
MATHEMATICS OF COMPUTATION
Volume 68, Number 228, Pages 1729–1737
S 0025-5718(99)01133-3
Article electronically published on March 1, 1999

SPEEDING FERMAT’S FACTORING METHOD

JAMES MCKEE

Abstract. A factoring method is presented which, heuristically, splits com-
posite n in O(n1/4+ε) steps. There are two ideas: an integer approximation to√

(q/p) provides an O(n1/2+ε) algorithm in which n is represented as the differ-
ence of two rational squares; observing that if a prime m divides a square, then
m2 divides that square, a heuristic speed-up to O(n1/4+ε) steps is achieved.
The method is well-suited for use with small computers: the storage required
is negligible, and one never needs to work with numbers larger than n itself.

1. Introduction

Let n be an odd, composite integer. The aim is to find a non-trivial factorisation
of n. Let

b = d√ne ,(1)

where dxe denotes the smallest integer greater than or equal to x. Define

Q(x, y) = (x + by)2 − ny2 .(2)

To factor n, we seek integers x, y and z such that

Q(x, y) = z2 .(3)

A solution to (3) gives (x + by)2 ≡ z2 (mod n). We then compute

gcd(x + by − z, n)

in the hope that this will be a non-trivial factor of n (i.e., a factor other than 1 or
n).

Taking y = 1 and x ≥ 0 gives Fermat’s factoring method. Allowing y greater
than 1 gives some improvement, and can be viewed as writing n as the difference of
two rational squares, then clearing denominators. The SQUFOF method of Shanks
(for a good exposition, see §8.7 of [1]) looks for solutions to (3) with both x and y
very large, but z very small (|z| = O(n1/4)). Of course, one can reduce x and y mod
n to keep them below n, but SQUFOF does still better: it never computes x and y
at all, and mostly works with numbers of size O(

√
n). A theoretical disadvantage

of SQUFOF is that the existence of a suitable solution to (3) (i.e., one which splits
n) is not guaranteed. In practice, however, the method works very well for smallish
numbers. It is used for subsidiary factorisations in certain other factoring methods,
such as the quadratic sieve.

In this paper, another factoring method based on finding solutions to (3) is
presented. In contrast to SQUFOF, the solutions that we seek have x and y small,

Received by the editor March 28, 1997.
1991 Mathematics Subject Classification. Primary 11Y05; Secondary 11Y16, 68Q25.

c©1999 American Mathematical Society

1729

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

1730 JAMES MCKEE

and consequently z must be rather larger. Moreover, we can guarantee the existence
of a solution which splits n: the only problem is finding it. A heuristic method
is given, which is expected to factor n in O(n1/4+ε) steps. As with SQUFOF,
the computations require much less accuracy than mod n arithmetic: we expect
to need O(n1/4) reductions of n modulo numbers of size O(

√
n), and nearly all

other computations require working to an accuracy of at most half the bits of
n. Depending on implementational details, the method could be a candidate for
replacing SQUFOF, or for being used as well as SQUFOF, in some applications.

The next section gives the key Lemma, which guarantees the existence of a
suitable solution to (3). This immediately gives a factoring algorithm, certain to
factor n in O(n1/2+ε) operations, requiring only O(n1/4) trial divisions. Here, and
throughout this paper, ε denotes a positive real number, as small as we please, with
the implied constant in the O(·) depending on ε. In fact, the nε factors will never
be worse than some power of log n. Section 3 gives a practical method for searching
for a suitable solution to (3), which is not guaranteed to work (suitable solutions
exist, but the method may not find one), but heuristically will factor n in O(n1/4+ε)
operations. After an example of the basic method, and some remarks about imple-
menting it on small computers, Section 6 considers some variants. Section 7 gives
an interpretation of the method in terms of special changes of polynomial in the
quadratic sieve, before some timings for a selection of random numbers. The paper
concludes with a brief discussion of other applications of the idea used to speed the
search for solutions to (3).

The original intention had been to produce a true algorithm (i.e., one guaranteed
to work), and the lemma of the next section provides one, albeit of no practical
value. It was a happy chance that a heuristic method for speeding the search for
the known solution to (3) proved to be efficient for factoring smallish numbers, and
well-suited for use with small computers.

