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Abstract

Transaction processing speed is one of the major considerations in cryptocurrencies that are
based on proof of work (POW) such as Bitcoin. At an intuitive level it is widely understood that
processing speed is at odds with the security aspects of the underlying POW based consensus
mechanism of such protocols, nevertheless the tradeoff between the two properties is still not
well understood.

In this work, motivated by recent work [8] in the formal analysis of the Bitcoin backbone
protocol, we investigate the tradeoff between provable security and transaction processing speed
viewing the latter as a function of the block generation rate. We introduce a new formal
property of blockchain protocols, called chain growth, and we show it is fundamental for arguing
the security of a robust transaction ledger. We strengthen the results of [8] in the following
ways: we show how the properties of persistence and liveness of the ledger reduce in a black-box
fashion in the underlying properties of the backbone protocol, namely common prefix, chain
quality and chain growth, and we improve the security bounds showing that the robustness of
the ledger holds for even the faster (than Bitcoin’s) block generation rates which have been
adopted by other “alt-coins.” We also present a theoretical attack against bitcoin which we
validate in simulation that works when blockchain rate is highly accelerated. This presents a
natural upper bound in the context of the speed-security tradeoff. By combining our positive
and negative results we map the speed/security domain for blockchain protocols and list open
problems for future work.

*Work performed while at the National and Kapodistrian University of Athens, supported by ERC project CO-
DAMODA #25915.
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1 Introduction

The capability for fast transaction processing is a major consideration in any payment system and
a litmus test for its potential to scale at a global level. For “blockchain” based protocols such as
bitcoin [14] the current picture is rather grim: some reported! current rates for Bitcoin processing
speed is 7 transactions per second (tps) while Paypal handles an average of 115 tps and the VISA
network has a peak capacity of 47,000 tps (though it currently needs 2000-4000 tps). It goes without
saying that improving transaction processing of cryptocurrencies is one of the major considerations
in the research of payment systems like Bitcoin, cf. [3].

Bitcoin relies on the distributed maintenance of a data structure called the blockchain by a set
of entities called miners that are anonymous and potentially dynamically changing. The protocol
that maintains the blockchain relies on proofs of work (POW) for ensuring that miners converge
to a unique view of this data structure. The blockchain can be parsed as a ledger of transactions
and assuming that the adversarial parties collectively constitute less than half of the network’s
computational power (also referred to as hashing power since the main computational operation
is hashing) it is ensured that all parties have the same view of the ledger. The transactions in
the blockchain are organized in blocks and each block is associated with a POW. The number of
transactions that fit inside each block is bounded (and is currently restricted by a 1MB cap).

Beyond the obvious engineering factors that affect transaction processing speed of blockchain
protocols (such as network speed and computational power needed to verify transactions) the two
main factors are the size of blocks and the rate that blocks are generated. The current 1MB cap on
transactions is heavily debated and proposals for a 20-fold increase have been made?. Regarding
the block generation rate recall that the original parameter setting for Bitcoin attempts to stabilize
it at 1 block per 10 minutes. This is achieved by suitably calibrating the hardness of the POW
instances that are solved by the miners. At an intuitive level, the POW difficulty is an intrinsic
feature for security as it prohibits the adversary from flooding the network with messages and gives
the opportunity to the honest parties to converge to a unified view.

A useful unit of time to measure the block generation rate is a round of full information propa-
gation. Indeed, the effect that the speed of information propagation may have on security is widely
understood at least informally and the effect of the former on the latter was predicted by [6]. In
[8] a formal relation between the two was proven: it was observed that security can be formally
shown if the parameter f, expressing the expected number of POW solutions per complete round
of information propagation, is sufficiently small. In that work it was shown that as f gets closer
to 0 the maximum adversarial hashing power that the protocol can withstand approximates 50%,
Bitcoin’s claimed theoretical limit; on the other hand, as f gets larger the security bound gets worse
and it completely vanishes when f =1, i.e., the rate of expected 1 block per round.

In [6] it is argued that for blocks of reasonable sizes (including those currently used), the block
size is linearly dependent in the time it takes for a full communication round to be completed. From
this one can argue that round duration is linearly related to block size. Furthermore, transaction
processing speed is proportional to block size and also proportional to block generation rate per
unit of time (say seconds). Given that we measure time in rounds of full communication we can
express the following intuitive relation for transaction processing speed (measured in Kb/sec):

block size x f
round duration

transaction processing speed

As a result, since scaling the block size is expected to scale the round duration by the same

'See https://en.bitcoin.it/wiki/Scalability
2See e.g., [5, 18, 16] and http://gavintech.blogspot.gr/2015/01 /twenty-megabytes-testing-results.html



constant, if we keep the same value of f, the transaction processing speed will be unaffected. Hence,
the dominant factor for improving transaction processing speed, would not be the block-size, but
rather the block generation rate (per round) represented by f. It follows that, given the security
critical nature of this parameter, it is important to understand how large it can be selected while
maintaining the security of the system.

Interestingly, a number of alternative cryptocurrencies (alt-coins) that are based on Bitcoin have
tinkered with the block generation rate of Bitcoin (see Figure 1) to achieve faster processing without
however providing any formal arguments about the security implications of such choices.

