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In many large chemoinformatics database systems, molecules are represented by long binary fingerprint
vectors whose components record the presence or absence in the molecular graphs of particular functional
groups or combinatorial features, such as labeled paths or labeled trees. To speed up database searches, we
propose to store with each fingerprint a small header vector containing primarily the result of applying the
logical exclusive OR (XOR) operator to the fingerprint vector after modulo wrapping to a smaller number
of bits, such as 128 bits. From the XOR headers of two molecules, tight bounds on the intersection and
union of their fingerprint vectors can be rapidly obtained, yielding tight bounds on derived similarity measures,
such as the Tanimoto measure. During a database search, every time these bounds are unfavorable, the
corresponding molecule can be rapidly discarded with no need for further inspection. We derive probabilistic
models that allow us to estimate precisely the behavior of the XOR headers and the level of pruning under
different conditions in terms of similarity threshold and fingerprint density. These theoretical results are
corroborated by experimental results on a large set of molecules. For a Tanimoto threshold of 0.5 (respectively
0.9), this approach requires searching less than 50% (respectively 10%) of the database, leading to typical
search speedups of 2 to 3 times over the previous state-of-the-art.

1. INTRODUCTION

Modern chemoinformatics systems are undergoing two
related expansions in terms of data and representations. In
terms of data expansion, current databases of small molecules
such as PubChem and ChemDB1,2 contain many millions
of compounds and continue to grow in size as new
compounds are discovered or synthesized. There is no end
in sight to this process and the drive toward searching and
understanding the even larger chemical space of virtual
compounds. In part to keep up with the data expansion, there
has been an expansion in the representations, in particular,
in the number of molecular descriptors that are associated
with each molecule in the databases. In early systems,
typically, a few dozen descriptors were associated primarily
with the presence or absence of functional or structural
groups derived from human chemical expertise. In modern
systems, the number of descriptors is much larger and can
vary in range from 103 to 106, with the emphasis shifting
progressively toward the higher end of this spectrum, going
from human-derived to machine-derived descriptors. The
machine-derived, or spectral, descriptors are typically ob-
tained in a combinatorial way, by indexing all of the possible
labeled subgraphs of a given kind (e.g., paths, trees) and
size (e.g., depth up to 3) of the molecular graphs, yielding
the well-known fingerprint vector representations.3–9

The somewhat parallel expansions in data and representa-
tions create new opportunities and challenges and require

the continued development of methods to store and search
molecules in chemical databases in ways that can scale up
with these expansions. One strategy10 to speed up database
searches based on molecular similarity is essentially a
pruning strategy with two basic components. First, a small
binary signature vector is extracted from each fingerprint and
stored in the database together with the basic fingerprint
vector. A signature is a relatively short value/vector associ-
ated with a large item such that it is unlikely, but not
impossible, that different items have the same signature. In
the literature, signatures have been used as an equality filter
(with one-sided error). Also, signatures have been used in
Bloom filters, to exclude items not in a subset (also with
one-sided error).11 Here, we present a new type of signature
that can be used as a proximity filter. Second, during a
database search, the signatures of the query molecule and
of each molecule in the database can be used to rapidly
compute an upper bound on the similarity between the query
and each molecule. This upper bound provides criteria for
rapidly discarding from the search molecules that are “not
good enough”, effectively pruning the search space and
focusing computational resources on a small fraction of the
database that may contain suitable candidates, without any
loss of retrieval power. Key to this proximity-filter strategy
is the kind of signature used to derive the bounds. The
signature should be small and easy to derive and store. More
importantly, it should yield similarity upper bounds that can
be computed rapidly, in order to sift rapidly through a large
number of molecules, and that are tight, in order to prune a
large number of compounds. Only the most simple signature
was used in ref 10 to derive the upper bounds, consisting of
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a single number corresponding to the total number of 1-bits
in the fingerprint vector. Even so, knowing the total number
of 1-bits in the fingerprint yields simple bounds on standard
similarity measures, such as the Tanimoto measure, which
in turn can yield very significant amounts of pruning,
considerably speeding up database searches.10

