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Abstract

A wide range of properties and assumptions determine

the most appropriate spatial matching model for an ap-

plication, e.g. recognition, detection, registration, or large

scale image retrieval. Most notably, these include discrim-

inative power, geometric invariance, rigidity constraints,

mapping constraints, assumptions made on the underlying

features or descriptors and, of course, computational com-

plexity. Having image retrieval in mind, we present a very

simple model inspired by Hough voting in the transforma-

tion space, where votes arise from single feature correspon-

dences. A relaxed matching process allows for multiple

matching surfaces or non-rigid objects under one-to-one

mapping, yet is linear in the number of correspondences. We

apply it to geometry re-ranking in a search engine, yielding

superior performance with the same space requirements but

a dramatic speed-up compared to the state of the art.

1. Introduction

Discriminative local features have made sub-linear index-

ing of appearance possible, but geometry indexing still ap-

pears elusive if one targets invariance, global geometry ver-

ification, high precision and low space requirements. Large

scale image retrieval solutions typically consider geometry

in a second, re-ranking phase. The latter is linear in the

number of images to match, hence its speed is crucial.

Exploiting local shape of features (e.g. local scale, ori-

entation, or affine parameters) to extrapolate relative trans-

formations, it is either possible to construct RANSAC hy-

potheses by single correspondences [14], or to see corre-

spondences as Hough votes in a transformation space [12].

In the former case one still has to count inliers, so the pro-

cess is quadratic in the number of (tentative) correspon-

dences. In the latter, voting is linear but further verification

with inlier count seems unavoidable.

Flexible spatial models are more typical in recognition;

these are either not invariant to geometric transformations,

or use pairwise constraints to detect inliers without any

rigid motion model [11]. The latter are at least quadratic

Figure 1. Top: HPM matching of two images of Oxford dataset, in

0.6ms. All tentative correspondences are shown. The ones in cyan

have been erased. The rest are colored according to strength, with

red (yellow) being the strongest (weakest). Bottom: Inliers found

by 4-dof FSM and affine-model LO-RANSAC, in 7ms.

in the number of correspondences and their practical run-

ning time is still prohibitive if our target for re-ranking is

thousands of matches per second.

We develop a relaxed spatial matching model which ap-

plies the concept of pyramid match [8] to the transforma-

tion space. Using local feature shape to generate votes, it is

invariant to similarity transformations, free of inlier-count

verification and linear in the number of correspondences. It

imposes one-to-one mapping and is flexible, allowing non-

rigid motion and multiple matching surfaces or objects.

Fig. 1 compares our Hough pyramid matching (HPM)

to fast spatial matching (FSM) [14]. Both buildings are

matched by HPM, while inliers from one surface are only

found by FSM. But our major achievement is speed: in a

given query time, HPM can re-rank one order of magnitude

more images than the state of the art in geometry re-ranking.

We give a more detailed account of our contribution in sec-

tion 2 after discussing the most related prior work.



2. Related work and contribution

Given a number of correspondences between a pair of im-

ages, RANSAC [7] is still one of the most popular geomet-

ric verification models. However, its performance is poor

when the ratio of inliers is too low. Philbin et al. [14] gener-

ate hypotheses from single correspondences exploiting lo-

cal feature shape. Matching then becomes deterministic by

enumerating all hypotheses. Still, this process is quadratic

in the number of correspondences.

Consistent groups of correspondences may first be found

in the transformation space using the generalized Hough

transform [3]. This is carried out by Lowe [12], but only

as a prior step to verification. Tentative correspondences

are found via fast nearest neighbor search in the descrip-

tor space and used to generate votes in the transformation

space. Performance depends on the number rather than the

ratio of inliers. Still, multiple groups need to be verified for

inliers and this may be quadratic in the worst case.

Jégou et al. use a weaker geometric model [9] where

groups of correspondences only agree in their relative

scale and—independently—orientation. Correspondences

are found using a visual codebook. Scale and orientation of

local features are quantized and stored in the inverted file.

Hence, weak geometric constraints are integrated in the fil-

tering stage of the search engine. However, this model does

not dispense with geometry re-ranking after all.

More flexible models are typically used for recogni-

tion. For instance, multiple groups of consistent correspon-

dences are identified with the flexible, semi-local model

of Carneiro and Jepson [5], employing pairwise relations

between correspondences and allowing non-rigid deforma-

tions. Similarly, Leordeanu and Hebert [11] build a sparse

adjacency (affinity) matrix of correspondences and greed-

ily recover inliers based on its principal eigenvector. This

spectral model can additionally incorporate different feature

mapping constraints like one-to-one.