Cryptocurrency | block gen. rate (sec) | f (blocks/round) 1/f
Bitcoin 600 0.021 47.6
Litecoin 150 0.084 11.9

Dogecoin 60 0.21 4.76
Flashcoin 6 — 60 0.21-2.1 0.476-4.76
Fastcoin 12 1.05 0.95

Ethereum? 12 1.05 0.95

Figure 1: A list of the different block generation rates various altcoins have chosen and the cor-
responding f,1/f values assuming one full communication round takes 12.6 seconds (this is the
average block propagation time as measured in [6]). Notice Bitcoin’s conservative choice. The value
f is the expected number of POW’s per communication round. The value 1/f is also given which
is roughly the expectation of rounds required to obtain a POW.

Given the above motivation the fundamental question we seek to answer is the following:

For a given block generation rate expressed as the expected number of blocks per round
(parameter f), what is the maximum adversarial hashing power that can be provably
tolerated by a population of honest miners?

The above question may be posed for the core of the Bitcoin transaction ledger protocol (the
Bitcoin “backbone” protocol as defined in [8]) but also for other similar protocols that attempt to use
POW?’s to maintain a blockchain distributively notably the GHOST rule suggested by Sompolinsky
and Zohar [17].

Our Results. In this work, we investigate speed-security tradeoffs in blockchain protocols as a
relationship between block generation rate f and the bound on the hashing power of the adversary.
Specifically, our results are as follows.

e We introduce a new property for blockchain protocols, called chain growth that is cast in the
model of [8] and complements the two properties suggested there (common prefix and chain
quality). In addition, we introduce a strengthened version of the common-prefix property.
We argue that chain growth is a fundamental property of backbone protocols independent
of the other two. We illustrate this by showing that a backbone protocol satisfying all three
properties implements a “robust transaction ledger” in a black-box fashion (something that
we observe to be not true if one relies on just common prefix and chain quality — the two
properties by themselves are insufficient to imply a robust transaction ledger? ). Furthermore,

3Currently the Ethereum Frontier reports an average of about 17 seconds, cf. https://etherchain.org; the 12
seconds rate was discussed by Buterin in [4].

“This does not suggest an error in [8] but rather points to the fact that the proof given there regarding the
implementation of a robust transaction ledger by the bitcoin backbone is not black-box on the two properties of
common prefix and chain quality.


https://etherchain.org

chain growth is a property of interest from an attacker’s point of view as it is fundamentally
linked to the transaction processing speed and can constitute an adversarial goal in its own
right: it captures the class of adversaries that are interested in slowing down the growth of
the chain and thus also the transaction processing time.

o We substantially improve the level of security for higher rates and in this way we prove security
for bounds close to 50% for alternative cryptocurrencies (including e.g., Litecoin) that have
opted for much faster block creation rates compared to Bitcoin. See Figures 2 and 3 for graphs
showing our improved security analysis.

e We finally present simulation results and an attack against the Bitcoin backbone protocol
that presents a natural upper barrier in the speed-security domain. The attack focuses on the
common prefix property and shows how the view of two honest parties can be divergent when
the block generation rate becomes too high.

e We reformulate the properties of persistence and liveness of [8] to better reflect the separation
between “safety” and “liveness” properties in distributed systems, cf. [11]. Specifically, our
persistence property is slightly weaker than the corresponding property of [8], while the liveness
property is significantly strengthened in the sense that an existential quantifier is substituted
by a universal quantifier.

Ethereum. Ethereum has attracted considerable attention from investors as well as from the media
for the past 3 years. As explained in [9], Ethereum uses a variant of the Bitcoin protocol where
tie-breaking between chains of the same length is resolved randomly. In the model we consider,
the adversary is rushing which means that any attack against randomized chain selection can be
simulated (we can suitably restrict the behavior of our adversary so that tie-breaking is resolved
randomly by the honest parties). Moreover, the attack we present in Section 5 is also applicable
against Ethereum with insignificant changes. In this way, our work can also contribute in the ongoing
dialog regarding the security related choices that are made when designing new alt-cryptocurrencies,
from a provable security perspective.

Concurrent and subsequent work. Pass et. al in [15] consider the security of the Bitcoin
backbone in a partially synchronous setting. Towards this end, a similar definitional framework to
that of [8] is presented suited for partially synchronous executions. The chain growth property we
introduce, as well as the liveness black-box reduction we show, proved also helpful in their domain
as well. Tt is worth pointing out that the chain growth property, as defined in [15], is stronger than
our formulation. As we will see, cf. Section 4, the stronger version cannot be satisfied by some
well-known, other than bitcoin, blockchain protocols that have been proposed. Moreover, [15] show
how to black-box reduce persistence to chain growth and a property called consistency which is
more general than the property of common prefix of [8] (in which work, a non-black-box proof for
persistence was given). The strong common prefix property we present here is equivalent to the
property of consistency of [15], and directly generalizes the common prefix property of [8].

