
Speeding Up Automatic Hyperparameter Optimization of
Deep Neural Networks by Extrapolation of Learning Curves

Tobias Domhan, Jost Tobias Springenberg, Frank Hutter

University of Freiburg

Freiburg, Germany

{domhant,springj,fh}@cs.uni-freiburg.de

Abstract

Deep neural networks (DNNs) show very strong
performance on many machine learning problems,
but they are very sensitive to the setting of their
hyperparameters. Automated hyperparameter op-
timization methods have recently been shown to
yield settings competitive with those found by hu-
man experts, but their widespread adoption is ham-
pered by the fact that they require more compu-
tational resources than human experts. Humans
have one advantage: when they evaluate a poor
hyperparameter setting they can quickly detect (af-
ter a few steps of stochastic gradient descent) that
the resulting network performs poorly and termi-
nate the corresponding evaluation to save time. In
this paper, we mimic the early termination of bad
runs using a probabilistic model that extrapolates
the performance from the first part of a learning
curve. Experiments with a broad range of neural
network architectures on various prominent object
recognition benchmarks show that our resulting ap-
proach speeds up state-of-the-art hyperparameter
optimization methods for DNNs roughly twofold,
enabling them to find DNN settings that yield better
performance than those chosen by human experts.

1 Introduction

Deep neural networks (DNNs) trained via backpropaga-
tion currently constitute the state-of-the-art for many clas-
sification problems, such as object recognition from im-
ages [Krizhevsky et al., 2012; Donahue et al., 2014] or speech
recognition from audio data (see [Deng et al., 2013] for a re-
cent review). Unfortunately, they are also very sensitive to
the setting of their hyperparameters [Montavon et al., 2012].
While good settings are hard to find by non-experts, au-
tomatic hyperparameter optimization methods have recently
been shown to yield performance competitive with human ex-
perts, and in some cases even surpassed them [Bergstra et al.,
2011; Snoek et al., 2012; Dahl et al., 2013; Bergstra et al.,
2013].

However, fitting large DNNs is computationally expensive
and the time overhead of automated hyperparameter opti-
mization hampers its widespread adoption. Instead, many hu-

man deep learning experts still perform manual hyperparam-
eter search, relying on a “bag of tricks” to determine model
hyperparameters and learning rates for stochastic gradient de-
scent (SGD) [Montavon et al., 2012]. Using this acquired
knowledge they can often tell after a few SGD steps whether
the training procedure will converge to a model with compet-
itive performance or not. To save time, they then prematurely
terminate runs expected to perform poorly, allowing them to
make more rapid progress than automated methods (which
train even poor models until the end).

In this work, we mimic this early termination of bad runs
with the help of a probabilistic model that extrapolates perfor-
mance from the first part of a learning curve to its remainder,
enabling us to automatically identify and terminate bad runs
to save time. After discussing related work on hyperparame-
ter optimization and studies of learning curves (Section 2), we
introduce our probabilistic approach for extrapolating learn-
ing curves and show how to use it to devise a predictive ter-
mination criterion that can be readily combined with any hy-
perparameter optimization method (Section 3). Experiments
with different neural network architectures on the prominent
object recognition benchmarks CIFAR-10, CIFAR-100 and
MNIST show that predictive termination speeds up current
hyperparameter optimization methods for DNNs by roughly
a factor of two, enabling them to find DNN settings that yield
better performance than those chosen by human experts (Sec-
tion 4).

2 Foundations and Related Work

We first review modern hyperparameter optimization meth-
ods and previous attempts to model learning curves.

2.1 Hyperparameter Optimization Methods

Given a machine learning algorithm A having hyperparame-
ters λ1, . . . , λn with respective domains Λ1, . . . ,Λn, we de-
fine its hyperparameter space as Λ = Λ1 × · · · × Λn. For
each hyperparameter setting λ ∈ Λ, we use Aλ to denote
the learning algorithm A using this setting. We further use
l(λ) = L(Aλ,Dtrain,Dvalid) to denote the validation loss
(e.g., misclassification rate) that Aλ achieves on data Dvalid

when trained on Dtrain. The hyperparameter optimization
problem is then to find λ ∈ Λ minimizing l(λ).

For decades, the de-facto standard for hyperparameter op-
timization in machine learning has been a simple grid search.

Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI 2015)

3460

Other approaches proposed over the years include racing al-
gorithms [Maron and Moore, 1994] and gradient search [Ben-
gio, 2000]. Recently, it has been shown that a simple ran-
dom search can perform much better than grid search, par-
ticularly for high-dimensional problems with low intrinsic
dimensionality [Bergstra and Bengio, 2012]. More sophis-
ticated Bayesian optimization methods perform even bet-
ter and have yielded new state-of-the-art results for sev-
eral datasets [Bergstra et al., 2011; Hutter et al., 2011;
Snoek et al., 2012; Bergstra et al., 2013].

Bayesian Optimization (see, e.g., [Jones et al., 1998;
Brochu et al., 2010]) constructs a probabilistic model M of
f based on point evaluations of f and any available prior in-
formation, uses model M to select subsequent configurations
λ to evaluate, updates M based on the new measured perfor-
mance at λ, and iterates.