One-to-one mapping is maybe reminiscent of early cor-

respondence methods on non-discriminative features, but

can be very important when codebooks are small, under the

presence of repeating structures, or e.g. with soft assign-

ment models like Philbin et al. [15]. Most flexible models

are iterative and at least quadratic in the number of corre-

spondences.

Relaxed matching processes like Vedaldi and Soatto [18]

offer an extremely attractive alternative in terms of com-

plexity by employing distributions over hierarchical parti-

tions instead of pairwise computations. The most popular

is by Grauman and Darell [8], who map features to a multi-

resolution histogram in the descriptor space, and then match

them in a bottom-up process. The benefit comes mainly

from approximating similarities by bin size. Lazebnik et

al. [10] apply the same idea to image space but in such a

way that geometric invariance is lost.

Contribution. While the above relaxed methods apply

to two sets of features, we rather apply the same idea to one

set of correspondences (feature pairs) and aim at grouping

according to proximity, or affinity. This problem resem-

bles mode seeking [17], but our solution is a non-iterative,

bottom-up grouping process that is free of any scale pa-

rameter. We represent correspondences in the transforma-

tion space exploiting local feature shape as in [12], but

we form correspondences using a codebook. Like pyramid

match [8], we approximate affinity by bin size, without ac-

tually enumerating correspondence pairs.

We also impose an one-to-one mapping constraint such

that each feature in one image is mapped to at most one fea-

ture in the other. Indeed, this makes our problem similar

to that of [11], in the sense that we greedily select a pair-

wise compatible subset of correspondences that maximize a

non-negative, symmetric affinity matrix. However we allow

multiple groups (clusters) of correspondences.

To summarize, we derive a flexible spatial matching

scheme where all tentative correspondences contribute, ap-

propriately weighted, to a similarity score. What is most re-

markable is that no verification, model fitting or inlier count

is needed as in [12], [14] or [5]. Besides significant perfor-

mance gain, this yields a dramatic speed-up. Our result is a

very simple algorithm that requires no learning and can be

easily integrated into any image retrieval process.

3. Problem formulation

We assume an image is represented by a set P of local fea-

tures, and for each feature p ∈ P we are given its descriptor,

position and local shape. We restrict discussion to scale and

rotation covariant features, so that the local shape and posi-

tion of feature p are given by the 3× 3 matrix

F (p) =

[

M(p) t(p)
0
T 1

]

, (1)

where M(p) = σ(p)R(p) and σ(p), R(p), t(p) stand for

isotropic scale, orientation and position, respectively. R(p)
is an orthogonal 2 × 2 matrix with detR(p) = 1, repre-

sented by an angle θ(p). In effect, F (p) specifies a similar-

ity transformation w.r.t. a normalized patch e.g. centered at

the origin with scale σ0 = 1 and orientation θ0 = 0.

Given two images P,Q, an assignment or correspon-

dence c = (p, q) is a pair of features p ∈ P, q ∈ Q. The rel-

ative transformation from p to q is again a similarity trans-

formation given by

F (c) = F (q)F (p)−1 =

[

M(c) t(c)
0
T 1

]

, (2)

where M(c) = σ(c)R(c), t(c) = t(q) − M(c)t(p); and

σ(c) = σ(q)/σ(p), R(c) = R(q)R(p)−1 are the relative



scale and orientation respectively from p to q. This is a 4-

dof transformation represented by a parameter vector

f(c) = (x(c), y(c), σ(c), θ(c)), (3)

where [x(c) y(c)]T = t(c) and θ(c) = θ(q) − θ(p). Hence

assignments can be seen as points in a d-dimensional trans-

formation space F with d = 4 in our case.

An initial set C of candidate or tentative correspon-

dences is constructed according to proximity of features in

the descriptor space. Here we consider the simplest visual

codebook approach where two features correspond when

assigned to the same visual word:

C = {(p, q) ∈ P ×Q : u(p) = u(q)}, (4)

where u(p) is the codeword, or visual word, of p. This is a

many-to-many mapping; each feature in P may have mul-

tiple assignments to features in Q, and vice versa. Given

assignment c = (p, q), we define its visual word u(c) as the

common visual word u(p) = u(q).
Each correspondence c = (p, q) ∈ C is given a weight

w(c) measuring its relative importance; we typically use the

inverse document frequency (idf ) of its visual word. Given

a pair of assignments c, c′ ∈ C, we assume an affinity score

α(c, c′) measures their similarity as a non-increasing func-

tion of their distance in the transformation space. Finally,

we say that two assignments c = (p, q), c′ = (p′, q′) are

compatible if p 6= p′ and q 6= q′, and conflicting otherwise.