Limitations and directions for future research. Our analysis is in the standard cryptographic
model where parties fall into two categories, those that are honest (and follow the protocol) and
those that are dishonest that may deviate in an arbitrary (and coordinated) fashion as dictated by
the adversary. It is an interesting direction for future work to consider speed-security tradeoffs in
the rational setting where all parties wish to optimize a certain utility function. Designing suitable
incentive mechanisms is a related important consideration, for instance see [12] for a suggestion
related to the GHOST protocol. The analysis we provide is in the static setting, i.e., we do not take



into account the fact that parties change dynamically and that the protocol calibrates the difficulty
of the POW instances to account for that; we note that this may open the possibility for additional
attacks, [1], and hence it is an important point for consideration and future work. Our notion of
round (borrowed from [8]) assumes complete information propagation between all honest parties;
in practice information propagation is a random variable that depends on the peer to peer network
topology and some parties learn faster than others the messages communicated; depending on the
properties of the random variable this can be accounted in our model by including the tail of the
distribution as part of the adversary. Finally, the positive and negative results we present between
speed and security still have a gray area in which it is unknown whether the protocols are secure
or there is an attack that breaks security. While the above four points are limitations (and suggest
interesting directions for further research in the area) our model and analysis can be extended to
account for such stronger settings and hence our results may serve as the basis for further exploring
the tradeoff between transaction processing speed and provable security. Another important aspect
is privacy in the transaction ledger (cf. [2, 13]) which our analysis, being at a “lower” level in the
blockchain protocol does not interact with directly.

Organization. In section 2 we overview the model that we use for expressing the protocols and the
security properties. In section 3 we present our improved analysis for the Bitcoin backbone protocol.
In section 4 we introduce the chain growth property as well as a black-box proof for Liveness. Finally,
in section 5 we present our attack against the common prefix property for Bitcoin.

2 Preliminaries

2.1 Model

For our model we adopt the abstraction proposed in [8]. Specifically, in their setting, called the
g-bounded setting, synchronous communication is assumed and each party is allowed ¢ queries
to a random oracle. The network supports an anonymous message diffusion mechanism that is
guaranteed to deliver messages of all honest parties in each round. The adversary is rushing and
adaptive. Rushing here means that in any given round he gets to see all honest players’ messages
before deciding his own strategy. However, after seeing the messages he is not allowed to query
the hashing oracle again in this round. In addition, he has complete control of the order that
messages arrive to each player. The model is “flat” in terms of computational power in the sense
that all honest parties are assumed to have the same computational power while the adversary has
computational power proportional to the number of players that it controls.

The total number of parties is n and the adversary is assumed to control ¢ of them (honest
parties don’t know any of these parameters). Obtaining a new block is achieved by finding a hash
value that is smaller than a difficulty parameter D. The success probability that a single hashing
query produces a solution is p = 2% where k is the length of the hash. The total hashing power of
the honest players is @ = pg(n — t), the hashing power of the adversary is § = pqt and the total
hashing power is f = o + 8. A number of definitions that will be used extensively are listed below.

Definition 1. A round is called:
e successful if at least one honest player computes a solution in this round.
e uniquely successful if exactly one honest player computes a solution in this round.

We will denote by X; (resp. Y;) the random variable which is equal to 1 if ¢ is a successful round
(resp. uniquely successful) and 0 otherwise.



Definition 2. In an execution blocks are called:
e honest, if mined by an honest party.
e adversarial, if mined by the adversary.

Definition 3. (chain extension) We will say that a chain C’ extends another chain C if a prefix of
C’ is a suffix of C.

In [8], a lower bound to the probabilities of two events, that a round is successful or that is
uniquely successful (defined bellow), was established and denoted by v, = a —a?. While this bound
is sufficient for the setting of small f, here we will need to use a better lower bound to the probability
of those events, denoted by ~, and with value approximately ae™® (see Appendix). Observe that

Y > VYu-

2.2 Backbone Protocols

In order to study the properties of the core Bitcoin protocol, the term Backbone Protocol was
introduced in [8]. On this level of abstraction we are only interested on properties of the blockchain,
independently from the data stored inside the blocks. In the same work the Bitcoin backbone
protocol is described in a quite abstract and detailed way. The main idea is that honest players, at
every round, receive new chains from the network and pick the longest valid one to mine. Then, if
they mine a block, they broadcast their chain at the end of the round. For more details we refer
to 8, Subsection 3.1].

2.3 Security properties

Two crucial security properties of the Bitcoin Backbone protocol were considered in previous works:
the common prefir and the chain quality property. The common prefix property ensures that two
honest players have the same view of the blockchain, if they prune a small number of blocks from
the tail of their respective chains. On the other hand, the chain quality property ensures that
honest players chains’ do not contain long sequences of adversarial blocks. These two properties
were shown to hold for the Bitcoin Backbone protocol.

Also in the same work, the robust public transaction ledger primitive was described. This prim-
itive captures the notion of a book, in which transactions are recorded, and was used to implement
Byzantine Agreement in the honest majority setting. The primitive satisfies two properties: persis-
tence and liveness. Persistence ensures that, if a transaction is seen in a block deep enough in the
chain, it will stay there. And liveness ensures that if a transaction is given as input to all honest
players, it will eventually be inserted in a block, deep enough in the chain, of an honest player. The
Bitcoin Backbone was shown to be sufficient to construct this kind of ledger. More details about
the security properties and the primitive are given in Appendix A.

3 Bitcoin’s Persistence

3.1 A better bound for the common prefix property

In this section we present a better security bound than the one in [8] regarding the common prefix
and persistence properties of the Bitcoin backbone protocol. The bound of [8] is derived by the
observation that the adversary should produce a block for all rounds that are silent and uniquely
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successful. With this, it is shown that ~, > w& is sufficient for security; observe that in
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general the coefficient w > 1 for any f > 0. Here we show that v > f is sufficient thus we
eliminate entirely the dependence on f in the coefficient of 5 (also recall v > ~,). This improvement
in the bound has a significant impact in terms of provable security as shown in Figures 2,3.
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Figure 2: The level of provable security comparing the results of [8] and our improved results for
Bitcoin. Under the curves the common prefix property provably holds. The respective block-rate
values chosen for two altcoins are depicted on the graph.