The three most popular implementations of Bayesian op-
timization are Spearmint [Snoek et al., 2012], which uses
a Gaussian process (GP) [Rasmussen and Williams, 2006]

model for M; SMAC [Hutter et al., 2011], which uses ran-
dom forests [Breiman, 2001] modified to yield an uncer-
tainty estimate [Hutter et al., 2014]; and the Tree Parzen
Estimator (TPE) [Bergstra et al., 2011], which constructs a
density estimate over good and bad instantiations of each
hyperparameter to build M. Eggensperger et al. [2013]
empirically compared these three systems, concluding that
Spearmint’s GP-based approach performs best for problems
with few numerical (and no other) hyperparameters, and that
SMAC’s and TPE’s tree-based approach performs best for
high-dimensional and partly discrete hyperparameter opti-
mization problems, as they occur in optimizing DNNs. We
therefore use SMAC and TPE in this study.

2.2 Modeling Learning Curves

The term learning curve appears in the literature for describ-
ing two different phenomena: (1) the performance of an iter-
ative machine learning algorithm as a function of its training
time or number of iterations; and (2) the performance of a
machine learning algorithm as a function of the size of the
dataset it has available for training. While our work concerns
learning curves of type 1, we describe related work on mod-
elling both types of learning curves.

Learning curves of type 1 are very popular for visualizing
the concept of overfitting: while performance on the training
set tends to improve over time, test performance often de-
grades eventually. The study of these learning curves has led
to early stopping heuristics aiming to terminate training be-
fore overfitting occurs (see, e.g., [Yao et al., 2007]). We note
that the goal behind our new predictive termination criterion
is different: we predict validation performance and terminate
a run when it is unlikely to beat the performance of the best
model we have encountered so far.

In parallel to our work, Swersky et al. [2014] devised a GP-
based Bayesian optimization method that includes a learning
curve model. They used this model for temporarily paus-
ing the training of machine learning models, in order to ex-
plore several promising hyperparameter configurations for a
short time and resume training on the most promising mod-
els later on. Swersky et al. [2014] successfully applied this

technique to matrix factorization, online Latent Dirichlet Al-
location (LDA) and logistic regression. However, so far it
does not work well for deep neural networks, possibly since
it is limited to one particular parametric learning curve model
that may not describe learning curves of deep networks well.1

Learning curves of type 2 have been studied to extrapolate
performance from smaller to larger datasets. In early work,
Frey and Fisher [1999] estimated the amount of data needed
by a decision tree to achieve a desired accuracy using lin-
ear, logarithmic, exponential and power law parametric mod-
els. Subsequent work predicted the performance of multi-
ple machine learning algorithms using a total of 6 parametric
models: a power law model with two and three parameters,
a logarithmic model, the vapor pressure model, the Morgan-
Mercer-Flodin (MMF) model, and the Weibull model [Gu et
al., 2001]. More recently, e.g., Kolachina et al. [2012] pre-
dicted how a statistical machine translation system would per-
form if more data was available; they used 6 parametric mod-
els and concluded that the three parameter power law is most
suitable for their task.

All these approaches for extrapolating learning curves have
in common that they use maximum likelihood fits of each
parametric model by itself. In contrast to the probabilistic ap-
proach we propose in this work, the curve models are thus
neither combined to increase their representative power nor
do they account for uncertainty in the data and model param-
eters.

3 Extrapolation of Learning Curves

In this paper, we focus on learning curves that describe the
performance of DNNs as a function of the number of stochas-
tic gradient descent (SGD) steps. We measure performance as
classification accuracy on a validation set.

3.1 Learning Curve Model

In this section, we describe how we probabilistically extra-
polate from a short initial portion of a learning curve to a
later point. When running SGD on DNNs we measure vali-
dation performance in regular intervals. Let y1:n denote the
observed performance values for the first n intervals. In our
problem setup, we observe y1:n and aim to predict perfor-
mance ym after a large number of intervals m ≫ n. We solve
this problem using a probabilistic model.

Parametric Learning Curve Models

Our basic approach is to model the partially observed
learning curve y1:n by a set of parametric model families
{f1, . . . , fK}. Each of these parametric functions fk is de-
scribed through a set of parameters θk. Assuming additive
Gaussian noise ǫ ∼ N (0, σ2), we can use each fk to model
performance at time step t as yt = fk(t|θ)+ǫ; the probability
of a single observation yt under model fk is hence given as

p(yt|θk, σ
2) = N (yt; fk(t|θk), σ

2). (1)

We chose a large set of parametric curve models from the
literature whose shape coincides with our prior knowledge

1Based on personal communication with the authors.

3461

Reference name Formula

vapor pressure exp(a+ b
x
+ c log(x))

pow3 c− ax−α

log log linear log(a log(x) + b)

Hill3
ymaxx

η

κη+xη

log power a

1+
(

x

eb

)c

pow4 c− (ax+ b)−α

MMF α−
α−β

1+(κx)δ

exp4 c− e−axα+b

Janoschek α− (α− β)e−κxδ

Weibull α− (α− β)e−(κx)δ

ilog2 c− a
log x

Figure 1: Left: A typical learning curve and extrapolations from its first part (the end of which is marked with a vertical line),
with each of the 11 individual parametric models. The legend is sorted by the residual of the predictions at epoch 300. Right:
the formulas for our 11 parameteric learning curve models fk(x).

about the form of learning curves: They are typically in-
creasing, saturating functions; for example functions from the
power law or the sigmoidal family. In total we considered
K = 11 different model families; Figure 1 shows an example
for how each of these functions would model a typical learn-
ing curve and also provides their parametric formulas. We
note that all of these models capture certain aspects of learn-
ing curves, but that no single model can describe all learning
curves by itself, motivating us to combine the models in a
probabilistic framework.

