
Speed-Up Techniques for Shortest-Path
Computations�

Dorothea Wagner and Thomas Willhalm

Universität Karlsruhe (TH)
Fakultät für Informatik

Institut für Theoretische Informatik
D-76128 Karlsruhe

{wagner,willhalm}@ira.uka.de
http://i11www.informatik.uni-karlsruhe.de/

Abstract. During the last years, several speed-up techniques for Dijk-

stra’s algorithm have been published that maintain the correctness
of the algorithm but reduce its running time for typical instances. They
are usually based on a preprocessing that annotates the graph with ad-
ditional information which can be used to prune or guide the search.
Timetable information in public transport is a traditional application do-
main for such techniques. In this paper, we provide a condensed overview
of new developments and extensions of classic results. Furthermore, we
discuss how combinations of speed-up techniques can be realized to take
advantage from different strategies.

1 Introduction

Computing shortest paths is a base operation for many problems in traffic appli-
cations. The most prominent are certainly route planning systems for cars, bikes
and hikers, or timetable information systems for scheduled vehicles like trains
and busses. If such a system is realized as a central server, it has to answer a
huge number of customer queries asking for their best itineraries. Users of such
a system continuously enter their requests for finding their “best” connections.
Furthermore, similar queries appear as sub-problems in line planning, timetable
generation, tour planning, logistics, and traffic simulations.

The algorithmic core problem that underlies the above scenario is a special
case of the single-source shortest-path problem on a given directed graph with
non-negative edge lengths. While this is obvious for route planning in street
networks, different models and approaches have been presented to solve timetable
information by finding shortest paths in an appropriately defined graph. The
typical problem to be solved in timetable information is “given a departure and
an arrival station as well as a departure time, which is the connection that arrives
as early as possible at the arrival station?”. There are two main approaches for
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modeling timetable information as shortest path problem, the time-expanded
and the time-dependent approach. For an overview of models and algorithms for
optimally solving timetable information we refer to [28].

In any case the particular graphs considered are huge, especially if the model
used for timetable information expands time by modelling each event by a single
vertex in the graph. Moreover, the number of queries to be processed within
very short time is huge as well. This motivates the use of speed-up techniques
for shortest-path computations. The main focus is to reduce the response time for
on-line queries. In this sense, a speed-up technique is considered as a technique
to reduce the search space of Dijkstra’s algorithm e.g. by using precomputed
information or inherent information contained in the data. Actually, often the
underlying data contain geographic information, that is a layout of the graph is
provided. Furthermore, in many applications the graph can be assumed to be
static, which allows a preprocessing. Due to the size of the graphs considered
in route planning or timetable information and the fact that those graphs are
typically sparse, preprocessing space requirements are only acceptable to be
linear in the number of nodes.

In this paper, we provide a systematic classification of common speed-up
techniques and combinations of those. Our main intention is to give a concise
overview of the current state of research. We restrict our attention to speed-up
techniques where the correctness of the algorithms is guaranteed, i.e., that prov-
ably return a shortest path. However, most of them are heuristic with respect to
the running time. More precisely, in the worst case, the algorithm with speed-up
technique can be slower than the algorithm without speed-up technique. But ex-
perimental studies showed–sometimes impressive–improvements concerning the
search front and consequently the running time. For most of these techniques,
experimental results for different real-world graphs as well as generated graphs
have been reported. However, as the effectiveness of certain speed-up techniques
strongly depends on the graph data considered, we do not give a comparison of
the speed-ups obtained. But we want to refer to the 9th DIMACS Implementa-
tion Challenge - Shortest Paths where also experiments on common data sets
were presented [7].

In the next section, we will provide some formal definitions and a description
of Dijkstra’s algorithm. Section 3 presents a classification of speed-up tech-
niques for Dijkstra’s algorithm and discusses how they can be combined.