Our main tool to derive this is a proof that all uniquely successful rounds have to be compensated
by the adversary (and not just those that are silent). To show this we have to perform a more delicate
analysis that requires some additional terminology. Next we introduce the notion of an m-Uniform
round as well as that of the base of a round.

Definition 4. (m-Uniform rounds) We call a round m-Uniform if, at that round, m is the minimum
value such that for all chains Cy,Co that any two honest parties adopt at this round, it holds that
[ICi| = [Col| < .

Definition 5. (base(r)) Let base(r) denote the length of the shortest chain than an honest party
adopts at round 7.

By definition, if some round r is m-uniform, then it follows that on the next round, honest
parties will mine chains of size at least base(r) + m. Moreover, it holds that if some round r is
uniquely successful then base(r+1) will be greater or equal to base(r)+Y,, since the solution mined
by the honest party will be known to all parties by round r + 1 and he is mining a chain of length
at least base(r). More compactly:

Observation 6. For every m-uniform round r it holds that
base(r) + max{Y,, m} < base(r + 1)

As it was discussed earlier, uniquely successful rounds are “bad” for the adversary, because they
help honest parties consent on a single blockchain in the following round. On the other hand, m-
Uniform rounds are “good”, since some honest parties may mine on shorter chains and thus waste
their hash queries. Unfortunately for the adversary, this type of rounds does not happen naturally
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Figure 3: Similar to figure 2 but for larger values of 1/f. Under the curves the common prefix
property provably holds. The respective block-rate values chosen for two popular altcoins are
depicted on the graph. Bitcoin is in the far right (recall from table 1 that for Bitcoin it holds
1/f ~47).

in the system and he must mine and broadcast blocks of his own to make a round non-uniform
(m-uniform with m > 0). The adversary must still compensate for all uniquely successful rounds
independently of uniformity as shown in the next lemma.

Lemma 7. Suppose Cy is the chain that some honest party P; has adopted at round r and there
exists chain Co of length at least base(r — 1) + Y,._1 that has been mined until round r and diverges
from C1 at round s < r. Then, fort= Z::_; Y;, the adversary must have mined and broadcast blocks
hyo.o b dn chains CY, ..., C until round r where for i € {1,...,t}, C! has a suffiz that contains
only adversarial blocks, including b}, and some honest party has adopted this chain at some round
in [s,r—1].

Proof. Suppose round 7; is m;-uniform for ¢ € {1,..,¢}. We prove that the adversary must have
broadcast at least ¢ blocks in specific positions in the chains, in order for the fork to be maintained.

Claim 1. Let r be a uniquely successful round that is m-uniform, with s < r, then:

1. if m > 1, there exists a chain C such that blocks at positions
base(r) + 1, ..., base(r) + m
are mined by the adversary.

2. if m =0, at the end of round r and onwards and for all pairs of honest parties’ chains Cy1,Co
that diverge at round s, there exists an adversarial block in one of the two chains, in position
base(r) + 1.

Proof of Claim. The first point follows from the fact that all honest parties mine a chain of size at
least base(r). So for the round to be m-Uniform a chain of size at least base(r) + m must exist.
But honest parties, at the start of round r, have mined blocks on chains of at most size base(r).



Otherwise, no honest party would choose to mine a chain with length base(r). Therefore, blocks
at positions base(r) + 1, .., base(r) + m of the aforementioned chain must have been mined by the
adversary.

The second point follows from [8, Lemma 7]. Consider the chains Cy,Cy of two honest parties’ at
the end of round r and onwards that diverge at round s. For the sake of contradiction, assume that
both chains have an honest block at position base(r) + 1. In this case, from [8, Lemma 7| this block
must have been produced at round r and thus C1,Cs do not diverge at round s. This concludes the
proof of the claim. .

Notice that, for both cases in the previous claim the adversarial blocks belong to the suffix of
some chain which has a purely adversarial suffix and has been adopted by some honest player at
least at the same round.

It remains to show that the blocks that the adversary must broadcast for every different uniquely
successful round must be in distinct positions, and thus different. If m; > 1, from the previous
claim, item 1, the adversary has broadcast a chain where he has mined blocks at positions base(i) +
1,..,base(i) +m. On the other hand, if m; = 0, then, since C; and Cy diverge at round s, and they
have size greater or equal than base(i) + 1, the blocks at positions base(i) + 1 of the two chains
cannot be both mined by honest parties (due to the claim above, item 2). Thus, in at least one of
the two chains, the block at position base(i) + 1 has been mined by the adversary. Finally, from
Observation 6 it holds that base(i) + max({Y,,,m;} < base(i+ 1), and therefore all these blocks are
on distinct positions on the chains they belong. Thus the lemma follows. O

Given the above core lemma we can now easily prove the improved bound for the common-prefix
property following the same proof strategy as in [8]. Namely, it can be shown that the adversary
cannot use very old solutions to compensate for recent uniquely successful rounds, and thus by
suitably limiting his power he will be unable to produce enough solutions to compensate for every
uniquely successful round, as it is required by the core lemma (proof in the Appendix).