A Weighted Probabilistic Learning Curve Model

Instead of selecting an individual model we combine all K
models into a single, more powerful, model. This combined
model is given by a weighted linear combination:

fcomb(t|ξ) =
K
∑

k=1

wkfk(t|θk), (2)

where the new combined parameter vector

ξ = (w1, . . . , wK ,θ1, . . . ,θK , σ2) (3)

comprises a weight wk for each model, the individual
model parameters θk, and the noise variance σ2, and yt =
fcomb(t|ξ) + ǫ.

Given this model, a simple approach would be to find a
maximum likelihood estimate for all parameters. However,
this would not properly model the uncertainty in the model
parameters. Since our predictive termination criterion aims
at only terminating runs that are highly unlikely to improve
on the best run observed so far we need to model uncertainty
as truthfully as possible and will hence adopt a Bayesian per-
spective, predicting values ym using Markov Chain Monte
Carlo (MCMC) inference.

To enable such probabilistic inference we also need to
place a prior probability on all parameters. It would be sim-
plest to choose an uninformative prior, such that

p(ξ) ∝ 1. (4)

However, with such an uninformative prior we put posi-
tive probability mass on parameterizations that yield learning
curves which decrease after some time. To avoid this situa-
tion, we explicitly encode our knowledge into the prior that
well-behaved learning curves are increasing saturating func-
tions. We also restrict the weights to be positive only, allow-
ing us to interpret each individual model as a non-negative
additive component of a learning curve. This has the nice
side effect that the predicted curve will only be flat once all
models have flattened out.

Concretely, we define a new prior distribution over ξ,
which encodes the above intuition, as

p(ξ)∝

(

K
∏

k=1

p(wk)p(θk)

)

p(σ2)✶(fcomb(1|ξ)<fcomb(m|ξ))

(5)
and for all k

p(wk) ∝

{

1 if wk > 0

0 otherwise
. (6)

The p(θk) and p(σ2) are still set to be uninformative, but
are mentioned for the sake of completeness. The indicator
function ✶(fcomb(1|ξ) < fcomb(m|ξ)) ensures that no patho-
logical model that decreases from the initial value to the point
of prediction m gets any probability mass. Finally, the prior
on the weights p(wk) ensures weights are never negative. Fig-
ure 2 visualizes the problem this modified prior solves: while
the uninformative prior yields learning curves that decrease
over time (Figure 2a), our new prior yields increasing satu-
rating curves (Figure 2b).

With these definitions in place we can finally perform
MCMC sampling over the joint parameter and weight space
ξ by drawing S samples ξ1, . . . , ξS from the posterior

P (ξ|y1:n) ∝ P (y1:n|ξ)P (ξ), (7)

where P (y1:n|ξ) for the model combination is given as
P (y1:n|ξ) = Πn

t=1
N (yt; fcomb(t|ξ), σ

2). To initialize the
sampling procedure, we set all model parameters θk to

3462

(a) Uninformative prior
(b) Prior enforcing positive weights and increasing functions

Figure 2: The effect of the prior. We show posterior predictions using the uninformative prior and the prior encoding our
knowledge about learning curves. The vertical line marks the point of prediction.

their (per-model) maximum likelihood estimate. The model
weights are initialized uniformly, that is wk = 1

K
. The noise

parameter is also initialized to its maximum likelihood esti-

mate σ̂2 = 1

n

n
∑

t=1

(yt − fcomb(t|ξ))
2.

A sample approximation for ym with m > n can then be
formed as

E[ym|y1:n] ≈
1

S

S
∑

s=1

fcomb(m|ξs). (8)

More importantly, since we also have an estimate of
the parameter uncertainty and the predictive distribution
P (ym|y1:n, ξ) is a Gaussian for each fixed ξ, we can estimate
the probability that ym exceeds a certain value ŷ as

P (ym ≥ ŷ|y1:n) =

∫

P (ξ|y1:n)P (ym > ŷ|ξ)dξ (9)

≈
1

S

S
∑

s=1

P (ym > ŷ|ξs) (10)

=
1

S

S
∑

s=1

(

1− Φ(ŷ; fcomb(m|ξs), σ
2

s)
)

, (11)

where Φ(·;µ, σ2) is the cumulative distribution function of
the Gaussian with mean µ and variance σ2.

We note that the entire learning curve extrapolation process
is robust and fully automated, with MCMC sampling taking
care of all free parameters.

3.2 Speeding up Hyperparameter Optimization

We use our predictive models to speed up hyperparameter
optimizers as follows. Firstly, while the hyperparameter op-
timizer is running we keep track of the best performance ŷ
found so far (we initialize ŷ to −∞). Each time the opti-
mizer queries the performance l(λ) of a hyperparameter set-
ting λ we train a DNN using λ as usual, except that we ter-
minate this run early if our extrapolation model predicts the
network to eventually yield worse performance than ŷ. More
precisely, at regular intervals i during SGD training we mea-
sure and save validation set performance yi. There are emax

epochs, k such intervals per epoch, and every p epochs, we
gather the performance values y1:n of the n intervals so far
and run MCMC to probabilistically extrapolate performance
to the final step m = k×emax. We then consider the predicted
probability P (ym ≥ ŷ|y1:n) that the network, after training
for m intervals, will exceed the performance ŷ. If this prob-
ability is above a threshold δ then training continues as usual
for the next p epochs. Otherwise, training is terminated and
we return the expected validation error 1−E[ym|y1:n] (where
E[ym|y1:n] is the expected accuracy from Equation 8) to the
hyperparameter optimizer in lieu of the real (yet unknown)
loss. We dub this procedure the predictive termination crite-
rion. It is agnostic to the precise hyperparameter optimizer
used and we will evaluate its performance using two different
state-of-the-art optimizers.