2 Preliminaries

2.1 Definitions

A (directed) graph G is a pair (V, E), where V is a finite set of nodes and E is a set
of edges, where an edge is an ordered pair (u, v) of nodes u, v ∈ V . Throughout
this paper, the number of nodes |V | is denoted by n and the number of edges |E|
is denoted by m. For a node u ∈ V , the number of outgoing edges |{(u, v) ∈ E}|
is called the degree of the node. A path in G is a sequence of nodes (u1, . . . , uk)
such that (ui, ui+1) ∈ E for all 1 ≤ i < k. A path with u1 = uk is called a cycle.
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1 for all nodes u ∈ V set dist(u) := ∞
2 initialize priority queue Q with source s and set dist(s) := 0
3 while priority queue Q is not empty
4 get node u with smallest tentative distance dist(u) in Q
5 for all neighbor nodes v of u
7 set new-dist := dist(u) + w(u, v)
8 if new-dist < dist(v)
9 if dist(v) = ∞

10 insert neighbor node v in Q with priority new-dist
11 else
12 set priority of neighbor node v in Q to new-dist
13 set dist(v) := new-dist

Algorithm 1. Dijkstra’s algorithm

Given edge weights l : E → R (“lengths”), the length of a path P = (u1, . . . , uk)
is the sum of the lengths of its edges l(P ) :=

∑
1≤i<k l(ui, ui+1). For two nodes

s, t ∈ V , a shortest s-t path is a path of minimal length with u1 = s and uk = t.
The (graph-theoretic) distance d(s, t) of s and t is the length of a shortest s-t
path. A layout of a graph G = (V, E) is a function L : V → R

2 that assigns each
node a position in R

2 . The Euclidean distance between two nodes u, v ∈ V is
then denoted by ‖L(u) − L(v)‖. A graph (without multiple edges) can have up
to O(n2) edges. We call a graph sparse, if m = O(n). In the following we assume
that the graphs we are dealing with are large and one can only afford a memory
consumption linear in the size of the graph. In particular, for large sparse graphs
O(n2) space is not affordable.

2.2 Shortest Path Problem

Let G = (V, E) be a directed graph whose edges are weighted by a function
l : E → R. The (single-source single-target) shortest-path problem consists in
finding shortest s-t path from a given source s ∈ V to a given target t ∈ V .
Note that the problem is only well defined for all pairs, if G does not contain
negative cycles (cycles with negative length). In the presence of negative weights
but not negative cycles, it is possible, using Johnson’s algorithm [19], to convert
in O(nm + n2 log n) time the original edge weights l : E → R to non-negative
edge weights l′ : E → R

+
0 that result in the same shortest paths. Hence, we can

safely assume in the rest of this paper that edge weights are non-negative. We
also assume throughout the paper that for all pairs (s, t) ∈ V × V , the shortest
path from s to t is unique. (This can be achieved by adding a small fraction to
the edge weights, if necessary.)

The classical algorithm for computing shortest paths in a directed graph with
non-negative edge weights is that of Dijkstra [6], independently discovered by
Dantzig [2] (Algorithm 1). The algorithm maintains, for each node v ∈ V , a
label dist(v) with the current tentative distance. The algorithm uses a priority
queue Q containing the nodes that build the current search horizon around s.
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Nodes are either unvisited (i.e. dist(u) = ∞), in the priority queue, or finished
(already removed from the priority queue). It is easy to verify that nodes are
never reinserted in the priority queue if the extracted node u in line 4 is the node
with the smallest tentative distance in the priority queue and all edge weights
are non-negative. Thus, the labels are updated while the algorithm visits the
nodes of the graph with non-decreasing distance from the source s.

In order to compute a shortest path tree, one has to remember that u is
the predecessor of v if a shorter path to v has been found (i.e. between line 8
and 9). Dijkstra’s algorithm computes the shortest paths to all nodes in
the Graph. If only one shortest path is needed to a target node t ∈ V , the
algorithm can stop if the target t is removed from the priority queue in line 4. If
Dijkstra’s algorithm is executed more than once, the initialization of dist
in line 1 for each run can be omitted by introducing a global integer variable
time and replacing the test dist(v) = ∞ by a comparison of the time with a
time stamp for every node. See e.g., [33] for a detailed description.

The asymptotic time complexity of Dijkstra’s algorithm depends on the
choice of the priority queue. For general graphs, Fibonacci heaps [8] still provide
the best theoretical worst-case time of O(m+n log n). For sparse graphs, binary
heaps result in the same asymptotic time complexity. Even more, binary heaps
are (1) easier to implement and (2) perform better for many instances in practice
[25]. For special cases of edge weights, better algorithms are known. If edge
weight are integral and bounded by a small constant, Dial’s implementation [5]
with an array of lists (“buckets”) provides a priority queue where all operations
take constant time. An extension with average linear complexity for uniformly
distributed edge weights is presented in [9,26]. One might argue however, that
the better a speed-up techniques works, the smaller the search front is, and the
less important the priority queue is.