For instance, c, c′ are conflicting if they are mapping two

features of P to the same feature of Q.

Our problem is then to identify a subset of pairwise com-

patible assignments that maximizes the total weighted, pair-

wise affinity. This is a binary quadratic programming prob-

lem and we only target a very fast, approximate solution.

4. Hough Pyramid Matching

We assume that transformation parameters may be normal-

ized or non-linearly mapped to [0, 1] (see section 5). Hence

the transformation space is F = [0, 1]d. We construct a hi-

erarchical partition B = {B0, . . . , BL−1} of F into L lev-

els. Each Bℓ ∈ B partitions F into 2kd bins (hypercubes),

where k = L − 1 − ℓ. The bins are obtained by uniformly

quantizing each parameter, or partitioning each dimension

into 2k equal intervals of length 2−k. B0 is at the finest

(bottom) level; BL−1 is at the coarsest (top) level and has a

single bin. Each partition Bℓ is a refinement of Bℓ+1.

Starting with the set C of tentative correspondences of

images P,Q, we distribute correspondences into bins with

a histogram pyramid. Given a bin b, let

h(b) = {c ∈ C : f(c) ∈ b} (5)

be the set of correspondences with parameter vectors falling

into b, and |h(b)| its count.

4.1. Matching process

We recursively split correspondences into bins in a top-

down fashion, and then group them again recursively in a

bottom-up fashion. We expect to find most groups of con-

sistent correspondences at the finest (bottom) levels, but we

do go all the way up the hierarchy to account for flexibil-

ity. Large groups of correspondences formed at a fine level

are more likely to be true, or inliers. It follows that each

correspondence should contribute to the similarity score ac-

cording to the size of the groups it participates in and the

level at which these groups were formed.

In order to impose a one-to-one mapping constraint, we

detect conflicting correspondences at each level and greed-

ily choose the best one to keep on our way up the hierarchy.

The remaining are marked as erased. Let Xℓ denote the set

of all erased correspondences up to level ℓ. If b ∈ Bℓ is a

bin at level ℓ, then the set of correspondences we have kept

in b is ĥ(b) = h(b) \Xℓ. Clearly, a single correspondence

in a bin does not make a group, while each correspondence

links to m − 1 other correspondences in a group of m for

m > 1. Hence we define the group count of bin b as

g(b) = max{0, |ĥ(b)| − 1}. (6)

Now, let b0 ⊆ . . . ⊆ bℓ be the sequence of bins con-

taining a correspondence c at successive levels up to level

ℓ such that bk ∈ Bk for k = 0, . . . , ℓ. For each k, we ap-

proximate the affinity α(c, c′) of c to any other correspon-

dence c′ ∈ bk by a fixed quantity. This quantity is assumed

a non-negative, non-increasing level affinity function of k,

say α(k). We focus here on the decreasing exponential form

α(k) = 2−k, such that affinity is inversely proportional to

bin size. On the other hand, there are g(bk)− g(bk−1) new

correspondences joining c in a group at level k. Similarly to

[8], this gives rise to the strength of c up to level ℓ:

sℓ(c) = g(b0) +

ℓ
∑

k=1

2−k{g(bk)− g(bk−1)}. (7)

We are now in position to define the similarity score be-

tween images P,Q. Indeed, the total strength of c is simply

its strength at the top level, s(c) = sL−1(c). Then, exclud-

ing all erased assignments X = XL−1 and taking weights

into account, we define the similarity score by

s(C) =
∑

c∈C\X

w(c)s(c). (8)

On the other hand, we are also in position to choose the

best correspondence in case of conflicts and impose one-

to-one mapping. In particular, let c = (p, q), c′ = (p′, q′)
be two conflicting assignments. By definition (4), all four

features p, p′, q, q′ share the same visual word, so c, c′ are

of equal weight: w(c) = w(c′). Now let b ∈ Bℓ be the
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Figure 2. Matching of 9 assignments on a 3-level pyramid in 2D space. Colors denote visual words, and edge strength denotes affinity. The

dotted line between c6, c9 denotes a group that is formed at level 0 and then broken up at level 2, since c6 is erased.
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Figure 3. Assignment labels, features and scores referring to