We also note that, importantly, the network training does
not need to be paused while the termination criterion is run:
we simply run MCMC sampling on the available CPU cores
while the network training continues on the GPU.

4 Experiments

To test our predictive termination criterion under a wide va-
riety of different conditions, we performed experiments on
a broad range of DNN architectures and datasets, carrying
out a combined search over architectures and hyperparam-
eters using two state-of-the-art hyperparameter optimization
methods.

4.1 Experimental Setup

We used three popular datasets concerning object recogni-
tion from small-sized images: the image recognition datasets
CIFAR-10 and CIFAR-100 [Krizhevsky, 2009] and the well
known MNIST dataset [LeCun et al., 1989]. CIFAR-10
and CIFAR-100 each contain 50,000 training and 10,000 test
RGB images with 32× 32 pixels that were taken from a sub-
set of the 80-million tiny images database. While CIFAR-10
contains images from 10 categories, CIFAR-100 contains im-
ages from 100 categories and thus contains 10 times fewer
examples per class. The MNIST dataset is a classic object
recognition dataset consisting of 60,000 training and 10,000

3463

test images with 28× 28 pixels depicting hand-written digits
to be classified into 10 digit classes.

For performing the hyperparameter search on CIFAR-10
and CIFAR-100, we randomly split the training data into
training and validation sets containing 40,000 and 10,000 ex-
amples, respectively. Likewise, for MNIST, we split the train-
ing data into a training set containing 50,000 examples and a
validation set containing 10,000 examples. We used the deep
learning framework CAFFE [Jia et al., 2014] to train DNNs
on a single GPU per run. We further used the hyperparameter
optimization toolbox HPOLIB [Eggensperger et al., 2013] in
combination with our implementation of the predictive termi-
nation criterion based on learning curve prediction, using the
MCMC sampler EMCEE [Foreman-Mackey et al., 2013].

For the predictive termination criterion we set the threshold
to δ = 0.05 in all experiments, that is, we stopped training a
network if our extrapolation model was 95% certain that it
would not improve over the best known performance ŷ when
fully trained. We ran the predictive termination criterion ev-
ery p = 30 epochs. The number of intervals k per SGD epoch
at which we evaluate validation performance was chosen sep-
arately for each architecture to reflect the cost of computing
predictions on the validation data; we used k = 10 for fully
connected networks and k = 2 for convolutional networks.

4.2 Fully Connected Networks

In the first experiment, we trained fully connected networks
for classification on a preprocessed variant of CIFAR-10 and
on MNIST. To make training a fully connected network on
CIFAR-10 feasible we used the same pipeline as Swersky
et al. [2013], who followed the approach from Coates et
al. [2011] to create preprocessed CIFAR-10 features that act
as a fixed convolutional layer while keeping the required
computation time manageable. The pipeline first runs unsu-
pervised k-means (with 400 centroids) on small patches of
6 × 6 pixels that are randomly extracted from the CIFAR-10
training set. It then builds a feature vector by convolving each
image in CIFAR-10 with the centroids and averaging the re-
sponses over parts of the image. After this preprocessing step,
the network contains only fully connected layers to classify
the preprocessed data. We evaluated the benefits that our pre-
dictive termination criterion yields in combination with three
different hyperparameter optimizers: SMAC, TPE, and ran-
dom search (all described in Section 2.1). Each hyperparam-
eter optimizer had a budget of evaluating a total of 100 net-
works. The maximum number of epochs emax was 285.

In the MNIST experiment we fed the raw 784 pixel values
to the fully connected networks. Our setup is thus comparable
to most results on fully connected networks from the litera-
ture, e.g., the recent results on training dropout networks to
classify MNIST [Srivastava et al., 2014]. Training a single
network on MNIST required between 5 and 20 minutes, and
the hyperparameter optimizers had a fixed budget of evaluat-
ing a total of 500 networks.

DNN Hyperparameters

The hyperparameters for the fully connected network control
several architectural choices and hyperparameters related to
the optimization procedure. They include global hyperpa-

Network hyperparameters
Hyperparameter min max default

init. learning rate (log) 1× 10−7 0.5 0.001
learning rate schedule (choice) {inv, fixed} fixed
inv schedule: lr. half-life (cond) 1 50 25
inv schedule: p (cond) 0.5 1. 0.71
momentum 0 0.99 0.6
weight decay (log) 5× 10−7 0.05 0.0005
batch size B 10 1000 100
number of layers 1 6 1
input dropout (Boolean) {true, false} false
input dropout rate (cond) 0.05 0.8 0.4

Fully connected layer hyperparameters
Hyperparameter min max default

number of units 128 6144 1024
weight filler type (choice) {Gaussian, Xavier} Gaussian

Gaussian weight init σ (log; cond) 1× 10−6 0.1 0.005
bias init (choice) {const-zero, const-value} const-zero

constant value bias filler (cond) 0 1 0.5
dropout enabled (Boolean) {true, false} true
dropout ratio (cond) 0.05 0.95 0.5