Here, we take this approach one step further by developing
a new, more subtle, and complementary proximity filter,
based on a signature derived using the exclusive-OR logical
operator (XOR). The standard OR operator is used in several
chemoinformatics systems, such as the Daylight, Avalon, and
Unity systems, to lossly compress long fingerprints by
application of the OR operator modulo n (e.g., 1024 bits) to
derive short fingerprint representations. Here, we expand on
this idea and use a different logical operator modulo of some
short length n for purposes related to, but different from,
compression. There is a total of 16 binary Boolean operators
Ts, only eight of which are symmetric in the sense that 1 T

0 ) 0 T 1 to be consistent with the usual hypothesis of
exchangeable fingerprint bits. From these eight operators,
we can immediately remove the OR operator, since it has
already been studied. The AND and FALSE (always 0)
operators are also not suitable since they produce signatures
that consist entirely, or mostly, of 0-bits and therefore are
uninformative. The same is true of the TRUE operator
(always 1) that produces constant representations containing
only 1-bits. Of the remaining four operators, the negations
of the OR and AND operators are not suitable for similar
reasons, leaving only the XOR operator and its equivalent
negation to be studied. Thus, by elimination, the XOR-
derived signatures are the only ones worth considering.
Furthermore, for a given compression length n, the XOR
operator yields representations that are sparser than those
obtained using the OR operator, which may be an advantage
for very short signatures. While the OR-derived compressed
representations are used to estimate the uncompressed
similarity, in this paper, we show that the XOR-derived
compact signatures can be used to compute an exact bound
on the uncompressed similarity. We prove both analytically
and empirically that the XOR-derived signature yields in
general tighter upper bounds on the similarity measure,
resulting in larger amounts of pruning for a computational
cost that remains reasonable when properly managed.

2. BACKGROUND: FINGERPRINT
REPRESENTATIONS, SIMILARITY MEASURES, AND

DATA

2.1. Fingerprint Representations. We assume that each
molecule A has an associated binary fingerprint vector Ab )

(Ai) of length N. The binary component Ai records the
presence or absence of a particular descriptor in molecule
A. The nature of these descriptors is irrelevant for our
purposes, but examples will be given in the Data section. N

should be relatively largesin the applications considered
here, N could be in the 104 to 106 rangesbut its exact value
is not important for demonstrating the approach. It is possible
to extend the approach to be presented here to the case of
count fingerprints, where the number of occurrences of each
descriptor is recorded, rather than its mere presence or
absence. Here, we focus on binary fingerprints because these
are the most widely used and also because, to the best of

our knowledge, there is scant evidence that the information

gain associated with count fingerprints is worth the corre-

sponding additional computational costs. We let A denote

the number of 1-bits in Ab. More generally, given any two

molecules A and B and any binary Boolean operator /, we

let A/B denote the number of 1-bits contained in the vector

Ab/Bb, where / is applied to each pair of components. For

instance, A∨B ) A∪B denotes the number of 1-bits in the

bitwise OR (union) of Ab and Bb, and A∧B ) A∩B denotes

the number of 1-bits in the bitwise AND (intersection), with

a slight abuse of notation since ∪ and ∩ are usually

considered set operators. Of particular interest to this work

is the XOR logical operator (exclusive-OR) denoted by x.

2.2. Similarity Measures. Given two molecules A and

B, we use the Tanimoto measure

S(A, B)) S(Af, Bf)) (A ∩ B) ⁄ (A ∪ B) (1)

to measure molecular similarity. We use the Tanimoto
similarity because it is the most widely used measure.
However, the methods to be described can be extended
immediately to other similarity measures,10,12 such as the
Tversky similarity measure13,14

S
R�(Af, Bf))

A ∩ B

RA+ �B+ (1-R- �)(A ∩ B)
(2)

(where the parameters R and � can be used to tune the search
toward substructures or superstructures of the query mol-
ecule). This is because most other measures of similarity
can also be expressed in terms of A∩B and A∪B (as well as
obvious terms such as A, B, and N),10 and the present
approach relies on providing bounds for these individual
components shared by most similarity measures found in the
literature.