2. The key lemma

The following lemma shows that, after trial division up to 2n1/4, a naive search
for solutions to (3) can be organised so as to be certain to factor n in O(n1/2+ε)
operations. We suppose, then, that n = pq with 2n1/4 < p < q. Here we may (but
do not need to) suppose that p is prime, but we cannot assume that q is prime.
Note that, setting y = 1 in (3), to give Fermat’s method, one might need to take x
of order n3/4 to find a solution to (3).

Lemma. Suppose that n = pq with 2n1/4 < p < q. Then with Q(x, y) defined by
(1) and (2), there exists a solution to (3) with gcd(x+by−z, n) a non-trivial factor
of n and

2 ≤ y ≤ n1/4, y even ;(i)

|x|y < 2n1/2 ;(ii)

0 ≤ z < 2n1/2 .(iii)

In particular, (ii) implies that such x, y and z can be found in O(n1/2+ε) operations.

Proof. Let r = b√(q/p)c, the largest integer not greater than
√

(q/p). Then 1 ≤
r ≤ n1/4/2. Set y = 2r (so that (i) holds), x = r2p + q − by, z = q − r2p. Then
Q(x, y) = z2, so that x, y and z give a solution to (3).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

SPEEDING FERMAT’S FACTORING METHOD 1731

To prove (iii), note that
√

(q/p)− 1 < r ≤ √
(q/p), so that

0 ≤ z = q − r2p < q − q + 2
√

n− p < 2
√

n ,

which is (iii).
To prove (ii), write b =

√
n + δ, with 0 ≤ δ < 1. Then

(x + by)2 = x2 + 2xy(
√

n + δ) + y2n + 2δy2√n + δ2y2

= y2n + z2 .

If x ≥ 0, then this gives

xy ≤ z2

2(
√

n + δ)
< 2

√
n ,

using (iii). If x < 0, then we write r =
√

(q/p) − η, with η ≥ 0, and note that
x = η2p + 2ηδ − 2

√
nδ/p, so that |x| < 2

√
n/p < n1/4, giving |x|y <

√
n < 2

√
n.

Thus (ii) holds whether or not x ≥ 0.
Finally, (i), (ii) and (iii) imply that

|x + by ± z| < 2n1/2/y + (n1/2 + 1)y + 2n1/2

≤ n3/4 + 2n1/2 + 3n1/4

< n ,

at least for n > 31, but the condition that n = pq with 2n1/4 < p < q implies
that n = 30 or n ≥ 35, and for n = 30 we have b = 6, x = −1, y = 2, z = 1, so
that |x + by ± z| < n here too. If x + by = z, then (2) and (3) imply that y = 0,
contradicting (i).

Thus gcd(x + by − z, n) is a non-trivial factor of n.

It is interesting to compare this with R.S. Lehman’s factoring method, [2]. He
also speeds up Fermat’s method, by seeking a solution to an = x2 − z2 with 1 ≤
a ≤ n1/3, where n = pq with n1/3 < p < q. His algorithm is rigorous, and runs in
O(n1/3+ε) steps. One can prove the existence of a suitable solution to an = x2− z2

by considering good rational approximations to q/p. For our method, we demand
only that 2n1/4 < p < q, and then obtain a suitable solution to y2n = x2 − z2 by
considering a good integer approximation to

√
q/p, but without a further heuristic

speed-up we obtain only an O(n1/2+ε) algorithm.

3. The method

After the Lemma of the previous section, we have a factoring algorithm which
runs in O(n1/2+ε) steps. We now describe a practical method for speeding the
search for solutions to (3), to give a factoring method which runs in O(n1/4+ε)
steps, subject to a heuristic argument.