Table 1: Hyperparameters for the fully connected networks
and their ranges; lr. stands for learning rate, log indicates that
the hyperparameter is optimized on a log scale, and cond in-
dicates that the hyperparameter is conditional on being acti-
vated by the Boolean hyperparameter above it.

rameters (which apply to the whole network) and per-layer
hyperparameters; since the number of layers is a hyperpa-
rameter itself, all hyperparameters of layer i are conditional
on the number of layers being at least i. Both our hyperpa-
rameter optimizers SMAC and TPE can natively handle such
conditional hyperparameters to solve the combined architec-
ture search and hyperparameter optimization problem. We
used stochastic gradient descent with momentum in all ex-
periments. The learning rate was either fixed or changed ac-
cording to the inv schedule2. All units in the network use rec-
tified linear activation functions, and a softmax layer with di-
mensionality 10 is placed at the end to predict the 10 classes.
Weights are either initialized with Gaussian noise or with the
method proposed by Glorot and Bengio [2010]. Biases on
the other hand are either initialized to zero or to a constant
value. Dropout is optionally also applied to the input of the
network. Table 1 details all hyperparameters, along with their
ranges and the default values used to start the search; in to-
tal, the hyperparameter space to be searched has 10(network
hyperparams) + 6(layers) × 7(hyperparams per layer) = 52
hyperparameters.

Results for preprocessed CIFAR-10

Figures 3a and 3b illustrate the speedups that our predic-
tive termination yielded for training fully connected networks
on preprocessed CIFAR-10 with SMAC and TPE. We ran
each hyperparameter optimizer 5 times with different random

2The inv schedule is defined as αt = α0(1+γt)−p, where α0 is
the initial learning rate. In order to be able to set bounds intuitively,
instead of parameterizing γ directly we make the half-life of α a new
hyperparameter, which for a given p can be transformed back into γ.

3464

(a) SMAC on k-means CIFAR-10 (b) TPE on k-means CIFAR-10 (c) SMAC on MNIST

Figure 3: Benefit of predictive termination for SMAC and TPE when optimizing hyperparameters of fully connected networks.
(a-b) Results for the preprocessed CIFAR-10 dataset (a) and (b). (c) Same plot for SMAC MNIST.

Method # centroids Error (%)

SVM [Coates et al., 2011] 4000 20.40%
SVM [Coates et al., 2011] 1600 22.10%
DNN [Swersky et al., 2013] 400 21.10%
DNN (SMAC) 400 19.22%
DNN (TPE) 400 20.18%
DNN (random search) 400 19.90%

Table 2: Comparison of classification results on the k-means
features extracted from the CIFAR10 dataset for different op-
timizers in comparison to previously published results.

seeds and show means and standard deviations of their vali-
dation errors across these runs. While all optimizers achieved
strong performance for this architecture (around 20% valida-
tion error), their computational time requirements to achieve
this level of performance differed greatly. As Figure 3a and
Figure 3b show, our predictive termination criterion sped up
both SMAC and TPE by at least a factor of two for reach-
ing the same validation error as without it. Overall, the av-
erage time needed per hyperparamter optimization run was
reduced from 40 to 18 hours. After this experiment, we ap-
plied the best models found by each optimizer to the test data
to compute the classification error. These results—together
with a comparison to random search and previous attempts
for using k-means preprocessed CIFAR-10—are given in Ta-
ble 2, showing that all optimizers we used found configu-
rations with slightly better performance than the previously
published results for this architecture, with SMAC yielding
the overall best result for this experiment.

Figure 4 shows the effect of our predictive termination cri-
terion on the different DNN training runs: the predictive ter-
mination criterion successfully terminated runs that do not
reach top performance but rather converge slowly to mediocre
results. The figure also shows that it was possible to terminate
many poor runs quite early.

Results for MNIST

Figure 3c illustrates the speedups that predictive termination
yielded for training fully connected networks on MNIST with
SMAC. We only ran SMAC (10 runs) for this experiment
since it had yielded the best results for CIFAR-10 (cf. Ta-
ble 2). Consistent with the results on CIFAR-10, SMAC
found networks with good performance with and without pre-

Network hyperparameters
Hyperparameter min max default

init. learning rate (log) 1× 10−7 0.5 0.001
momentum 0 0.99 0.6
weight decay (log) 5× 10−7 0.05 0.0005
number of pooling layers 2 3 2
learning rate decay γ 0.9 1. 0.9998

Convolutional layer hyperparameters
Hyperparameter min max default

Gaussian weight init σ (log) 1× 10−6 0.1 0.005
weight lr. multiplier (log) 0.1 10.0 1.
number of units (small/large CNN) 16/64 64/192 32/96

Table 3: Hyperparameters for the CNNs together with their
ranges; lr. stands for learning rate, log indicates that the hy-
perparameter is optimized on a log scale.

dictive termination (reaching approximately 1% validation er-
ror) and was much faster when using the predictive termina-
tion criterion: it reached 1% validation error in about 60%
of the time it took a standard SMAC run to achieve the same
performance.

4.3 Small Convolutional Neural Networks

To study the generality of our learning curve extrapolation
models, next, we turned to the problem of optimizing convo-
lutional neural networks (CNNs), which constitute the state-
of-the-art for visual object recognition (see [Krizhevsky et
al., 2012; Jarrett et al., 2009] for recent explanations of con-
volutional layers). For this experiment we used the CIFAR-
10 and CIFAR-100 datasets. The images from both datasets
were preprocessed using a whitening transform, following the
practice outlined by Goodfellow et al. [2013]. Other than that
the CNNs were trained on the raw pixel images.