Fig. 2. Here vertices and edges denote features (in images P,Q)

and assignments, respectively. Assignments c5, c6 are conflicting,

being of the form (p, q), (p, q′). Similarly for c7, c8. Assignments

c1, . . . , c5 join groups at level 0; c8, c9 at level 2; and c6, c7 are

erased.

first (finest) bin in the hierarchy with c, c′ ∈ b. It then fol-

lows from (7) and (8) that their contribution to the similarity

score may only differ up to level ℓ−1. We therefore choose

the strongest one up to level ℓ− 1 according to (7). In case

of equal strength, or at level 0, we pick one at random.

4.2. Examples and discussion

A toy example is illustrated in Fig. 2, 3, 4. We assume as-

signments are conflicting when they share the same visual

word. Fig. 2 shows three groups of assignments at level 0:

{c1, c2, c3}, {c4, c5} and {c6, c9}. The first two are joined

at level 1. Assignments c7, c8 are conflicting, and c7 is

erased at random. Assignments c5, c6 are also conflicting,

but are only compared at level 2 where they share the same

bin; according to (7), c5 is stronger as it participates in a

group of 5. Hence group {c6, c9} is broken up, c6 is erased

and c8, c9 join c1, . . . , c5 in a group of 7 at level 2.

Apart from the feature/assignment configuration in im-

ages P,Q, Fig. 3 also illustrates how the similarity score
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Figure 4. Affinity matrix equivalent to the strengths of Fig. 3 ac-

cording to (7). Assignments have been rearranged so that groups

appear in contiguous blocks. Groups formed at levels 0, 1, 2 are

assigned affinity 1, 1

2
, 1

4
respectively. The similarity scores of

Fig. 3 may be obtained by summing affinities over rows and mul-

tiplying by assignment weights.

of (8) is formed from individual assignment strengths. For

instance, assignments c1, . . . , c5 have strength contributions

from all 3 levels, while c8, c9 only from level 2. Fig. 4

shows how these contributions are arranged in an n × n
affinity matrix A. In fact, the sum over a row of A equals

the strength of the corresponding assignment—the diago-

nal is excluded due to (6). The upper triangular part of A,

responsible for half the similarity score of (8), corresponds

to the set of edges among assignments shown in Fig. 2, the

edge strength being proportional to affinity. This reveals the

pairwise nature of the approach [5][11].

Another example is that of Fig. 1, where we match two

real images of the same scene from different viewpoints.

It is clear that the strongest correspondences, contributing

most to the similarity score, are true inliers. The scene ge-

ometry is such that not even a homography can capture the

motion of all visible surfaces. Fig. 5 illustrates matching of

assignments in the Hough space. Observe how assignments

get stronger by grouping according to proximity.
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Figure 5. Correspondences of the example in Fig. 1 as votes in

4D transformation space. One 2D projection is depicted, namely

translation (x, y). Translation is normalized by maximum image

dimension. There are L = 5 levels and we are zooming into the

central 8×8 bins. Edges represent links between assignments that

are grouped in levels 0, 1, 2 only. Level affinity α is represented by

three tones of gray with black corresponding to α(0) = 1.

4.3. The algorithm

The matching process is outlined more formally in algo-

rithm 1. It follows a recursive implementation: code before

the recursive call of line 12 is associated to the top-down

splitting process, while after that to bottom-up grouping.

Assignment of correspondences to bins is linear-time in

|C| in line 11. Bℓ partitions F for each level ℓ, so given

a correspondence c there is a unique bin b ∈ Bℓ such that

f(c) ∈ b. We then define a constant-time mapping βℓ : c 7→
b by quantizing parameter vector f(c) to level ℓ. Storage in

bins is sparse and linear-space in |C|; complete partitions

Bℓ are never really constructed.

Given a set of assignments in a bin, optimal detection of

conflicts can be a hard problem. In function ERASE, we fol-

low a very simple approximation whereby two assignments

are conflicting when they share the same visual word. This

avoids storing features; and makes sense because with a fine

codebook, features are uniquely mapped to visual words

(e.g. 92% in our test sets). For all assignments h(b) of bin b
we first construct the set U of common visual words. Then

we only keep the strongest assignment of each codeword

u ∈ U , erase the rest and update X .

