack is useless as all devices can
act as legitimate provers (ν ) since authentication using secret/pri-
vate key is not required.

The RTT distance-estimation technique, that we use, depends
on precise timing, as a deviation of a few nanoseconds a�ects neg-
atively on the estimated distance (e.g. 6 ns add an extra 1 meter).
Depending on this strict timing property and taking into account
AS1, we prevent ma�a fraud attack as even a simple relay of mes-
sages unavoidably adds an extra time and thus results in longer
distance. Accordingly, distance fraud attack is prevented too.

In SPEED, we do not depend on secret or private keys to authen-
ticate the prover as we demonstrate our scenario in the public space
and anyone in vicinity of the IoT device can delete it’s memory.
Therefore, in this case, terrorist fraud attack is the same as ma�a
fraud attack and thus it is implicitly prevented.

6 IMPLEMENTATION

We implemented a prototype of SPEED on an 8-bit AVR ATmega
1284p microcontroller (MCU) [4] mounted on the MicroPnP IoT
platform [22]. This MCU belongs to Class-1 devices which runs at
10 MHz, with 16 KB of SRAM, 4 KB of EEPROM, and 128 KB of
�ash memory. In addition to the MCU, MicroPnP o�ers an IEEE
802.15.4e [21] radio for wireless communication. In contrast to von

Neumann architecture, the AVR family of microcontrollers uses the
modi�ed Harvard architecture, where MMIO, instructions and data
memory are physically separated and not mapped on to a single
address space. The sandboxing techniques we implement, in SPEED,
can be applied to both architectures without any limitations.

The secure erasure of a device’s memory may be considered as a
prelude or a consequence of software deployment. We consider the
secure deployment of software out of scope in this paper. However,
in the implementation of the memory isolation, we take care that
the current untrusted application in the Instruction memory should
not violate the restricted rules explained in Section 3. This means
that the software installation should pass through some functions
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in the TSM in order to ensure the adherence to the rules and the
success of secure erasure later on.

From a programming point of view, we have two entry points
in the TSM (e.g. two public functions), from which we can execute
the code. The �rst entry point is called the Loader. The Loader

function is responsible to load the produced binary image of the
application in a temporary area in the application memory and
verify its instructions to see if they adhere to the rules or not.
Veri�cation is done line by line at the assembly level. If even only
one statement violates the rules (e.g. jump to a restricted point
in the TSM), the whole application is rejected. As argued before,
in a standard toolchain, producing the binary image of the user
application goes through the compiler, the assembler, and then the
linker. We edited the toolchain by adding a post-processor between
the assembler and the linker in order to replace all unsafe dynamic
instructions with safe virtual ones. These instructions cannot be
checked statically by the Loader function at the deployment time
and therefore they are checked at runtime. Any violation caused
by one of these instructions makes the device restarting itself in
order to avoid the unauthorized execution of the malicious code.

The second entry point is the SecureErasure function, using
which, we execute the erasure routine described in Figure 3. All
related functions are located in the TSM memory and can be exe-
cuted through this entry point. The protocol starts by disabling all
global interrupts. Therefore, the correct and atomic execution of
this function is guaranteed. The veri�cation of secure erasure re-
quires the computation of the message authentication code (MAC)
of the entire memory. We developed two versions of our system. In
the �rst one, we use an optimized implementation of the sponge
Keccak-256 (SHA-3 standard) function in the assembly level to com-
pute the MAC. In the second, HMAC-SHA1 is used. The same hash
function is used for computing the commit in DB and verifying it.
The output of Keccak is 256 bits long, whereas HMAC-SHA1 output
is 160 bits long. We considered a length of 128 bytes for generating
nonces which can be adjusted according to the speci�c domain of
application. At the end of the rapid exchange bytes process, both
parties have a nonce of length 2n (256 bytes).

7 EVALUATION

We evaluate SPEED according to many factors: (i) performance, (ii)
memory footprint, (iii) power consumption, and (iv) the accuracy
of estimating the distance between two parties.

7.1 Performance

The main parameters that a�ect the time overhead of SPEED are:

• Number of exchanged bits. Launching SPEED requires
exchanging a limited number of bits (seed) between the veri-
�er and the prover. The length of this seed does not depend
at all on the size of the memory and can be adjusted by the
user, where the longer the sequence of bits exchanged, the
more accurate the measurement is. In our experiment, we
considered a length of 128 bytes as a seed. The objectives of
this seed are manifold: (i) establishing the upper-bound of
the distance between the veri�er and the prover, (ii) using
it as a nonce to satisfy the freshness property, and (iii) gen-
erating a session key to compute the corresponding MAC.