3 Speed-Up Techniques

In this section, we present speed-up techniques for Dijkstra’s algorithm, i.e.
modifications of the algorithm or graph that do not change the worst-case be-
havior but usually reduce considerably the number of visited nodes in practice.
We shortly describe two classical speed-up techniques, bidirectional search and
goal-directed search. Moreover, we give a classification of more recently presented
techniques.

3.1 Bidirectional Search

Bidirectional search simultaneously performs two searches: a “normal”, or for-
ward, variant of the algorithm, starting at the source node, and a so-called
reverse, or backward, variant of Dijkstra’s algorithm, starting at the desti-
nation node. With the reverse variant, the algorithm is applied to the reverse
graph, i.e., a graph with the same node set V as that of the original graph, and
the reverse edge set E = {(u, v) | (v, u) ∈ E}.
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Let df (u) be the distance labels of the forward search and db(u) the labels
of the backward search, respectively. The algorithm can be terminated when
one node has been designated to be permanent by both the forward and the
backward algorithm. Then, the shortest path is determined by the node u with
minimum value df (u) + db(u) and it can be composed of the shortest path from
the start node s to u, (found by the forward search), and the shortest path from
u to the destination t (found by the reverse search). Note that the node u itself
is not necessarily marked as permanent by both searches.

One degree of freedom in bidirectional search is the choice whether a forward
or backward step is executed. Common strategies are to choose the direction
with the smaller priority queue, to select the direction with the smaller minimal
distance in the priority queue, or simply alternate the directions. For a theoretical
discussion of bidirectional search, see [24].

3.2 Goal-Directed Search or A∗

This technique, originating from AI [15], modifies the priority of active nodes
to change the order in which the nodes are processed. More precisely, a goal-
directed search adds to the priority dist(u) a potential pt : V → R

+
0 (often

called heuristic) depending on the target t of the search. The modified priority
of a node v ∈ V is therefore dist(v) + pt(v). With a suited potential, the search
can be pushed towards the target thereby reducing the running time while the
algorithm still returns a shortest path. Intuitively speaking, one can compare a
path in traffic network with a walk in a landscape. If you add a potential, the
affected region is raised. If the added potential is small next to the target, you
create a valley around the target. As walking downhill is easier than uphill, you
are likely to hit the target sooner than without the potential added.

We will now use an alternative formulation of goal-directed search to discuss
its correctness. Equivalently to modifying the priority, one can change the edge
lengths such that the search is driven towards the target t. In this case, the
weight of an edge (u, v) ∈ E is replaced by l′(u, v) := l(u, v)− pt(u)+ pt(v). The
length of a s-v path P = (s = v1, v2, . . . , vk+1 = v) is then

l′(P ) =
k∑

i=1

l′(vi, vi+1) =
k∑

i=1

l(vi, vi+1) − pt(vi) + pt(vi+1)

= −pt(s) + pt(v) +
k∑

i=1

l(vi, vi+1)

= −pt(s) + pt(v) + l(P ).

In particular, the length of an s-t path with modified edge lengths is the same
up to the constant −pt(s) + pt(t). Therefore, a path from s to t is a shortest s-t
path according to l′, if and only if it is a shortest s-t path according to l.

If all modified edge lengths l′(u, v) are non-negative, we can apply Dijkstra’s

algorithmto the graph with modified edge lengths l′ and get a shortest s-t path
according to l. This leads to the following definition:
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Definition 1. Given a weighted graph G = (V, E), l : V → R
+
0 , a potential

p : V → R is called feasible, if l(u, v) − p(u) + p(v) ≥ 0 for all edges e ∈ E.

Usually, potentials are used that estimate the distance to the target. In fact,
it can be shown that a feasible potential p is a lower bound of the distance to
the target t if p(t) ≤ 0. Note that every feasible potential p can be transposed
into an equivalent potential p′(v) = p(v) − p(t) which is a lower bound of the
distance to the target. We can therefore assume without loss of generality that
the potential is indeed a lower bound. The tighter the bound is, the more the
search is attracted to the target. In particular, a goal-directed search visits only
nodes on the shortest path, if the potential is the distance to the target.

In an actual implementation of goal-directed search, you will most probably
use the first formulation, namely to modify the priority with which nodes are
inserted in the priority queue. This has the advantage that p is called (at most)
once per edge instead of two calls. Furthermore, the distance labels of the nodes
are unmodified. This improves the numerical stability and simplifies the handling
of the labels (in particular in combinations with other speed-up techniques).