Computation of strengths in lines 17-18 can be shown to

be equivalent to (7). It is clear that all operations in each

recursive call on bin b are linear in |h(b)|. Since Bℓ parti-

tions F for all ℓ, the total operations per level are linear in

n = |C|. Hence the time complexity of HPM is O(nL).

Algorithm 1 Hough Pyramid Matching

1: procedure HPM(assignments C, levels L)

2: X ← ∅; B ← PARTITION(L) ⊲ erased; partition

3: for all c ∈ C do s(c)← 0 ⊲ strengths

4: HPM-REC(C,L− 1) ⊲ recurse at top

5: return score
∑

c∈C\X w(c)s(c) ⊲ see (8)

6: end procedure

7:

8: procedure HPM-REC(assignments C, level ℓ)

9: if |C| < 2 ∨ ℓ < 0 return

10: for all b ∈ Bℓ do h(b)← ∅ ⊲ histogram

11: for all c ∈ C do h(βℓ(c))← h(βℓ(c)) ∪ c ⊲ quantize

12: for all b ∈ Bℓ do HPM-REC(h(b), ℓ− 1) ⊲ recurse down

13: for all b ∈ Bℓ do

14: X ← X∪ ERASE(h(b))
15: h(b)← h(b) \X ⊲ exclude erased

16: if |h(b)| < 2 continue ⊲ exclude isolated

17: if ℓ = L− 1 then a← 2 else a← 1
18: for all c ∈ h(b) do s(c)← s(c) + a2−ℓ|h(b)| ⊲ (7)

19: end for

20: end procedure

5. Implementation

Indexing and re-ranking. HPM turns out to be so fast

that we use it to perform geometric re-ranking in an im-

age retrieval engine. We construct an inverted file indexed

by visual word and for each feature in the database we store

quantized location, scale, orientation and image id. Given

a query, this information is sufficient to perform filtering

either by bag of words (BoW) [16] or weak geometric con-

sistency (WGC) [9]. A number of top-ranking images are

marked for re-ranking. For each query feature, we retrieve

assignments from the inverted file once more, but now only

for marked images. For each assignment c found, we com-

pute the parameter vector f(c) and store it in a collection

indexed by marked image id. We then match each marked

image to the query using HPM. Finally, we normalize scores

by marked image BoW ℓ2 norm and re-rank.

Quantization. We treat each relative transformation

parameter x, y, σ, θ separately—see (3). Translation t(c)
in (2) refers to the coordinate frame of the query image,

Q. If r is the maximum dimension of Q, we only keep as-

signments with translation x, y ∈ [−3r, 3r]. We also filter

assignments such that σ ∈ [1/σm, σm], where σm = 10 is

above the range of any feature detector. We compute log-

arithmic scale, normalize all ranges to [0, 1] and quantize

parameters uniformly. We also quantize local feature pa-

rameters: with 5 levels, each parameter is quantized into 16
bins. Our space requirements per feature, as summarized in

Table 1, are then exactly the same as in [9]. Query feature

parameters are not quantized.

Orientation prior. Because most images on the web

are either portrait or landscape, previous methods use prior



image id x y log σ θ total

16 4 4 4 4 32

Table 1. Inverted file memory usage per local feature, in bits. We

use run-length encoding for image id, so 2 bytes are sufficient.

knowledge for relative orientation in their model [14][9].

We use the prior of WGC in our model by incorporating the

weighting function of [9] in the form of additional weights

in the sum of (8).

6. Experiments

In this section we evaluate HPM against state of the art fast

spatial matching (FSM) [14] in pairwise matching and in re-

ranking in large scale search. In the latter case, we experi-

ment on two filtering models, namely baseline bag-of-words

(BoW) [16] and weak geometric consistency (WGC) [9].

6.1. Experimental setup

Datasets. We experiment on two publicly available

datasets, namely Oxford Buildings [14] and Paris [15], and

on our own World Cities dataset1. The latter is downloaded

from Flickr and consists of 927 annotated photos taken in

Barcelona city center and 2 million images from 38 cities

to use as a distractor set. The annotated photos are divided

into 17 groups, each depicting the same building or scene.

We have selected 5 queries from each group, making a to-

tal of 85 queries for evaluation. We refer to Oxford Build-

ings, Paris and our annotated dataset as test sets. Our World

Cities distractors set mostly depict urban scenes exactly like

the test sets, but from different cities.