Table 1: Evaluation of MAC constructions

MAC
Memory footprint Performance

ROM (bytes) RAM (bytes) Time (sec)
HMAC-SHA1 1296 86 6.8
Keccak-256 1512 174 12.9

In contrast to other existing approaches [12, 15], SPEED has
the advantage that it does not require exchanging a number
of bits equals to the size of prover’s memory to overwrite it.
Thus, it incurs very small communication overhead.
• Memory access time. SPEED requires accessing each byte
address in the memory twice. First, to erase it’s content.
Second, to compute the MAC. The speed of accessing the
memory mainly relies on the clock rate of the MCU. In our
experiment, the microcontroller operates at 10 MHz. This
means that the total time of accessing the memory accounts
just for a small fraction of the total run time of SPEED.
• Computation of MAC. Table 1 shows the time required to
compute the MAC of the application memory using either
HMAC-SHA1 or Keccak-256. It is clear that total time con-
sumed by running SPEED mainly depends on the time of
computing the MAC. This metric is approach-independent
which relies on the device capabilities (e.g. the speed of the
clock), the type of MAC selected, and the performance of
the MAC implementation used.

7.2 Memory overhead

• Flash Memory The TSM code has to be placed in the boot-
loader section which is part of the �ash memory. SPEED
requires no more than 4 KB of the �ash memory. The ex-
act code size of SPEED using HMAC-SHA1 is 2866 bytes,
whereas it is 3102 bytes when using Keccak-256.
• RAM The overhead of using RAM is limited only to the use
of the stack for holding temporary bu�ers and variables. In
AVR, execution of instructions is only allowed from the Flash
memory. Our evaluation shows that SPEED requires either
494 bytes or 582 bytes of RAM when using HMAC-SHA1 or
Keccak-256 respectively. Table 1 presents the memory over-
head of the MAC constructs without other helping functions
in the TSM.

7.3 Power Consumption

The MicroPnP IoT platform, where we perform our experiment,
consumes 3.54 mA when operating on 10 MHz in the active mode,
and 54.5 µA in the idle mode. Every MicroPnP platform is pow-
ered by a standard 3000 mAh battery pack. The baseline battery
lifetime, if the MCU is in the sleeping mode constantly, is 6.5 years.
Considering these values, Figure 4 shows the estimated lifetime
of the battery when running SPEED using either HMAC-SHA1 or
Keccak-256 under di�erent rates of time.

7.4 Accuracy of measuring the distance

The DB primitive in SPEED aims to establish the upper bound on
the distance of the other party and does not target the exact location
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Figure 4: The impact on battery lifetime when using either

HMAC-SHA1 or Keccak-256 primitives in SPEED.

of this party. We measure according to the speed of the light. So,
a delay of 1 ns a�ects the distance of 15 cm. The microcontroller
between hands (e.g. ATmega 1284p) operates on 10 MHz frequency
and this means having a resolution of 100 ns in the ideal condition
(e.g. The processing time is identi�ed accurately on both sides,
etc.), where a device with a distance of 1 m is detected as 15 m
farther. Longer the range the more accurate is the measurement.
For example, with this resolution, all devices within a range of 1m
to 14m will be labeled with a distance of around 15m. Since we are
conducting our experiment within close range, this resolution does
not help us. Therefore, we depend on the distance measurement
functionality in the transceiver module itself. The IEEE 802.15.4
transceiver [5] between hands has a time-of-�ight facility built into
the hardware that improves the accuracy of measuring distance.
Experimentally, we got an accuracy of 3 meters, which means a
resolution of 20 ns . However, there are some distance measurement
technologies [13] that integrate the aforementioned transceiver
with a custom �rmware to acquire special features like a RADAR
system, thus giving a high accuracy where the resolution is near 1
ns .

Nevertheless, not all microcontrollers are integrated with such
type of transceivers. In this case, the microcontroller should rely
on the internal capabilities to calculate RTT accurately. Though
recent work has yielded some proposals for establishing the upper
bound on the distance between wireless sensor nodes with standard
hardware [2], we still believe that this research problem is hardware-
dependent and remains an open issue.

8 CONCLUSION & FUTURE WORK

Secure remote decommissioning (e.g. erasure) is as important as
secure remote provisioning (e.g. deployment), and should be a key
requirement for IoT devices. This paper proposed SPEED, an ap-
proach to secure provable erasure for embedded devices. It can
be applied to all Class-1 IoT devices without any limitations. Our
approach depends on isolating part of the �ash memory using se-
lective software virtualization and assembly level veri�cation to
store the trusted software module. We then build the secure erasure
mechanism using DB protocol to prevent man-in-the-middle at-
tack. The evaluation results show that SPEED incurs an acceptable
overhead in terms of memory footprint, power consumption and

performance. A fundamental limitation of SPEED is that it is limited
to small (visual) distances.

In future work, we plan to investigate SPEED with a stronger
attacker model where physical attack (e.g. the invasive one) should
be taken into account by implementing some techniques in the
TSM to detect it (e.g. detecting loss of power). Finally, a formal
veri�cation of the TSM code and a demonstration of a real and
complete scenario including secure software deployment as well is
another future goal.
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