2.3. Data. Although the methods to be presented do not

depend on the details of any particular implementation, in

the supporting experiments we use data from ChemDB,1,2

which contains on the order of 5 million compounds.

Whenever necessary for computational expediency, we use

random subsets of up to 100 000 molecules to compute

relevant statistics. In this case, experiments are repeated using

several random samples of 100 000 molecules to make sure

that the results are not sensitive with respect to sampling

variability. The simulation results are obtained using fin-

gerprints of length N ) ∼60 000 on the basis of shallow

labeled trees9 of a depth up to 2, also called “circular” or

“extended connectivity” fingerprints in the literature (see also

Hert et al.,15 Bender et al.,16 and Hassan et al.17). Circular

substructures are fully explored labeled trees of a particular

depth, rooted at a particular vertex. All of the circular

substructures of a molecule can be trivially listed using O(Nd)

steps, where d denotes the maximum tree depth and N

denotes the number of atoms in the molecule. For the

labeling, each vertex is labeled by the corresponding element

(C, N, O, etc.) and degree (1, 2, 3, etc.) of the corresponding

atom, and each edge is labeled by its type (single, double,

triple, aromatic, and amide). The degree of a vertex is the

number of edges incident to that vertex or, equivalently, the

number of atoms bonded to the corresponding atom. For

example, propane would be labeled as C1sC2sC1 and ethene

would be labeled as C1dC1.
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3. PREVIOUS APPROACH

In the basic version of the previous approach,10 the value
A is stored together with each fingerprint Ab. Given two
fingerprints Ab and Bb, the Tanimoto measure can be bounded
by writing

S(Af, Bf))
A ∩ B

A ∪ B
e

min(A, B)

max(A, B)
) T(A, B) (3)

since A∩B e min(A, B) and A∪B g max(A, B). To see how
this bound can be used to speed up molecular searches,
consider a query molecule A and a similarity threshold 0 e
t e 1. If we are interested in retrieving only molecules that
have a similarity greater than t to the query molecule, then
any molecule B that satisfies T(A, B) e t can be discarded
from the search. Note that the bound T(A, B) can be
computed very rapidly from the additionally stored informa-
tion (A and B) and does not depend on the details of the
fingerprint vectors Ab and Bb. In previous work,10 we showed
analytically and through simulations how this approach yields
considerable savings in time and how it can be extended to
other situations, including searches based on multiple-
molecule queries, or searches aimed at retrieving the top K
hits rather than the hits above some similarity threshold.

4. A NEW PROXIMITY FILTER: THE XOR APPROACH
AND ITS SIMILARITY BOUNDS

We define a short fingerprint vector ab ) (ai) of length n,
where n is relatively small and typically a power of 2. In
the simulations and in our implementation, we use n ) 128.
Vector ab is derived from “folding” the long fingerprint vector
Ab using the XOR operator applied modulo n (ab) xnAb). As
a result, ai ) 1 if and only if the number of 1-bits contained
in Ab at positions congruent with i modulo n is odd, and 0
otherwise. The diagram in Figure 1 illustrates the simple
process of folding a binary fingerprint vector of size N )

16 into a fingerprint vector of size n ) 4, using the XOR
modulo operator.

Here, we propose to store for each molecule A in the
database not only the fingerprint Ab but also additional
information consisting of the shorter fingerprint ab, as well
as the values a and A. The additional information can be

viewed as a “header” preceding the vector Ab, which will be
used to derive useful bounds on similarity measures.