Small CNN Hyperparameters

At the core, our CNNs no longer contain fully connected lay-
ers but rather use convolutional layers only, followed by a
softmax classification layer. These layers extract features by
convolving the input image or—for deeper layers—the output
of the previous layer with a set of filters. Convolutional lay-
ers are regularly followed by dimensionality reduction steps
(or pooling steps) which reduce the spatial dimensionality of

3465

(a) Without predictive termination (b) Random subset of Figure 4a (c) With predictive termination

Figure 4: Comparison of learning curves for fully connected networks on CIFAR-10 with and without our predictive termination
criterion. Best viewed in color. The plots contain all learning curves from the 10 runs of SMAC and TPE.

the feature map. In our first experiment with small CNNs, we
model the hyperparameter space after the prominent archi-
tecture from Krizhevsky et al. [2012]. Concretely, we build
a hyperparameter space that mimics the layers-18pct config
from cuda-convnet3. Table 3 summarizes this hyperparame-
ter space. In contrast to the experiments with fully connected
networks, we now parameterized the number of layers indi-
rectly, by choosing the number of pooling layers (2 − 3). A
convolutional layer is then always placed between these pool-
ing layers. Each pooling layer always halves the input size
by using max-pooling. The convolutional kernel size in each
layer of our small CNNs is set to 5 × 5. These restrictions
also make training quite fast (approximately 30 minutes per
network). Overall, our small CNNs contain 5 network hyper-
parameters and 3 layer hyperparameters (conditioned on the
number of convolutional layers used), resulting in a total of
5 + 3× 3 = 14 configurable hyperparameters.

Results for Small CNNs on CIFAR-10

We optimized the small CNN hyperparameter space using 10
runs of both SMAC and TPE, with and without predictive
termination. Each run had a maximum budget of evaluating
150 configurations. The maximum number of epochs emax

was 100. While all optimizers eventually found configura-
tions with good validation performance of around 20% error,
SMAC gave slightly better results on average (19.4%± 0.2%
error vs. 20%± 0.4% for TPE). We thus only present the re-
sults for SMAC here due to space constraints.

Figure 5a shows that predictive termination again sped up
SMAC by a factor of at least two for finding the same vali-
dation error as without it. As shown in Figure 5b, predictive
termination again consistently stopped bad runs early. When
the best resulting configuration in terms of validation error
was re-trained on the complete CIFAR-10 training dataset, it
achieved a test error of 17.2% – slightly better than the base-
line model (layers-18pct with 18% test error). A complete
comparison of the test error for the best configuration found
by the different optimizers is given in Table 4 (top).

3http://code.google.com/p/cuda-convnet/

CIFAR-10 classification error
Method Error (%)

Small CNN + TPE 18.12%
Small CNN + SMAC 17.47%
Small CNN + TPE with pred. termination 18.08%
Small CNN + SMAC with pred. termination 17.20%

CIFAR-100 classification error
Method Error (%)

Small CNN + SMAC 42.21%
Small CNN + SMAC with pred. termination 41.90%

Table 4: Test error on CIFAR-10 and CIFAR-100 for the
best hyperparameter configuration found for the small CNN
search space.

Results for Small CNNs on CIFAR-100

For CIFAR-100, we again optimized the same small CNN
hyperparameter space as for CIFAR-10. For this experiment,
we only used SMAC (10 runs with and without predictive
termination) since it gave the best results in our experiments
on CIFAR-10. As for CIFAR-10, each hyperparameter opti-
mization run had a budget of evaluating 150 configurations.
Figure 5c gives the results of this experiment. SMAC found
configurations with approximately 43% validation error both
with and without the predictive termination criterion, but was
substantially faster with predictive termination and reached
the same quality almost two times faster. Using the best con-
figuration found with and without predictive termination to
re-train on the full CIFAR-100 training data yielded slightly
better test set performance for predictive termination (41.90%
vs. 42.21%); in comparison, adapting the layers-18pct to
CIFAR-100 yields 45% test error.

4.4 Large Convolutional Networks

Finally, to test our learning curve prediction on state-of-the-
art CNN models, we optimized the hyperparameters of a fam-
ily of large convolutional networks on CIFAR-10.

3466

(a) Small CNNs CIFAR-10
(b) CNN learning curves with predictive ter-
mination (CIFAR-10) (c) Small CNNs CIFAR-100

Figure 5: Results for optimizing the small CNNs with SMAC on CIFAR-10/100. (a) Benefit of predictive termination for
SMAC, for a total run-time of 120, 000 seconds. (b) Learning curves from one exemplary SMAC run with predictive termination
on CIFAR-10. (c) Effect of predictive termination for CIFAR-100 (total run-time depicted is 220, 000 seconds).