Lemma 8. Assume v > (14 0)83, for some real 6 € (0,1) . Suppose Cy is the chain that honest
party Py adopts at round r and Cy is the chain that some honest party Py adopts or has at the same
round. Then, for any s < r, the probability that C1 and Co diverge at round r — s is at most e~ Q)

Theorem 9. Assume v > (14 9)53, for some real 6 € (0,1). Let S be the set of the chains that
honest parties have at the beginning or have adopted at a given round of the backbone protocol.

Then the probability that S does not satisfy the common-prefix property with parameter k is at most
—Q(83k)
e )

3.2 The strong common-prefix property

Unfortunately, the common-prefix property as it was originally described in [8] is not sufficient
in order to proof Persistence in a black-box fashion. We will show that a stronger variant of the
common prefix holds for the Bitcoin Backbone and is sufficient. The proof of the stronger common
prefix property is implicitly given in [8]. Our contribution lies on identifying a version of the
common-prefix property that is sufficient for a black-box derivation of the persistence property.

Definition 10 (Strong Common-Prefix). The strong common prefix property Qcp, with parameter
k € N states that the chains Ci,Cs reported by two, not necessarily distinct honest parties Py, Ps,
at rounds rq,ro with 1 < ry are such that Cl{k < Cs.

10



Theorem 11. Assume v > (1 +0)3, for some real 6 € (0,1). Let S be the set of the chains of the
honest parties from a given round and onwards of the backbone protocol. Then the probability that

S does not satisfy the strong common-prefix property with parameter k is at most e~ QO%k)

Proof. Let C1,Co be the chains of some honest players Pj, P, at rounds ri,79. Let E(rg) be the

event where player P, has chain Cy at round 7o such that lek A Co. We are going to show that the
probability of this event is at most e~ SUSk)

If r1 = r9, the strong common-prefix property collapses to the original common-prefix property
(see Theorem 9). Otherwise, w.l.o.g. it holds that r; < ro. We have two cases. In the first case,
at round 79, P; has a chain that extends chain Cy. If E(ry) holds in this case, it is implied that
the original common-prefix property does not hold for the two chains at round ro, and again from
Theorem 9 the probability of this event is at most e~ QO%k)

In the second case, at round ro, P; has adopted some other chain C3 before round ro, but

after round ry. If C?[k A Ca, the same analysis as in the previous case applies. Suppose C?[k = Ca.

Since |C3| > |Cq] this implies that C{k # Cs, which happens with probability at most e=2(0°%) from
Theorem 9, since chains C; and C5 coexist in the same round. Thus with overwhelming probability
it holds that C{k = C3. Assuming F(r2) in this case implies again that the original common-prefix
property does not hold for the two chains at round ro, which happens with probability at most
e~ 2F) Tt follows that the probability of E(r2) in this case is also at most e~ k)

By applying the union bound for all events E(rg), where ro > 71, the theorem follows with
probability at most e~ QUER), O

Theorem 12 (Black-Box Persistence). Let S be the set of the chains of the honest parties from
a given round and onwards for some protocol 11, that satisfy the strong common-prefix property
property with overwhelming probability on parameter k. Then protocol 11 satisfies Persistence with
overwhelming probability in k, where k is the depth parameter.

Proof. Let C7 be the chain of some honest player P; at round r;. We show that if a transaction tz
is included in C’l[lg at round 71, then this transaction will be always included in every honest player’s
chain with overwhelming probability. For the sake of contradiction, suppose that persistence does
not hold. Then, there exists some player P, that at round r9 > r; adopts some chain Cs such that
(5 does not contain tx in exactly the same position. If Cl[k = Co, then C5 would contain tx in the

same position as C. Thus, from our assumption it follows that Cl[k Z Co which violates the strong
common-prefix property. The probability that the strong common-prefix property is violated is at
most e~%°%) and the theorem follows. O

4 Chain Growth

In addition to the two security properties of the Bitcoin backbone protocol mentioned in Section 2.3
we define a new property called chain growth. This property aims at expressing the minimum rate
at which the chains of honest parties grow. It is motivated by an attacker that has objective to
slow down the overall transaction processing time of the blockchain system. The common prefix
and chain quality properties do not explicitly address this issue, and this can be seen from the fact
that both properties can hold even if honest parties’ chains do not grow at all.

Definition 13. (Chain Growth Property) The chain growth property Q., with parameters 7 € R
(the “chain speed” coefficient) and s € N states that for any round r > s, where honest party P has

chain C; at round r and chain Cy at round 7 — s in VIEWg(A)Z(/@, q, z), it holds that |C1| —|Ce| > T-s.

11



Bitcoin. For the Bitcoin backbone protocol this property is satisfied with parameter 7 equal to v
and with overwhelming probability in s. Since all honest parties choose the longest chain they see,
and successful rounds happen with rate v, their chains will grow at least at this rate. The worst
the adversary can do is not participate, so this is a tight bound.

Theorem 14. The Bitcoin protocol satisfies the chain growth property with speed coefficient (1—9)~y
and probability at least 1 — 6*9(525), for o € (0,1).