It is important to note that, in several chemoinformatics
systems (e.g., Daylight, Avalon, and Unity), a similar folding
approach is used in combination with the OR Boolean
operator in order to compress long fingerprints into shorter
fingerprints. In that lossy approach to compression, the length
of the shorter fingerprints is typically 1024 or 2048, slightly
above the value of n used here. This is related to a key
difference in the last column of the truth table of the OR
and XOR operators, namely, the XOR is a sparser operator:
whenever the XOR gives a 1-bit, the OR operator gives also
a 1-bit, but not vice versa. The OR-compressed representa-
tions are routinely used to estimate the similarity of the
molecules, simply by computing the Tanimoto similarity of
the compressed representations and using it as a proxy for
the Tanimoto similarity of the uncompressed representations.
We have shown18 that this approach introduces a systematic
bias in the estimation that can be corrected by deriving a
better estimate of the uncompressed similarity from the OR-
compressed representations. But, even this correction does
not lead to any bounds or any pruning. Here, we are not
proposing to use the XOR operator for lossy compression
and to estimate the similarity values. Rather, and this is the
key point, the short XOR fingerprints can be used to rapidly
derive exact bounds on the similarity values that are, in
general, tighter than those of eq 3.

To see this, first note that unions and intersections that
enter into the similarity measure can be expressed using the
XOR operator in the forms

A ∩ B)
1

2
[A+B- (AxB)] (4)

and

A ∪ B)
1

2
[A+B+ (AxB)] (5)

The crucial property of the XOR folding is that

AxBg axbg |a- b| (6)

As a result, we can bound the intersection and the union as
follows:

A ∩ Be
1

2
[A+B- (axb)]e

1

2
[A+B - |a- b|] (7)

and

A ∪ Bg
1

2
[A+B+ (axb)]g

1

2
[A+B + |a- b|] (8)

Finally, we can combine these inequalities, to bound the
Tanimoto similarity by

S(Af, Bf))
A ∩ B

A ∪ B
e T

x
(A, B))

A+B- (axb)

A+B+ (axb)
e

Tab(A, B))
A+B - |a- b|

A+B + |a- b|
(9)

For example, consider two molecules satisfying A ) 60, B
) 50, A∩B ) 46, AxB ) 18, and axb ) 16. Then, the
Tanimoto similarity is S(Ab, Bb) ) 46/74 ) 0.71. The simple
bound from our previous work is T(A, B) ) 50/60 ) 0.83.
The new tighter bound involving XOR is T

x
(A, B) ) 0.74.

Note that the XOR bound is not tighter than the previous
bound in an absolute sense. Examples can be constructed

Figure 1. Illustration of the folding process with a binary vector
of length N ) 16 (1 1 0 0 1 0 0 1 0 1 0 0 1 0 0 0) folded into a
binary vector of length n ) 4 (1 0 0 1), modulo 4 using the XOR
operator.
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where, by chance, the XOR bound is weaker. For instance,
if A ) 51 and B ) 109 and axb ) 40, then the bit bound
(eq 3) is 0.47, whereas the XOR bound is 0.6. However, as
we shall see, from theoretical analysis and simulations, the
XOR bound is much better statistically. Furthermore, both
bounds can be used in succession to prune the database, the
XOR bound being used last, so this problem never occurs
in our implementation.

Given a query Ab, if a molecule Bb satisfies

A+B- axb

A+B+ axb
e t (10)

it should be rejected. Equivalently, it should be rejected if

A+Be
1+ t

1- t
(axb) (11)

or

1- t

1+ t
(A+B)e axb (12)

The choice of n must achieve a tradeoff, which is in part
implementation-dependent: larger values of n result in tighter
bounds and greater amounts of pruning. Smaller values of n

result in faster computation and smaller storage/memory
requirements. We have experimented with n ) 32, 64, 128,
256, and 512 to take advantage also of byte arithmetic.
Empirically, and consistently with the theory to be reported,
we find that n ) 128 achieves an optimal compromise in
the current computational environment. Thus, all simulation
results are reported with n ) 128.

The key questions that remain to be addressed are as
follows: (1) How much pruning can be derived from the
XOR bound, and how does it compare to the previous
results? (2) Assuming that there is additional pruning
resulting from the XOR bound, is it worth the additional
computation cost? And if so, should the various pruning
algorithms be combined, and how? These are primarily
empirical questions that can be addressed by relatively simple
simulations. In the next section, we show that these questions
can also be treated analytically to some extent.