Suppose that we have a solution to (3) satisfying (i), (ii) and (iii) of the Lemma,
where we may suppose that x, y and z have no common prime factor. Suppose
further that m divides z. Then Q(x, y) ≡ 0 (mod m2). Let x0 ≡ xy−1 (mod m2),
where y−1 is the inverse of y (mod m2). Then Q(x0, 1) ≡ 0 (mod m2). We have
x = x0y − λm2 for some λ, so that

x0

m2
− λ

y
=

x

m2y
.(4)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

1732 JAMES MCKEE

If x > 0 and

m2 > 2xy ,(5)

then (4) implies that

0 <
x0

m2
− λ

y
<

1
2y2

,

so that λ/y is a convergent in the continued fraction expansion of x0/m2.
This suggests a means for searching for solutions to (3). We suppose, after

trial division, that n has no prime factors below 2n1/4. From the Lemma, (5) will
certainly hold if m > 2n1/4. We take several m larger than 2n1/4, hoping that m
divides z, and for each m we proceed as follows:

Step 1. Compute all solutions x0 to the equation Q(x0, 1) ≡ 0 (mod m2).

Step 2. For each x0 found in Step 1, compute those convergents λ/y in the contin-
ued fraction expansion of x0/m2 for which λ/y < x0/m2 and y ≤ n1/4. Check if
Q(x0y − λm2, y) is a square. If it is, then we can factor n and stop, else we keep
trying.

In Step 1 we need to compute a square-root of n (mod m2). If m is prime, then
this is easy in practice, and for most prime m it is provably easy (polynomial time).
The method will factor n when we take m to be the least prime factor of z greater
than 2n1/4 (unless x ≤ 0, which happens rarely, but we could easily modify the
search to allow for this). Of course, such a prime factor may not exist, or it may
be too large to be of use in practice. We need more solutions to (3) for there to be
any hope of success. The following refinement of the Lemma gives us this hope.

Refinement. With n as in the Lemma, and T any integer greater than 1, there
exist at least T solutions to (3) with

2 ≤ y ≤ n1/4 + 2(T − 1), y even ;(i)

|x|y < T 4√n ;(ii)

|z| < (T 2 − 1)
√

n .(iii)

Moreover there exist at least T − 1 solutions to (3) satisfying all of the above if we
restrict to x > 0.

Proof. Let r be as in the proof of the Lemma. For 0 ≤ t ≤ T − 1, we get a solution
to (3) given by x = (r + t)2p + q− by, y = 2(r + t), z = q− (r + t)2p. This gives (i)
immediately. For t = 0, (ii) and (iii) follow from the Lemma, so we may suppose
that t > 0. Then

0 > z = q − (r + t)2p ≥ q − (
√

(q/p) + t)2p = −2t
√

n− t2p ,

giving

|z| < 2t
√

n + t2p < t(t + 2)
√

n ≤ (T 2 − 1)
√

n ,

which is (iii). For (ii), we follow the proof in the Lemma, noting that now x is
always positive, giving

0 < xy < z2/2
√

n < (T 2 − 1)2
√

n/2 < T 4√n .

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

SPEEDING FERMAT’S FACTORING METHOD 1733

If T is small compared to n, then again an easy estimate shows that all such
solutions to (3) will split n. One could give a further refinement, using rational ap-
proximations to

√
(q/p) (rather than integer approximations) to produce solutions

to (3).
The following crude heuristic argument now suggests that the method should

run in O(n1/4+ε) steps. Take T of order log n. The probability that any one value
of z given by the Refinement should be prime to all primes m between T 2n1/4

and 2T 2n1/4 is heuristically of order 1/ logn, so we expect success with m �
n1/4(log n)2. One does not need to restrict m to being prime, but it keeps the
bookkeeping simple when taking square-roots mod m2.

4. A worked example

Consider n = 84009841. Here n1/4 ≈ 96. Prime m for which the method
successfully factors n are

m = 73, 179, 229, 619, 641, 1031,

Let us work through the method in detail for m = 73 and m = 179.
Here we have b = 9166, Q(x, y) = (x + by)2 − ny2 = x2 + 18332xy + 5715y2.
For m = 73, we compute

√
n ≡ ±1123 (mod 732), from which we find Q(x0, 1) ≡

0 (mod 732) for x0 ∈ {369, 2615}. Q(369, 1) = 26282 = (36.73)2, which splits n:

gcd(369 + 9166− 2628, n) = 6907.

The case m = 179 illustrates Step 2 of the method. We compute
√

n ≡ ±5517
(mod 1792), from which we find Q(x0, 1) ≡ 0 (mod 1792) for x0 ∈ {17358, 28392}.
Neither value of x0 makes Q(x0, 1) square. For x0 = 28392, the relevant continued
fraction approximations to x0/m2 are 0/1, 7/8, 31/35, 70/79. We find that 35x0 ≡
449 (mod 1792), and Q(449, 35) = 171842 = (96.179)2, which again splits n.