Proof. In Lemma 6 of [8] it was proved that if at some round 7 an honest party has a chain of
length ¢, then, by round r 4+ s > r, every honest party will have received a chain of length at least
(+ YT X

Remember that v is a lower bound on the probability of a round being successful. From the
Chernoff bound at least (1 —4)vs such rounds will occur between rounds r and r+ s with probability
1—e28%), Thus, by the aforementioned lemma, the chain of any honest party will grow by (1—9)ys
blocks with probability 1 — e~ U9%) and the chain growth property holds with parameter 7 equal
to (1 —9)y. O

The importance of chain growth as a fundamental property of the backbone protocol that is of
the same caliber as common prefix and chain quality can be seen in the fact that the liveness of
the ledger essentially depends on it. We elaborate: in [8, Lemma 16] the liveness property was not
proved in a black box manner given the chain quality and common prefix properties. Interestingly,
by introducing the chain growth property as a prerequisite together with the other two, a simple
black box proof can be derived. As expected, the confirmation time parameter u of the liveness
property is tightly connected to the chain speed coefficient 7.

Lemma 15 (Black-Box Liveness). Let protocol I1 satisfy the chain quality, chain growth and strong
common-prefix properties with overwhelming probability on 1, s, k and parameters (< 1), 7. Further,
assume oracle Txgen is unambiguous. Then protocol 11 satisfies Liveness with wait time u = % .

max(k, ﬁ) rounds and depth parameter k with overwhelming probability in k.

Proof. Let C be the chain of some honest party P; at round r and C5 be his chain at round r 4 u.
Suppose that all three properties hold. We are going to show that ¢tz must be in some block in Cz[k.
From the chain growth property, after u rounds the chain of P; has grown by at least 7u(> 3k)
blocks. Hence, |Co| — |C1| > 3k. Next, observe that from the chain quality property at the last
5 blocks of Cgk there exists at least %'(1 — u) > 1 honest block. For the sake of contradiction,
suppose that this honest block was mined up to round r, and thus it does not contain tx. Notice
that this block is at a height in the chain greater than [C1| + 5* > |C1| + k. It follows that some
honest party had some chain C3 of length greater than |C}| 4+ k at some point until round r. This
implies that C’gk A C1, which violates the strong common-prefix property and is a contradiction.

Therefore, there exists an honest block in C’gk that was mined after round r and thus contains tx.
Finally, due to the union bound, and since s, are of order Q(k), it follows that all three properties
hold with overwhelming probability in k. The lemma follows. O

By liveness we are guaranteed that new transactions will be confirmed by at least one honest
party after a predetermined amount of rounds, where confirm here means that some party has some
transaction at least k£ blocks deep in its chain. Moreover, by persistence we get that if a transaction
is confirmed by some honest party, all other honest parties will see the same transaction in the same
position in their chain. Unfortunately, the ledger properties as defined in [8] do not ensure that all
parties will eventually confirm a transaction. This is a property that we would expect from a public
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transaction ledger. The following stronger definition of liveness provides us with a bound regarding
confirmation time by all parties.

Definition 16. (Strong) Liveness: Parameterized by u, k € N (the “wait time” and “depth” param-
eters, resp.), provided that a transaction is either (i) issued by Txgen, or neutral and is given as
input to all honest players continuously for u consecutive rounds, (ii) reported by one honest-party
more than k blocks deep from the end of the ledger at least u rounds before the current round, then
all honest parties will report this transaction at a block more than k£ blocks from the end of the
ledger.

We next show that strong Liveness can be also derived in a black-box fashion from the three
backbone-level properties.

Theorem 17 (Black-Box (Strong) Liveness). Let protocol 11 satisfy the chain quality, chain growth
and strong common-prefic properties with overwhelming probability on 1, s,k and parameters pu(<
1), 7. Further, assume oracle Txgen is unambiguous. Then protocol 11 satisfies Strong Liveness with

waitt time u = % - max(k, ﬁ) rounds and depth parameter k with overwhelming probability in k.

Proof. Let P; be some honest player that has chain C] at round r; and P, be some honest player
that has chain Cy at round ro > 71 + u. We only have to show that if a transaction is in some
block in C’[k then it will also be at the same block in Cy and |C2| > |C1|. All other properties
of strong liveness follow from the black-box derivation of the “old” liveness property. Assume the
common-prefix property and the chain growth property hold. From the Persistence property proof
we have that if a transaction tx is included in C{k at round rp, then this transaction will be always
included in every honest party’s chain. Now, let C% be the chain that P, has at round 1. We are
going to show that P, will have confirmed transaction tz at round re. Since, P, has tx at exactly
the same position as P; at round ry, it follows that |C}| > |C1|—k. Moreover, from the chain growth
property it holds that |Ca| — |C)| > 7 - u > k. Therefore, |Cy| > |C4| and P, will have confirmed
tx at round ry. Since s is of order (k), by the union bound we get that both common-prefix and
chain growth hold with overwhelming probability on k and thus the lemma follows. O

In a subsequent work, Pass et al. [15] provide a stronger definition for chain growth. The
definition is stronger, since it requires that at every round the length of some honest party’s chain
is at least equal to the length of the chain that any honest party had in the previous round. We
observe that this monotonicity property is not true for well known alternative chain selection rules,
e.g. the GHOST or uncle-GHOST selection rule [17, 4]. Our definition is less stringent and can
be shown to be satisfied by such other protocols [10], nevertheless we can still prove that it can be
used to achieve strong liveness.