Large CNN Hyperparameters

To model these larger CNNs, we re-use the hyperparameter
space from Table 3 and alter it in several key aspects. Firstly,
following the recently proposed All-CNN network [Springen-
berg et al., 2015], we replaced max-pooling with additional
convolutional layers with stride two (each of these layers is
also configurable using the convolutional layer hyperparam-
eters from Table 3 (bottom)). Secondly, we no longer fixed
the number of convolutional layers between dimensionality
reduction (pooling) steps but made it an additional network
hyperparameter with range 1 − 3. Our large CNNs are thus
considerably deeper than our small CNNs. We further al-
lowed more units in each convolutional layer (between 64 to
192) and changed the kernel size to 3× 3. The other notable
difference to the small CNNs is that the output of the last
dimensionality reduction layer is not fed directly to a soft-
max classifier but rather sent through an additional 3 × 3
and a final one-by-one convolutional layer followed by the
softmax layer (whose output is averaged over the remain-
ing spatial dimensions). This setup is in accordance with the
network structure from Springenberg et al. [2015]. Overall,
our large CNNs have many hyperparameters due to the addi-
tional convolutional layers and the newly parameterized pool-
ing layers: 6(network hyperparams)+3(layer hyperparams)×
[3(reduction steps) × (3conv. layers + 1reduction layer) +
2final layers] = 48 hyperparameters.

Results for Large CNNs on CIFAR-10

We tested our predictive termination criterion on the configu-
ration space for large CNNs on CIFAR-10. Due to the large
time costs attached to such an experiment—training a single
configuration for the All-CNN on CIFAR-10 takes between
6 and 12 hours on a NVIDIA Titan GPU—we restricted our-
selves to a single run of SMAC on this hyperparameter con-
figuration space, using 4 GPUs in parallel. We trained all net-
works for a maximum of 800 epochs and evaluated 100 con-
figurations. Table 5 compares the performance of the best net-
work resulting from this experiment to the state-of-the-art for
CIFAR-10 without data augmentation. The best model found
by our approach performs comparably with the ALL-CNN
results, slightly outperforming the best previously reported
results. While the total runtime for this experiment with pre-

CIFAR-10 classification error
Method Error (%)

Maxout [Goodfellow et al., 2013] 11.68%
Network in Network [Lin et al., 2014] 10.41%
Deeply Supervised [Lee et al., 2014] 9.69%
ALL-CNN [Springenberg et al., 2015] 9.08%
ALL-CNN + SMAC with pred. termination 8.81%

Table 5: Test error on CIFAR-10 for the Large CNN in rela-
tion to the state-of-the-art without data augmentation.

dictive termination was approximately 8 days on 4 GPUs, the
optimization run without predictive termination would have
taken more than 20 days on 4 GPUs.

5 Conclusion

We presented a method for speeding up the hyperparame-
ter search for deep neural networks by automatically detect-
ing and terminating underperforming hyperparameter evalua-
tions. For this purpose, we introduced a probabilistic learning
curve model that—like human experts—can extrapolate per-
formance from only a few steps of stochastic gradient descent
and terminate the training of models that are expected to yield
poor performance. Our method is agnostic to the hyperpa-
rameter optimizer used, and in our experiments for optimiz-
ing various network architectures on several benchmarks it
consistently sped up two state-of-the-art hyperparameter op-
timizers by a factor of roughly two, leading to state-of-the-art
results on the CIFAR-10 dataset without data augmentation.
The code for our learning curve prediction models and its in-
tegration into the CAFFE framework is publicly available at
https://github.com/automl/pylearningcurvepredictor.

Acknowledgements

This work was supported by the German Research Founda-
tion (DFG), under Priority Programme Autonomous Learning
(SPP 1527, grant HU 1900/3-1) and under the BrainLinks-
BrainTools Cluster of Excellence (grant number EXC
1086).

3467

References

[Bengio, 2000] Y. Bengio. Gradient-based optimization of hyper-
parameters. Neural Computation, 12(8):1889–1900, 2000.

[Bergstra and Bengio, 2012] J. Bergstra and Y. Bengio. Random
search for hyper-parameter optimization. JMLR, 13(1):281–305,
2012.

[Bergstra et al., 2011] J. Bergstra, R. Bardenet, Y. Bengio, and
B. Kégl. Algorithms for hyper-parameter optimization. In
Proc. of NIPS, pages 2546–2554, 2011.

[Bergstra et al., 2013] J. Bergstra, D. Yamins, and D.D. Cox. Mak-
ing a science of model search: Hyperparameter optimization in
hundreds of dimensions for vision architectures. In Proc. of
ICML, pages 115–123, 2013.

[Breiman, 2001] L. Breiman. Random forests. Machine learning,
45(1):5–32, 2001.

[Brochu et al., 2010] E. Brochu, V. M. Cora, and N. de Freitas. A
tutorial on Bayesian optimization of expensive cost functions,
with application to active user modeling and hierarchical rein-
forcement learning. CoRR, abs/1012.2599, 2010.

[Coates et al., 2011] A. Coates, A. Y. Ng, and H. Lee. An analy-
sis of single-layer networks in unsupervised feature learning. In
Proc. of AISTATS, pages 215–223, 2011.

[Dahl et al., 2013] G. Dahl, T. Sainath, and G. Hinton. Improv-
ing deep neural networks for lvcsr using rectified linear units and
dropout. In Proc. of ICASSP, pages 8609–8613. IEEE, 2013.

[Deng et al., 2013] L. Deng, G. Hinton, and B. Kingsbury. New
types of deep neural network learning for speech recognition and
related applications: An overview. In Proc. of ICASSP, 2013.

[Donahue et al., 2014] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman,
N. Zhang, E. Tzeng, and T. Darrell. Decaf: A deep convolu-
tional activation feature for generic visual recognition. In Proc. of
ICML, 2014.

[Eggensperger et al., 2013] K. Eggensperger, M. Feurer, F. Hutter,
J. Bergstra, J. Snoek, H. Hoos, and K. Leyton-Brown. Towards
an empirical foundation for assessing Bayesian optimization of
hyperparameters. In NIPS Workshop on Bayesian Optimization
in Theory and Practice (BayesOpt’13), 2013.