For this example, I considered all prime m ≥ 3. The argument of the previous
section requires m > 2n1/4, but one can be lucky with smaller m, as here with
m = 73 and m = 179.

5. Remarks on implementation

As a practical remark, note that one does not need to perform arithmetic mod
m2 to compute yx0 (mod m2): we are simply performing the (extended) Euclidean
algorithm on x0 and m2. The values of yx0 (mod m2) are given by the relevant
remainders.

The method is (relatively) easy to implement on small computers. Pollard in-
forms me that he has programmed it to run on a tiny Psion computer (Psion Series
3A, 256K). This has a 16-bit processor running at 7MHz. His program allows num-
bers up to 17 digits (stored as 9 + 4 + 4 digits), and tests m between 3 and 32000.
For computing a square root (mod m) one can use Shanks’ method (Algorithm
1.5.1 of [1]), extending this to a square root (mod m2) at the expense of computing
an inverse mod m. Then one performs Euclid’s algorithm on x0 and m2 to find
relevant values of x and y.

Since Q(x, y) will be divisible by m2, one does not need to work to great accuracy
to test if Q(x, y) is a square: simply compute

√
(Q(x, y))/m (which will be of order

n1/4 when m is of order n1/4) in real arithmetic, to enough accuracy to guess
whether it is an integer. It may be better first to test whether Q(x, y) is a square
modulo a few small prime powers. Pollard reports that checking m up to 32000

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

1734 JAMES MCKEE

takes about 12 minutes on his tiny machine ([6]). For 17-digit numbers, m rarely
needs to be this large.

For some timings on a more powerful computer, see the end of this paper.
On a small machine, where one wishes to avoid multiple precision arithmetic, m

will in effect be bounded above. The method may then fail, if the smallest successful
m is too large. One could then try the method on small multiples of n until these
also become too large.

The method is easy to parallelise. Different machines can run through m lying
in different residue classes mod k, where the number of machines equals ϕ(k) (the
totient function).

6. Variants of the method

6.1. Interpolating the continued fraction approximations. If the continued
fraction approximations to x0/m2 are p0/q0, p1/q1, . . . , then we can write

pr+1 = arpr + pr−1 ,

qr+1 = arqr + qr−1 ,

for some ar. For 1 ≤ λ ≤ ar, the fractions

λpr + pr−1

λqr + qr−1

give rational approximations to x0/m2 which are not as good as the continued
fraction approximations, but might (if we are lucky) reveal solutions to (3). For
example, with n = 84009841, as in the example above, we find that primes m for
which this variant splits n are

m = 73, 83, 179, 229, 233, 241, 569, 619, 641, 661, 823, 967, 1031, . . . ,

and we see that there are rather more of them. Of course, it now takes longer to
test each m, and in practice this variant generally takes longer than the original
method.

With n as above and m = 83, we have x0 ∈ {2738, 6486}. For x0 = 2738,
the continued fraction denominators that were tried for y in the original method
were 1, 3 and 78. Here we interpolate between 3 and 78 in steps of 5, finding
Q(269, 63) = 182602 = (220.83)2, which splits n.

6.2. The greedy variant. Given m and x0 such that Q(x0, 1) ≡ 0 (mod m2), we
first test if Q(x0, 1) is a square. If it is, then we are done, else set

r1 = dm2/x0e ,

x1 = x0r1 −m2 ,

y1 = r1 ,

and test if Q(x1, y1) is a square. If it is, then we are done, else set

r2 = dm2/x1e ,

x2 = x1r2 −m2 ,

y2 = y1r2 ,

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

SPEEDING FERMAT’S FACTORING METHOD 1735

and so on. At the jth stage we have

rj = dm2/xj−1e ,

xj = xj−1rj −m2 ,

yj = yj−1rj .

We proceed until either Q(xj , yj) is a square, or yj exceeds a chosen bound (of
order n1/4).