5 Common-prefix Attack

In [7] an attack (selfish mining) against the chain quality property of Bitcoin was demonstrated. In
[8] it was shown that (for the case of a rushing adversary®) it is optimal since it matches the bounds
of the security theorem for chain quality. However little is known regarding optimal attacks on the
common prefix and chain growth properties. For instance, it is known that a “51% attacker” can
break the common prefix with an arbitrarily long fork. However long forks have been predicted to be
feasible even for attackers with below 50% of the hashing power in case f is large. In this section, we
explore attacks on common prefix in an experimental way (through computer simulations) providing

5As argued in [7] this is a plausible attack strategy, we refer to their paper for more details.
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some interesting insights on the optimality of the theoretical results that we have proven. The attack
targets security when f is large, and thus prohibit the increase of the block generation rate in order
to increase the transaction speed.

Flashcoin Ethereum
0.5 T

04y

03k de

0.2+

Hash power of the Adversary(%)

0.1f

- - Bitcoin attack

L
0.0 0.5 1.0 15 2.0 2.5 3.0
E[rounds per block]

Figure 4: The level of insecurity in terms of the hashing power of the adversary as a function of
1/f. Above the curve, our attack breaks common prefix with a fork that is 100 blocks deep with
probability of success at least 1%. The respective block-rate values chosen for two altcoins are
depicted on the graph.

The idea of the attacks is the following: when a fork of depth 1 naturally happens, the adversary
splits its hashing power, as well as the honest parties’ power, on the two branches. In our model
this is possible because we consider the adversary to be rushing. Then, when an honest party in
one of the two branches publishes a new solution, the adversary also publishes one of its solutions
(if he has any) on the other branch. If honest parties extend both branches by the same length
in the same round, then the adversary just reschedules the messages so again parties are split in
half. Otherwise, if possible, the adversary lengthens the chain that is behind by the same amount
of blocks, to keep the fork running. Additionally, even if parties modified the backbone protocol by
randomly resolving ties, cf. |7], they would have 50% probability to go in one of the two branches.
Therefore, randomly resolving ties does not seem to help against this attack.

As our theoretical results have predicted, the protocol seems quite robust against our attack when
f < 1. However, its security deteriorates as f grows bigger and taking advantage of this attack
an adversary can effectively cause deep forks to appear. Graphs on how various cryptocurrencies’
(that use different parameterization than the Bitcoin protocol) fare in terms of the attacks are also
presented. It is interesting to point out that for the choice made in Ethereum (f &~ 1) our provable
security bound is around 35% while for Dogecoin and Litecoin our improved analysis brings the
provable security bound to a relatively satisfactory level of over 47%. Extreme choices such as
Flashcoin cannot be supported at all by the security analysis, while Bitcoin on the other end of the
spectrum opts for the safest choice that enables a near optimal provable security bound of about
49%.
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6

Conclusion

In this paper we substantially improved the security bounds of the Bitcoin backbone [8]. With our
chain growth definition we introduced a measure of speed, called the chain speed coefficient, and
we showed that the chain growth property (with a non-zero coefficient) is a fundamental security
property of a robust transaction ledger. Moreover, we identified a stronger version of the common-
prefix property, that, along with the chain quality and chain growth properties, is sufficient for
proving that a protocol implements a robust public transaction ledger in a black-box manner.
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A Properties summary

Here, we give a summary of all security definitions that were considered in this paper.

Definition 18 (Common Prefix Property). The common prefix property Qcp with parameter k € N
states that for any pair of honest players P;, P> maintaining the chains C1,Cs in VIEWg(A) 2(K,q,2),
it holds that

clf <c,and C)f <y

Definition 19 (Chain Quality Property). The chain quality property Q.q with parameters p € R

and ¢ € N states that for any honest party P with chain C in VIEWg('A)Z(/i, q, z), it holds that for
any ¢ consecutive blocks of C the ratio of adversarial blocks is at most p.

Definition 20 (Chain Growth Property). The chain growth property Q.4 with parameters 7 € R
(the “chain speed” coefficient) and s € N states that for any round r > s, where honest party P has

chain C; at round r and chain Cs at round r — s in VIEWﬁI(XZ(/i, q, z), it holds that |C1| —|Ce| > 7-s.

Definition 21 (Strong Common-Prefix Property). The strong common prefix property Qc, with
parameter k € N states that the chains Cy1, Co reported by two, not necessarily distinct honest parties

Py, Py, at rounds r1, 79 with r1 < r9 are such that Cl{k =< Cs.

Definition 22. A protocol II implements a robust public transaction ledger in the ¢-bounded syn-

chronous setting if it satisfies the following two properties:

— Persistence: Parameterized by k € N (the “depth” parameter), if in a certain round an honest
player P reports a ledger that contains a transaction tx in a block more than k£ blocks away
from the end of the ledger, then from this round on, tx, if reported at all by any honest player,
will be reported in the same position in the ledger as the position reported by P.

— Liveness: Parameterized by u, k € N (the “wait time” and “depth” parameters, resp.), provided
that a transaction either (i) issued by Txgen, or (ii) is neutral, is given as input to all honest
players continuously for u consecutive rounds, then there exists an honest party who will report
this transaction at a block more than k£ blocks from the end of the ledger.

16


http://eprint.iacr.org/2016/454
http://eprint.iacr.org/2016/454

B Probability of uniquely successful rounds

In this section we demonstrate a new lower bound on the probability of uniquely successful rounds.
This bound allows us to argue about the security of Bitcoin even when f is larger than 1.