5. THEORETICAL RESULTS: STATISTICAL ANALYSIS
OF XOR FOLDING AND PRUNING

5.1. Exchangeability. To begin with, consider the task
of estimating a from A, in particular, the mean and variance
of a given A. We can view A ) (Ai) as a vector random
variable and the folding operation as a two-step operation
where A balls (bits) are put into n boxes by modulo folding.
We let Yi denote the random variable associated with number
of balls that end up in box i, for i ) 1,..., n. We then apply
the XOR operator and let Xi denote the corresponding binary
random variable. Basically, Xi ) 1 if Yi is odd, and Xi ) 0
otherwise. The fundamental statistical concept in this analy-
sis, which can be viewed as a modeling assumption, is that
the set of variables Ai is exchangeable, and so are the sets
of variables Yi and Xi. In simple terms, exchangeability means
that any probability expression involving the Ai variables is
invariant under any permutation of the indices. Exchange-
ability is a good model for large fingerprints where the
descriptors are mapped more or less randomly to fingerprint
components using a hash function, which is the case in many
chemoinformatics systems. Note that with these notations a

) X ) ∑i)1
n Xi. We thus have

E(X))∑
i)1

n

E(Xi)) nE(X1)) nP(X1 ) 1)) n[1-P(X1 ) 0)]

(13)

which gives

E(X)) n[P(Y1 ) 1)+P(Y1 ) 3)...]) n[1-P(Y1 ) 0)-

P(Y1 ) 2)...] (14)

Here, only box 1 is used as a result of the exchangeability.
For the variance of X, we have

VarX )∑
i)1

n

VarXi +∑
i)j

Cov(Xi, Xj)) nVarX1 +

2(n

2 ) Cov(X1, X2) (15)

which finally gives

VarX ) nVarX1 + 2(n

2 )[E(X1X2)-E(X1)E(X2)])

nVarX1 + 2(n

2 )[E(X1X2)- (E(X1))
2] (16)

For the individual variance terms, we have

VarX1 )P(X1 ) 1)(1-P(X1 ) 1)) (17)

To compute the covariance terms, starting from terms
corresponding to small ball counts, the term E[X1X2] can be
expanded as

E[X1X2])P(X1 ) 1, X2 ) 1))P(Y1 ) 1, Y2 ) 1)+

2P(Y1 ) 1, Y2 ) 3)+P(Y1 ) 3, Y2 ) 3)+ ...(18)

where again we have used the exchangeability to group the
symmetric contributions P(Y1 ) 1, Y2 ) 3) + P(Y1 ) 3, Y2

) 1) into a single term.
Similar considerations can be applied to the compressed

XOR vector conditioned on both A and B. Suppose that A

and B are fixed and independent. Let Yi
a and Yi

b be the random
variables associated with the number of balls in box i, and
let Xi

a and Xi
b be the corresponding random variables after

applying the XOR operator. Finally, let Xi
axb

) Xi
a
xXi

b and
Xaxb

) ∑i Xi
axb. Applying the linearity of the expectation,

the exchangeability of the random variables, and the inde-
pendence of ab and bb, we have

E(Xaxb)) nE(X1
axb)) nP(X1

axb
) 1))

n[P(X1
a
) 1) P(X1

b
) 0)+P(X1

a
) 0) P(X1

b
) 1)] (19)

The last term can be further expanded as above in terms of
the values of Y1

a and Y1
b. For instance, a second-order

expansion would give

P(X1
axb

) 1) ≈ P(Y1
a
) 1) P(Y1

b
) 0)+P(Y1

a
) 0) P(Y1

b
) 1)+

P(Y1
a
) 1) P(Y1

b
) 2)+P(Y1

a
) 2) P(Y1

b
) 1) (20)

Because of the exchangeability, the variance of Xaxb can be
written again in the same form as eq 16 with all of the X
variables superscripted with axb. The variance term is given
by

VarX1
axb

)P(X1
axb

) 1)[1-P(X1
axb

) 1)] (21)

Finally, we need to compute the covariance term
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E(X1
axb