With n as before, we find that primes m for which this variant splits n are

m = 59, 73, 83, 229, 641, 809, 967, 1031,

We see that for some values of m (e.g., m = 179) we miss factorisations revealed
by the basic continued fraction approach, but there are other values of m (e.g.,
m = 59) which succeed here but not with either of the previous variants. Note that
the greedy variant requires only one Euclidean division to compute each value of
y, compared to the two required by the continued fraction approach (since for the
latter only alternate denominators are used).

For m = 59, we find that x0 ∈ {1035, 1519}. With x0 = 1519, x2 = 823, y2 = 12,
and Q(823, 12) = (229.59)2, which splits n. Indeed we find the same solution to (3)
as we did with m = 229 using the basic method.

For a larger example, take n = 663621 112452 523783. Here one finds that
m = 95971 splits n (with y = 112), finding the factors 700 119223 and 947 868721.

Using PARI-gp on a SUN Sparc 5, I have found the greedy variant to be best.
Pollard, however, on a PSION 3A, finds this variant slower than the basic method,
observing that Q(x, y) is more often a square mod 64 for the values of x and y
produced by this variant. Hence the test for squareness takes longer on average.
His observation can be explained by noting that Q(xj , yj) is a square mod ny2

j , and
for the greedy variant the yj tend to have many small factors (yj is the product of
r1, . . . , rj , and the rj are usually small). If xj ≡ 0 (mod 8), then Q(xk, yk) is a
square mod 64 for all k ≥ j.

6.3. Composite moduli. Any of the variants discussed work in principle with
composite values of m, but we may then need to consider more than two pos-
sibilities for x0. For example, n = 84009841 (as above) is split by m = 36:
x0 ∈ {369, 739, 1179, 1225}, and we have seen already that Q(369, 1) = (36.73)2.

7. Interpolating the quadratic sieve

With Q(x, y) defined by (2), we have Q(x, y) ≡ (x + by)2 (mod n). In the above
method, we sought Q(x, y) an exact square. Instead, we can try to factor Q(x, y)
over a factor base B, consisting of a few small primes, then use several relations

(xi + byi)2 = Q(xi, yi) =
∏
p∈B

pαp,i(6)

to find squares which agree mod n (by Gaussian elimination over the field with
two elements), in the hope of factoring n. This idea is the basis of several modern
factoring methods.

If we restrict to yi = 1, then we have a simple version of the quadratic sieve
(§10.4.1 of [1]). For p ∈ B we compute values of xp (generally two of them) such
that Q(xp, 1) ≡ 0 (mod p). This allows us to sieve over a range of x and find
relations as in (6) more quickly. As x grows larger, so does Q(x, 1), and it becomes

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

1736 JAMES MCKEE

less likely that Q(x, 1) will factor over B. In the multiple polynomial version (§10.4.2
of [1]), Q(x, 1) is replaced after a while by another quadratic polynomial (with the
same discriminant), to keep the numbers represented by the polynomial small. The
cost of such a change is that the xp have to be recomputed.

Moving from Q(x, 1) to Q(x, y), for fixed y, gives a relatively cheap change of
polynomial, in that the new xp are computed simply by multiplying the old xp by
y (mod p). We can view this change of polynomial as a rational interpolation of
Q(x, 1), taking x ∈ Q with denominator dividing y, then clearing denominators.
One also notes that this process is essentially inverse to the “special q’s” idea of
Davis and Holdridge, in which Q(x, 1) is replaced by the polynomial Q(qx+x0, 1)/q,
where Q(x0, 1) ≡ 0 (mod q).

Having viewed the process of moving from Q(x, 1) to Q(x, y) as giving rational
approximations to

√
n, rather than integer ones, we may ask what happens if we

look for the best rational approximations, as appear in the continued fraction ex-
pansion of

√
n. Not surprisingly, this gives the continued fraction factoring method

(§10.1 of [1]).
For the method of this paper, we seek Q(x, y) = z2. By looking for z ≡ 0 (mod

m), we are using the special q’s idea with q = m2. In allowing y > 1, we are
interpolating.

8. Timings

The timings shown in Table 1 should be interpreted with caution. I used my
own routines for both SQUFOF and the method of this paper, using PARI, via the
PARI-gp programming language, on a Sun Sparc 5. These should run much more
quickly if the PARI routines were called from a C program. For comparison, I give
also the times to split n using the MAPLE V routine ifactor(n,squfof).