Features and codebooks. We extract SURF features

and descriptors [4] from each image, setting strength thresh-

old to 2.0 for the detector. We build codebooks with approx-

imate k-means (AKM) [14] and we mostly use a generic

codebook of size 100K constructed from a subset of the 2M

distractors. However, we also employ specific codebooks of

different sizes constructed from the test sets. Unless other-

wise stated, we use the generic codebook.

6.2. Matching experiment

Enumerating all possible image pairs of World Cities test

set, there are 74, 075 pairs of images depicting the same

building or scene. The similarity score should be high for

those pairs and low for the remaining 785, 254; we therefore

apply different thresholds to classify pairs as matching or

non-matching, and compare to the ground truth. We match

all possible pairs with RANSAC, 4-dof FSM (translation,

scale, rotation) and HPM. In both RANSAC and FSM we

perform a final stage of LO-RANSAC as in [14] to recover

1http://image.ntua.gr/iva/datasets/world cities
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Figure 6. Precision-recall curves on all image pairs of World Cities

test set with no distractors.

L 2 3 4 5 6

pyramid 0.473 0.498 0.536 0.556 0.559

flat 0.448 0.485 0.524 0.534 0.509

Table 2. mAP for pyramid and flat matching at different levels L

on World Cities with 2M distractors. Filtering is performed with

BoW and the top 1K images are re-ranked.

an affine transform, and compute the similarity score as the

sum of inlier idf values. We rank pairs according to score

and construct the precision-recall curves of Fig. 6, where

HPM clearly outperforms all methods.

6.3. Reranking experiments

We experiment on retrieval using BoW and WGC with ℓ2
normalization for filtering. Both are combined with HPM

and 4-dof FSM for geometry re-ranking. We measure per-

formance via mean Average Precision (mAP). We also com-

pare re-ranking times and total query times, including filter-

ing. All times are measured on a 2GHz quad core processor

with our own C++ implementations.

Levels. Quantizing local feature parameters at 6 levels

in the inverted file, we measure HPM performance versus

pyramid levels L, as shown in Table 2. We also perform

re-ranking on the single finest level of the pyramid for each

L. We refer to the latter as flat matching. Observe that the

benefit of HPM in going from 5 to 6 levels is small, while

flat matching actually drops in performance. Our choice

for L = 5 then makes sense, apart from saving space—

see section 5. For the same experiment, mAP is 0.341 and

0.497 for BoW and BoW+FSM respectively. Note that even

the flat scheme yields considerable improvement.

Distractors. Fig. 7 compares HPM to FSM and base-

line, for a varying number of distractors up to 2M. Both

BoW and WGC are used for the filtering stage and as base-

line. HPM turns out to outperform FSM in all cases. We

also re-rank 10K images with HPM, since this takes less

time than 1K with FSM. This yields the best performance,

especially in the presence of distractors. Interestingly, fil-

tering with BoW or WGC makes no difference in this case.

http://image.ntua.gr/iva/datasets/world_cities
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Figure 7. mAP comparison for varying database size on World

Cities with up to 2M distractors. Filtering is performed with BoW

or WGC and re-ranking top 1K with FSM or HPM, except for

HPM10K where BoW and WGC curves coincide.

Method
no distractors 2M distractors

no prior prior no prior prior

WGC+HPM10K – – 0.599 0.612

BoW+HPM10K – – 0.601 0.613

WGC+HPM 0.832 0.851 0.573 0.599

BoW+HPM 0.832 0.837 0.558 0.565

WGC+FSM 0.826 0.846 0.536 0.572

BoW+FSM 0.827 – 0.497 –

WGC 0.811 0.843 0.355 0.447

BoW 0.808 – 0.341 –

Table 3. mAP comparison on World Cities with and without prior.

Re-raking on top 1K images, except for HPM10K.

In Table 3 we summarize results for the same experiment

with orientation priors for WGC and HPM. When these are

used together, prior is applied to both. Again, BoW and

WGC are almost identical in the HPM10K case. Using a

prior increases performance in general, but this is dataset

dependent. The side effect is limited rotation invariance.