We will now present three scenarios and how to obtain feasible potentials in
these cases:

Euclidean Distances. Assume a layout L : V → R
2 of the graph is available

where the length of an edge is somehow correlated with the Euclidean distance
of its end nodes. Then a feasible potential for a node v can be obtained using
the Euclidean distance (the “flight distance”) ‖L(v) − L(t)‖ to the target t.

In case the edge lengths are in fact the Euclidean distances, the Euclidean
distance ‖L(v)−L(t)‖ itself is already a feasible potential, due to the triangular
inequality. Using this potential, an edge that points directly towards the desti-
nation has a modified edge length of zero, while the modified length of an edge
that points in the opposite direction is twice the distance. A theoretical analysis
for various random graphs can be found in [35].

If the edge lengths are not the Euclidean distances of the end nodes, a feasible
potential can be defined as follows: let vmax denote the maximum “edge-speed”
‖L(u) − L(v)‖/l(u, v), over all edges (u, v) ∈ E. The potential of a node u can
now be defined as p(u) = ‖L(u), L(t)‖/vmax. The maximum velocity can be
computed in a preprocessing step by a linear scan over all edges. Numerical
problems can be reduced if the maximum velocity is multiplied by 1 + ε for a
small ε > 0. [37] presents how graph-drawing algorithms help in the case where
a layout of the graph is not given beforehand.

This approach can be extended in a straight forward manner to other metric
spaces than (R2, ‖·‖). In particular, it is possible to use more than two dimen-
sions or other metrics like the Manhattan metric. Finally, the expensive square
root function to compute the Euclidean distance can be replaced by an approx-
imation.

Landmarks. With preprocessing, it is possible to gather information about the
graph that can be used to obtain improved lower bounds. In [10], a small fixed-
sized subset L ⊂ V of “landmarks” is chosen. Then, for all nodes v ∈ V , the
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distance d(v, l) to all nodes l ∈ L is precomputed and stored. These distances
can be used to determine a feasible potential. For each landmark l ∈ L, we
define the potential p

(l)
t (v) := d(v, l) − d(t, l). Due to the triangle inequality

d(v, l) ≤ d(v, t) + d(t, v), the potential p
(l)
t is feasible and indeed a lower bound

for the distance to t. The potential is then defined as the maximum over all
potentials: pt(v) := max{p

(l)
t (v); l ∈ L}. It is easy to show that the maximum of

feasible potentials is again a feasible potential.
For landmarks that are situated next to or “behind” the target t, the lower

bound p
(l)
t (u) should be fairly tight, as shortest paths to t and l most probably

share a common sub-path. Landmarks in other regions of the graph however, may
attract the search to themselves. This insight justifies to consider, in a specific
search from s to t, only those landmarks with the highest potential p

(l)
t (u). The

restriction of the landmarks in use has the advantage that the calculation of the
potential is faster while its quality is improved.

An interesting observation is that using k landmarks is in fact very similar to
using the maximum norm in a k-dimensional space. Each landmark corresponds
to one dimension and, for a node, the distance to a landmark is the coordinate in
the corresponding dimension. Such high-dimensional drawings have been used in
[14], where they are projected to 2D using principal component analysis (PCA).
This graph-drawing techniques has also been successfully used in [37] for goal-
directed search and other geometric speed-up techniques.

Distances from Graph Condensation. For restricted shortest-path problems, per-
forming a single run of an unrestricted Dijkstra’s algorithm is a relatively
cheap operation. Examples are travel planning systems for scheduled vehicles
like busses or trains. The complexity of the problem is much higher if you take
connections, vehicle types, transfer times, or traffic days into account. It is there-
fore feasible to perform a shortest-path computation to find tighter lower bounds
[29]. More precisely, you run Dijkstra’s algorithm on a condensed graph: The
nodes of this graph are the stations (or stops) and an edge between two stations
exists iff there is a non-stop connection. The edges are weighted by the minimal
travel time. The distances of all v to the target t can be obtained by a single
run of Dijkstra’s algorithm from the target t with reversed edges. These
distances provide a feasible potential for the time-expanded graph, since the dis-
tances are a feasible potential in the condensed graph and an edge between two
stations in the time-expanded graph is at least as long as the corresponding edge
in the condensed graph.