My SQUFOF program follows Algorithm 8.7.2 of [1], making no use of the infras-
tructure of the class group. The values of n were products of two randomly chosen
primes. For the method of this paper, I used the greedy variant, with m > n1/4,
and y < n1/4/10. Strictly, I should first eliminate the possibility of factors below

Table 1

SQUFOF Our method
n MAPLE V PARI-gp PARI-gp

n 3n
91739369× 266981831 4 10 3 6

327083137× 1245254189 25 66 19 46
1640261503× 1672679527 192 520 277 1
700119223× 947868721 0 60 41 7
108797839× 1832615053 20 53 8 203
883283243× 1682761103 179 137 9 3
1258514107× 2023452479 214 575 61 26

22178813× 669848353 74 163 19 2
1018825649× 1690938463 30 80 26 48
589472101× 1180140427 0 37 176 15

mean 74 170 64 36
median 27 73 23 11

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

SPEEDING FERMAT’S FACTORING METHOD 1737

about n1/4. On the Sun, using PARI, this can be done in negligible time using Pol-
lard’s ρ method (Algorithm 8.5.2 in [1]). On a small computer, trial division may
be preferable, in view of the extra complications of performing arithmetic to greater
precision. Alternatively, one can start with m as small as 3, thereby incorporating
trial division into the method.

As with SQUFOF, there is considerable variation in the time taken to split
numbers of similar size using the method of this paper. In Table 1, I give the
times (in seconds, to the nearest second) taken to split 3n, as well as n. There is
considerable advantage in trying both: the mean of the minima of times to split n
and 3n is only 11 seconds, with median 7 seconds. Thus if one tested each m on
both n and 3n the mean time would be 22 seconds, with median 14 seconds.

9. Applications to other methods

The key idea used to speed the search for solutions to (3) is that given any m, a
square is divisible by m2 if and only if its square root is divisible by m, so that we
gain information mod m2 with probability 1/m. The obvious generalisation may
be applied to any polynomial equation in which one of the variables appears only
as a square or higher power. This has been used already in another speed-up of
Fermat’s method, in §5 of [5]. It can also be applied to Euler’s method, or the
variants in [3] and [4]. These seek solutions to an = x2 + dy2 for various a and d.

For example, to solve n = x2 + y2 (when possible), we can take several prime
m of size about n1/4 and hope that either m divides x or m divides y. Each such
m can be tested in polynomial time (assuming that we can compute square roots
mod m2 in polynomial time, which we can in practice). If we are unlucky, and do
not find a solution, then we can try an in place of n, where a is representable by
the form x2 + y2. This gives a heuristic O(n1/4+ε) method. Applying this idea to
the O(n1/2+ε) algorithm in [3] gives another heuristic O(n1/4+ε) factoring method.

Acknowledgments

I am grateful to John Pollard for numerous comments on an early draft of this
paper, and for remarks based on his practical experience with the method. I am
also grateful for helpful comments on a later draft by an anonymous referee. The
work for this paper began when I was at Trinity Hall, Cambridge; the first draft
was written when I was at the University of Edinburgh.

References

[1] H. Cohen, A course in computational algebraic number theory, Graduate Texts in Mathe-
matics 138, Springer, 1993. MR 94i:11105

[2] R.S. Lehman, Factoring large integers, Math. Comp., 28 (1974), 637–646. MR 49:4949
[3] D.H. Lehmer and Emma Lehmer, A new factorization technique using quadratic forms, Math.

Comp., 28 (1974), 625–635. MR 49:7204
[4] J.F. McKee, Turning Euler’s factoring method into a factoring algorithm, Bull. London Math.

Soc., 28 (1996), 351–355. MR 97f:11010
[5] J.F. McKee and R.G.E. Pinch, Old and new deterministic factoring algorithms, in Algorithmic

Number Theory, Proceedings of the Second International Symposium, ANTS-II (H. Cohen,
ed.), Lecture Notes in Computer Science 1122, Springer, 1996, pp. 217–224. MR 98a:11183

[6] J.M. Pollard, Personal communication.

Pembroke College, Oxford, OX1 1DW, UK

E-mail address: jfm@maths.ox.ac.uk

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