Timing. Varying the number of re-ranked images, we

measure mAP and query time for FSM and HPM. Once

more, we consider both BoW and WGC for filtering. A

combined plot is given in Fig. 8. HPM appears to re-rank

ten times more images in less time than FSM. With BoW, its

mAP is 10% higher than FSM for the same re-ranking time,

on average. At the price of 7 additional seconds for filtering,

FSM eventually benefits from WGC, while HPM is clearly

unaffected. Indeed, after about 3.3 seconds, mAP perfor-

mance of BoW+HPM reaches saturation after re-ranking

7K images, while WGC does not appear to help.

Specific codebooks. Table 4 summarizes performance

on the Oxford dataset for specific codebooks of varying
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Figure 8. mAP and total (filtering + re-ranking) query time for a

varying number of re-ranked images. The latter are shown with

text labels near markers, in thousands. Results on World Cities

with 2M distractors.

Method
Codebook size

100K 200K 500K 700K

BoW+HPM+P 0.640 0.683 0.701 0.690

BoW+HPM 0.622 0.669 0.692 0.686

BoW+FSM 0.631 0.642 0.677 0.653

BoW 0.545 0.575 0.619 0.614

Table 4. mAP comparison on Oxford dataset for specific code-

books of varying size, without distractors. Filtering with BoW

and re-ranking top 1K images with FSM and HPM. P = prior.

size, created from all Oxford images. HPM again has su-

perior performance except for the 100K vocabulary. Our

best score without prior (0.692) can also be compared to

the best score (0.664) achieved by 5-dof FSM and specific

codebook in [14], though the latter uses a 1M codebook and

different features. The higher scores achieved in Perdoch et

al. [13] are also attributed to superior features rather than

the matching process.

More datasets. Finally, we perform large scale experi-

ments on Oxford and Paris datasets. We consider both good

and ok images as positive examples. Again, we also re-

rank up to 10K images with HPM. Furthermore, focusing

on practical query times, we limit filtering to BoW. HPM

clearly outperforms FSM, while re-ranking 10K images sig-

nificantly increases the performance gap at large scale. Our

best score without prior on Oxford (0.522) can be compared

to the best score (0.460) achieved by FSM in [15] with an

1M generic codebook created on the Paris dataset. Recall

that our distractor set is harder than that of [15] as it is sim-

ilar in nature to the test set.



Method
Oxford Paris

0 2M 0 2M

BoW+HPM10K+P – 0.418 – 0.419

BoW+HPM10K – 0.403 – 0.418

BoW+HPM+P 0.546 0.381 0.595 0.402

BoW+HPM 0.522 0.372 0.581 0.397

BoW+FSM 0.503 0.317 0.542 0.336

BoW 0.430 0.201 0.539 0.282

Table 5. mAP comparison on Oxford and Paris datasets with 100K

generic codebook, with and without 2M distractors. Filtering per-

formed with BoW only. Re-ranking 1K images with FSM and

HPM, also 10K with HPM. P = prior.

7. Discussion

Clearly, apart from geometry, there are many other ways in

which one may improve the performance of image retrieval.

For instance, query expansion [6] increases recall of popular

content, though it takes more time to query. The latter can

be avoided by offline clustering and scene map construc-

tion [1], also yielding space savings. Methods related to

visual word quantization like soft assignment [15] or ham-

ming embedding [9] also increase recall, at the expense of

query time and index space. Experiments have shown that

the effect of such methods is additive.

We have developed a very simple spatial matching al-

gorithm that can be easily integrated in any image retrieval

engine. It boosts performance by allowing flexible match-

ing. Following the previous discussion, this boost is ex-

pected to come in addition to benefits from e.g. codebook

enhancements, soft assignment or query expansion. Such

methods are computationally more demanding than BoW;

we shall investigate whether HPM can cooperate to provide

even further speed-up.

It is arguably the first time a spatial re-ranking method

reaches its saturation in as few as 3 seconds, a practical

query time. The practice so far has been to stop re-ranking

at a point such that queries do not take too long, without

studying further potential improvement using graphs like

those in Figure 8.

It is a very interesting question whether there is more to

gain from geometry indexing. Experiments on larger scale

datasets and alternative methods may provide clearer evi-

dence, e.g. feature bundling [19] or our feature map hash-

ing [2]. Either way, a final re-ranking stage always seems

unavoidable, and HPM can provide a valuable tool. More

can be found at our project page2, including an online demo

of our image retrieval engine using HPM on the entire 2M

World Cities dataset.

2http://image.ntua.gr/iva/research/relaxed spatial matching
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