3.3 Hierarchical Methods

This speed-up technique requires a preprocessing step at which the input graph
G = (V, E) is enriched with additional edges representing shortest paths between
certain nodes. The additional edges can be seen as “bridges” or “short-cuts” for
Dijkstra’s algorithm. These additional edges thereby realize new levels that
step-by-step coarsen the graph. To find a shortest path between two nodes s
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and t using a hierarchy, it suffices for Dijkstra’s algorithm to consider a
relatively small subgraph of the “hierarchical graph”. The hierarchical structure
entails that a shortest path from s to t can be represented by a certain set of
upward and of downward edges and a set of level edges passing at a maximal
level that has to be taken into account. Mainly two methods have been developed
to create such a hierarchy, the multi-level approach [33,34,18,4] and highway
hierarchies [31,32]. These hierarchical methods are already close to the idea of
using precomputed shortest paths tables for a small number of very frequently
used “transit nodes”. Recently, this idea has been explored for the computation
of shortest paths in road networks with respect to travel time [1].

Multi-Level Approach. The decomposition of the graph can be realized using
separators Si ⊂ V for each level, called selected nodes at level i: S0 := V ⊇
S1 ⊇ . . . ⊇ Sl. These node sets can be determined on diverse criteria. In a
simple, but practical implementation, they consist of the desired numbers of
nodes with highest degree in the graph. However, with domain-specific knowl-
edge about the central nodes in the graph, better separators can be found. Alter-
natively, the planar separator theorem or betweenness centrality can be used to
find small separators [18]. There are three different types of edges being added
to the graph: upward edges, going from a node that is not selected at one level
to a node selected at that level, downward edges, going from selected to non-
selected nodes, and level edges, passing between selected nodes at one level. The
weight of such an edge is assigned the length of a shortest path between the
end-nodes.

In [4] a further enhancement of the multi-level approach is presented, which
uses a precomputed auxiliary graph with additional information. Instead of a
single multi-level graph, a large number of small partial graphs is precomputed,
which are optimized individually. This approach results in even smaller query
times than achieved by the original multi-level approach. On the other hand,
however, a comparably heavy preprocessing is required.

Highway Hierarchies. A different approach presented by [31,32] is also based
on the idea that only a “highway network” needs to be searched outside a the
neighborhood of the source and the target node. Shortest path trees are used to
determine a hierarchy. This has the advantage that no additional information
like a separator is needed. Moreover, the use of highway hierarchies requires a
less extensive preprocessing. The construction relies on a slight modification of
Dijkstra’s algorithm that ensures that a sub-path ui, . . . , uj of a shortest
path u1, . . . , ui, . . . , uj , . . . , uk is always returned as the shortest path from ui to
uj. These shortest paths are called canonical. Consider the sub-graph of G that
consists of all edges in canonical shortest paths. The next level of the hierarchy is
then induced by all nodes with degree at least two (i.e. the 2-core of the union of
canonical shortest paths). Finally, nodes of degree 2 are then iteratively replaced
by edges for a further contraction of the new level of the hierarchy.
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3.4 Node and Edge Labels

Approaches based on node or edge labels use precomputed information as an
indicator if a node or an edge has to be considered during an execution of
Dijkstra’s algorithm for a certain target node t.

Reach-Based Routing. Reach-based routing prunes the search space based on
a centrality measure called “reach” [13]. Intuitively, a node in the graph is im-
portant for shortest paths, if it is situated in the middle of long shortest paths.
Nodes that are only at the beginning or the end of long shortest paths are less
central. This leads to the following formal definition:

Definition 2 (Reach). Given a weighted graph G = (V, E), l : E → R
+
0 and

a shortest s-t path P , the reach on the path P of a node v ∈ P is defined as
r(v, P ) := min{l(Psv), l(Pvt)} where Psv and Pvt denote the sub-paths of P from
s to v and from v to t, respectively. The reach r(v) of v ∈ V is defined as the
maximum reach for all shortest s-t paths in G containing v.

In a search for a shortest s-t path Pst, a node v ∈ V can be ignored, if (1) the
distance l(Psv) from s to v is larger than the reach of v and (2) the distance
l(Pvt) from v to t is larger than the reach of v. While performing Dijkstra’s

algorithm, the first condition is easy to check, since l(Psv) is already known.
The second condition is fulfilled if the reach is smaller than a lower bound of
the distance from v to t. (Suited lower bounds for the distance of a node to
the target are already described for goal-directed search in Sect. 3.2.) Lines 7-13
of Algorithm 1 are therefore not performed if conditions (1) and (2) are surely
fulfilled.