Lemma 23. For p < 0.1 and a € (p,2k) : e " < (1 —p)%flC < eathkp

Proof. The second inequality is well studied and holds for p > 0. For the first inequality by solving
for a we get a < k% which holds for p < 0.1 and a € (p, 2k). O

Let v be a lower bound on the probability of a uniquely successful round (a round where only
one block is found). From the event where (n — t) players throw ¢ coins each and exactly one coin
toss comes head, the probability of a uniquely successful rounds is at least:

(n—t)gp(1 — p)1n=H=1 > qe~a-hp

We set v = ae %P for the minimum & that satisfies the relation o € (p,2k). This is a
substantially better bound that -, and is also a lower bound for the event that at a round is
successful.

C Proofs

C.1 Lemma 8

Proof. The proof follows the idea of the proof in the analogous lemma in [8]. We will first study
the case where both C and Cs are adopted by the respective honest players. We define three bad
events, A, B and C, which we show to hold with probability exponentially small in s. We conclude
the proof by showing that if none of these bad events happens, then there cannot exist C; and Cs
diverging at round r — s.

The bad event A occurs if, at some round ' > r — s, the adversary broadcasts a chain C with
the following properties. (1) C is returned by the function maxvalid of an honest party; (2) the block
head(C) was computed by the adversary before round r — (1 + g)s.

We now give an upper bound on the probability that event A occurs. Let r* < r—(1+ %)s be the
latest round at which a block of C was computed by an honest party (if none exists, then r* = 0),
and let £ denote the length of the chain up to that block. If any other block computed by an honest
party exists among the blocks from length ¢ up to len(C), then such block was computed in rounds
r—(1+ %)3 up to r’, and it follows that the probability that the adversary’s block can extend it
at round 7’ is negligible in (k —log D). Therefore, we infer that with overwhelming probability the
adversary has computed all the blocks from length ¢ to len(C), and done so during the rounds 7* to
r’. Let Z denote the total number of solutions the adversary obtained in v’ — r* rounds. Let also
X denote the total number of successful rounds for the honest parties in v’ — r* rounds. We have

Z>len(C) -t > X.

The first inequality was argued above and the second one follows from [8, Lemma 5]. Finally, note
that, by Lemma [8, Lemma 6], the event Z > X has measure exponentially small in the number of
rounds 7/ — r*. Since that number satisfies 7/ — r* > §5/8, we conclude that Pr[A] < e~ (%),

The second bad event occurs if the adversary has obtained a large number of solutions during
1+ %)s rounds. Specifically, let Z denote the number of successful calls to the oracle by the
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adversary, for a total of (1 + %)s rounds. Define B to be the event Z > (1 + %)(1 + g)ﬂs. An
application of Chernoff bounds gives

Pr[Z > (1+ 8)(1 + 3)Bs] < e U8,

The third bad event occurs when not enough uniquely successful rounds occur. Consider any
number, say, s’ of rounds, and denote by X’ the number of them that were uniquely successful. We
have

Pr[X’ < (1 - 2)ys'] < e 009,

From now on we assume that none of the events A, B and C' occurs. Since a round is uniquely
successful with probability v, from the negation of the third bad event we expect at least (1 — %)’ys
such rounds. Note that, since A does not occur, the adversary may not use solutions computed
before round r — (1 + %)s with probability at least 1 — e~ U0%s)  The negation of the second bad
event bounds the number of solutions the adversary can obtain. Moreover, for any 6 € (0,1) it
holds that

X'>1=2)ys>1+3(1+3)Bs>2Z

From Lemma 7 this is a contradiction, since the adversary must have mined at least X’ solutions
in order to maintain the fork.

We conclude that if AU B U C does not occur, then C; and Cs cannot diverge at round r — s.
Finally, an application of the union bound on AU BUC implies that the adversary can successfully
maintain such C; and Cy with probability at most exponentially small in s and the statement of the
lemma follows.

The only of the remaining cases that is interesting, is when block head(Cy) is the block mined
in the uniquely successful round » — 1 and P; has chain Cs at the beginning of round r. It is implied
that at round r — 1 some honest player mines the chain ending in the parent of head(C;) and P
adopts Cy. Notice, that the two chains diverge at round r — s and thus by the same argument as
before, this happens with probability at most e~ U (s=1)) = €_Q(635), and the lemma follows. All
other cases, can be reduced easily to the first argument. O

C.2 Theorem 9

Proof. 1f there is only one chain in S then the property is satisfied trivially. First, consider two
chains C; and Cy in § that honest parties have adopted at round r and the least integer £* such
that

cl¥ <¢, and I <cy. (1)

We need to show that the event k* > k happens with probability exponentially small in k.

Let r be the current round and let » — s be the round at which the last common block of C;
and Cy was computed. The length of the chains cannot be greater than the number of solutions Y
obtained from the oracle in s rounds. By the Chernoff bound,

Pr[Y > (1+6)fs] < e 1s/3,

It follows that, with probability 1 —e=3°/$/3 s> E*/((1+9)f). Thus, if * > k, we have a sequence
of s = Q(k) consecutive rounds with chains C; and Cs diverging at round s, and the theorem follows
from Lemma 8.

Otherwise, suppose that without loss of generality C] is the chain that some honest player had
(at the beginning of the round) at round r, while Cy has been adopted by some honest player at
the same round. Then the analysis we did previously holds, since we can apply Lemma 8 for the
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two chains. Finally, suppose that both C7 and Cs are chains that honest player had at round r.
Then, both chains were adopted by some honest players at round r — 1, which is the case we proved
initially, and the theorem follows. O
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