[Foreman-Mackey et al., 2013] D. Foreman-Mackey, D. W. Hogg,
D. Lang, and J. Goodman. emcee: The MCMC Hammer. PASP,
125:306–312, 2013.

[Frey and Fisher, 1999] L. Frey and D. Fisher. Modeling decision
tree performance with the power law. In Proc. of AISTATS, 1999.

[Glorot and Bengio, 2010] X. Glorot and Y. Bengio. Understanding
the difficulty of training deep feedforward neural networks. In
Proc. of AISTATS, pages 249–256, 2010.

[Goodfellow et al., 2013] I. Goodfellow, D. Warde-Farley,
M. Mirza, A. Courville, and Y. Bengio. Maxout networks.
In Proc. of ICML, 2013.

[Gu et al., 2001] B. Gu, F. Hu, and H. Liu. Modelling classification
performance for large data sets. In Proc. of WAIM, pages 317–
328. Springer, 2001.

[Hutter et al., 2011] F. Hutter, H. Hoos, and K. Leyton-Brown. Se-
quential model-based optimization for general algorithm config-
uration. In Proc. of LION, pages 507–523. Springer, 2011.

[Hutter et al., 2014] F. Hutter, L. Xu, H. H. Hoos, and K. Leyton-
Brown. Algorithm runtime prediction: Methods and evaluation.
AIJ, 206(0):79 – 111, 2014.

[Jarrett et al., 2009] K. Jarrett, K. Kavukcuoglu, M. Ranzato, and
Y. LeCun. What is the best multi-stage architecture for object
recognition? In Proc. of ICCV, 2009.

[Jia et al., 2014] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev,
J. Long, R. Girshick, S. Guadarrama, and T. Darrell. Caffe: Con-
volutional architecture for fast feature embedding. arXiv preprint
arXiv:1408.5093, 2014.

[Jones et al., 1998] D. Jones, M. Schonlau, and W. Welch. Efficient
global optimization of expensive black-box functions. Journal of
Global optimization, 13(4):455–492, 1998.

[Kolachina et al., 2012] P. Kolachina, N. Cancedda, M. Dymetman,
and S. Venkatapathy. Prediction of learning curves in machine
translation. In Proc. of ACL, pages 22–30, 2012.

[Krizhevsky et al., 2012] A. Krizhevsky, I. Sutskever, and G. Hin-
ton. Imagenet classification with deep convolutional neural net-
works. In Proc. of NIPS, pages 1097–1105, 2012.

[Krizhevsky, 2009] A. Krizhevsky. Learning multiple layers of fea-
tures from tiny images. Master’s thesis, University of Toronto,
2009.

[LeCun et al., 1989] Y. LeCun, B. Boser, J. S. Denker, D. Hender-
son, R. E. Howard, W. Hubbard, and L. D. Jackel. Backpropaga-
tion applied to handwritten zip code recognition. Neural compu-
tation, 1(4):541–551, 1989.

[Lee et al., 2014] C. Lee, S. Xie, P. Gallagher, Z. Zhang, and Z. Tu.
Deeply supervised nets. In Deep Learning and Representation
Learning Workshop, NIPS, 2014.

[Lin et al., 2014] M. Lin, Q. Chen, and S. Yan. Network in network.
In ICLR: Conference Track, 2014.

[Maron and Moore, 1994] O. Maron and A. Moore. Hoeffding
races: Accelerating model selection search for classification and
function approximation. In Proc. of NIPS, pages 59–66, 1994.

[Montavon et al., 2012] G. Montavon, G. Orr, and K.-R. Müller,
editors. Neural Networks: Tricks of the Trade - Second Edition,
volume 7700 of LNCS. Springer, 2012.

[Rasmussen and Williams, 2006] C. E. Rasmussen and C. K. I.
Williams. Gaussian Processes for Machine Learning. The MIT
Press, 2006.

[Snoek et al., 2012] J. Snoek, H. Larochelle, and R.P. Adams. Prac-
tical Bayesian optimization of machine learning algorithms. In
Proc. of NIPS, pages 2951–2959, 2012.

[Springenberg et al., 2015] J. T. Springenberg, A. Dosovitskiy,
T. Brox, and M. Riedmiller. Striving for simplicity: The all con-
volutional net. In arxiv:cs/arXiv:1412.6806, 2015.

[Srivastava et al., 2014] N. Srivastava, G. Hinton, A. Krizhevsky,
I. Sutskever, and R. Salakhutdinov. Dropout: A simple way to
prevent neural networks from overfitting. JMLR, 15:1929–1958,
2014.

[Swersky et al., 2013] K. Swersky, D. Duvenaud, J. Snoek, F. Hut-
ter, and M. Osborne. Raiders of the lost architecture: Kernels
for Bayesian optimization in conditional parameter spaces. In
NIPS workshop on Bayesian Optimization in theory and practice
(BayesOptâĂŹ13), 2013.

[Swersky et al., 2014] K. Swersky, J. Snoek, and R. P.
Adams. Freeze-thaw Bayesian optimization. arXiv preprint
arXiv:1406.3896, 2014.

[Yao et al., 2007] Y. Yao, L. Rosasco, and A. Caponnetto. On early
stopping in gradient descent learning. Constructive Approxima-
tion, 26(2):289–315, 2007.

3468