To compute the reach for all nodes, we perform a single-source all-target
shortest-path computation for every node. With a modified depth first search
on the shortest-path trees, it is easy to compute the reach of all nodes using
the following insight: For two shortest paths Psx and Psy with a common node
v ∈ Psx and v ∈ Psy, we have

max{r(v, Psx), r(v, Psy)} = min{l(Psv), max{l(Pvx), l(Pvy)}}.

The preprocessing for sparse graphs needs therefore O(n2 log n) time and O(n)
space. In case such a heavy preprocessing is not acceptable, [13] also describes
how to compute upper bounds for the reach. As mentioned in [11], the reach
criterion can be extended to edges, which even improves its effectiveness but
also increases the preprocessing time.

Edge Labels. This approach attaches a label to each edge that represents all
nodes to which a shortest path starts with this particular edge [22,23,27,33,36,38].
More precisely, we first determine, for each edge (u, v) ∈ E, the set S(u, v) of all
nodes t ∈ V to which a shortest u-t path starts with the edge (u, v). The shortest
path queries are then answered by Dijkstra’s algorithm restricted to those
edges (u, v) for which the target node is in S(u, v). Similar to a traffic sign, the
edge label shows the algorithm if the target node might be in the target region
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of the edge. It is easy to verify that such a pruned shortest-path computation
returns a shortest path: If (u, v) is part of a shortest s-t path, then its sub-path
from u to t is also a shortest path. Therefore, t must be in S(u, v), because all
nodes to which a shortest path starts with (u, v) are located in S(u, v). The
restriction of the graph can be realized on-line during the shortest-path com-
putation by excluding those edges whose edge label does not contain the target
node (line 5 of algorithm 1).

Geometric Containers. As storing all sets S(u, v) would need O(n2) space, one
can use a superset of S(u, v) that can be represented with constant size. Using
constant-sized edge labels, the size of the preprocessed data is linear in the size of
the graph. Given a layout L : V → R

2 of the graph, an efficient and easy object
type for an edge label associated to (u, v) is an enclosing geometric object of
{L(t) | t ∈ S(u, v)}. Actually, the bounding box, i.e. the smallest rectangle parallel
to the axes that contains {L(t) | t ∈ S(u, v)} turns out to be very effective as
geometric container [38]. The bounding boxes can be computed beforehand by
running a single-source all-target shortest-path computation for every node. The
preprocessing for sparse graphs needs therefore O(n2 log n) time and O(n) space.

Arc Flags. If you drop the condition that the edge labels must have constant
size, you can get much better however. An approach that performs very well
in practice [22,23,27], is to partition the node set in p regions with a function
r : V −→ {1, . . . , p}. Then an arc flag, i.e. a p-bit-vector where each bit represents
one region is used as edge label. For an edge e, a region is marked in the p-
bit-vector of e if it contains a node v with v ∈ S(e).) Then the overall space
requirement for the preprocessed data is Θ(p · m). But an advantage of bit-
vectors as edge labels is the insight that the preprocessing does not need to
compute all -pairs shortest paths. Every shortest path from any node s outside
a region R to a node inside a region R has to enter the region R at some point.
As s is not a member of region R, there exists an edge e = (u, v) such that
r(u) 
= r(v). It is therefore sufficient, if the preprocessing algorithm regards only
the shortest paths to nodes v that are on the boundary of a region. These paths
can be determined efficiently by a backward search starting at the boundary
nodes. Usually, the number of boundary nodes is by orders of magnitude smaller
than n. A crucial point for this type of edge labels is an appropriate partitioning
of the node set. Using a layout of the graph, e.g. a grid, quad-trees or kd-trees
can be used. In a general setup, a separator according to [21] is the best choice
we are aware of [27].

3.5 Combining Speed-Up Techniques

It has been shown in various publications [3,11,12,16,17,30,31,32,33,37] that the
full power of speed-up techniques is unleashed, if various speed-up techniques are
combined. In [16,17] combinations of bidirectional search, goal-directed search,
multi-level approach and geometric container are examined. For an experimental
evaluation we refer to these papers. In this section, we concentrate on cases,
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where an effective combination of two speed-up techniques is not obvious. The
extension to a combination of three or four techniques is straight forward, once
the problem of combining two of them is solved. However, not every combination
is useful, as the search space may not be decreased (much) by adding a third or
fourth speed-up techniques.

Bidirectional Search and Goal-Directed Search. Combining goal-directed and
bidirectional search is not as obvious as it may seem at first glance. [30] provides
a counter-example to show that simple application of a goal-directed search
forward and a “source-directed” search backward yields a wrong termination
condition. However, the alternative condition proposed there has been shown
in [20] to be quite inefficient, as the search in each direction almost reaches
the source of the other direction. An alternative is to use the same potential
in both directions. With a potential from Sect. 3.2, you already get a speed-up
(compared to using either goal-directed or bidirectional search). But one can do
better using a combination of potentials: if ps(v) is a feasible potential for the
backward search, then ps(t)− ps(v) is a feasible potential for the forward search
(although not necessarily a good one). In order to balance the forward and the
backward search, the average 1

2 (pt(v)+ps(t)−ps(v)) is a good compromise [10].

Bidirectional Search and Hierarchical Methods. Basically, bidirectional search
can be applied to the subgraph defined by the multi-level approach. In an ac-
tual implementation, that subgraph is computed on-the-fly during Dijkstra’s

algorithm: for each node considered, the set of necessary outgoing edges is
determined. If a bidirectional search is applied to the multi-level subgraph, a
symmetric, backward version of the subgraph computation has to be imple-
mented: for each node considered in the backward search, the incoming edges
that are part of the subgraph have to be determined. See [16,17] for an experi-
mental evaluation. Actually, [31,32] takes this combination even further in that
it fully integrates the two approaches. The conditions for the pruning of the
search space are interweaved with the fact that the search is performed in two
directions at the same time.

Bidirectional Search and Reach-Based Routing. The reach criterion l(Psv) ≤
r(v) ∨ l(Pvt) ≤ r(v) can be used directly in the backward direction of the bidi-
rectional search, too. In the backward search, l(Pvt) is already known whereas
we have to use a lower bound instead of l(Psv) to replace the first condition
l(Psv) ≤ r(v). However, even without using a geometric lower bound but only
the known distances for pruning, [11] reports good results.

Bidirectional Search and Edge Labels. In order to take advantage of edge labels
in both directions of a bidirectional search, a second set of edge labels is needed.
For each edge e ∈ E, we compute the set S(e) and the set Srev(e) of those nodes
from which a shortest path ending with e exists. Then we store for each edge
e ∈ E appropriate edge labels for S(e) and Srev(e). The forward search checks
whether the target is contained S(e), the backward search, whether the source
is in Srev(e). See [16,17].
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Goal-Directed Search and Highway Hierarchies. Already the original highway
algorithm [31,32] accomplishes a bidirectional search. In [3] the highway hier-
archies are further enhanced with goal-directed capabilities using potentials for
forward and backward search based on landmarks. Unfortunately, the highway
algorithm cannot abort the search as soon as an s-t path is found. However,
another aspect of goal-directed search can be exploited, the pruning. As soon as
an s-t path is found it yields an upper bound for the length of the shortest s-t
path. Comparing upper and lower bound can then be used to prune the search.
Altogether, the combination of highway hierarchies and landmarks brings less
improvement than one might hope. On the other hand, using stopping the search
as soon as an s-t path is found at the cost of losing correctness of the result (the
s-t path found is not always the shortest s-t path) leads to an impressive speed-
up. Moreover, almost all paths found are also shortest and, in the rare other
cases the approximation error is extremely small.

Goal-Directed Search and Reach-Based Routing. Goal-directed search can also be
applied to the subgraph that is defined by the reach criterion. However, some care
is needed if the subgraph is determined on-line (which is the common way to im-
plement it) with the restriction by the reach. In particular, one should choose an
implementation of goal-directed search that doesn’t change the distance labels of
the nodes, as they are used to check the reach criterion. A detailed analysis of this
combination can be found in [11]. Finally, in [12] the study of reach-based routing
in combination with goal-directed search based on landmarks is continued.

4 Conclusion

We have summarized various techniques to speed-up Dijkstra’s algorithm.
All of them guarantee to return a shortest path but run considerably faster. After
all, the “best” choice of a speed-up technique heavily depends on the availability
of a layout, the size of the main memory, the amount of preprocessing time you
are willing to spend, and last but not least on the graph data considered.
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