X2
axb))P(X1

axb
) 1, X2

axb
) 1))∑

S

P(Y 1
a
) y1

a,

Y 1
b
) y1

b, Y 2
a
) y2

a, Y 2
b
) y2

b) (22)

where the set S corresponds to all sets of integer values for
(y1

a, y1
b, y2

a, y2
b) with 0 e y1

a, y2
a
e inf(n, A), 0 e y1

b, y2
b
e

inf(n, B), y1
a and y1

b of opposite parity, and y2
a and y2

b of
opposite parity. Given the independence of Ab and Bb, this
yields

E(X1
axb

X2
axb))P(X1

axb
) 1, X2

axb
) 1))

∑
S

P(Y 1
a
) y1

a, Y 2
a
) y2

a) P(Y 1
b
) y1

b, Y 2
b
) y2

b) (23)

For instance, the first-order expansion gives

E(X1
axb

X2
axb))P(X1

axb
) 1, X2

axb
) 1))

∑
S

P(Y 1
a
) 0, Y 2

a
) 0)P(Y 1

b
) 1, Y 2

b
) 1)+

P(Y 1
a
) 0, Y 2

a
) 1)P(Y 1

b
) 1, Y 2

b
) 0)+

P(Y 1
a
) 1, Y 2

a
) 0)P(Y 1

b
) 0, Y 2

b
) 1)+

P(Y 1
a
) 1, Y 2

a
) 1)P(Y 1

b
) 0, Y 2

b
) 0) (24)

We now consider a simple approach for further estimating
these quantities under a simple binomial model where the
components of the long fingerprints, hence also of the short
XOR fingerprints, are independent, so that the covariance
terms are equal to zero. A more accurate, but more
complicated, derivation which does not assume independence
is given in the Appendix.

5.2. Binomial Model. In this section, we assume that the
fingerprints are produced by a coin-flipping process. Given
A, we assume that query fingerprint vectors Ab are produced
using the binomial B(N, pA) where pA ) A/N. These queries
are used to search the fingerprints Bb in the background
database, and these fingerprints are produced using the
binomial B(N, pB). Note that pA and pB are not necessarily
equal, especially if the queries tend to have a skewed
distribution. In any case, the typical framework one ought
to consider is one where N is large and pA and pB are very
small. Given N ) nM, we let M ) 2L or M ) 2L + 1, so
that L ) |M/2|. In this case, we have

P(X1 ) 0))P(Y1 is even))∑
i)0

L

P(Y1 ) 2i)

)∑
i)0

L (M

2i )p
2i(1- p)M-2i (25)

and

P(X1 ) 1))P(Y1 is odd))∑
i)0

L

P(Y1 ) 2i+ 1)

)∑
i)0

L ( M

2i+ 1 )p
2i+1(1- p)M-2i-1 (26)

Thus, with this binomial approximation, we can write

E(a|A) ≈ E(a|pA)) nP(X1 ) 1)) npa (27)

so that we can view the short XOR fingerprints of the queries
as being produced by a binomial B(n, pa) with

pa )P(X1 ) 1))P(X1 ) 1|N, n, A) (28)

When the number of balls is typically small relative to the
number of boxes, the low-order terms in the sums of eqs 25

and 26 dominate. In this case, taking for instance only the
first two terms in the sums, we have the approximations

n[P(Y1 ) 1)+P(Y1 ) 3)]eE(a|pA)e n[1-P(Y1 ) 0)-

P(Y1 ) 2)] (29)

The variance of this new binomial is given by npa(1 - pa)
) nP(X1 ) 1)P(X1 ) 0). Again, by taking low-order terms
which are dominant in our regime, this leads to the
approximations

Var(a|pA) ≈ n[P(Y1 ) 1)+P(Y1 ) 3)][1-P(Y1 ) 1)-

P(Y1 ) 3)] (30)

or

Var(a|pA) ≈ n[1-P(Y1 ) 0)-P(Y1 ) 2)][P(Y1 ) 0)+

P(Y1 ) 2)] (31)

or

Var(a|pA) ≈ n[P(Y1 ) 1)+P(Y1 ) 3)][P(Y1 ) 0)+

P(Y1 ) 2)] (32)

In any specific case, it is easy to see which expectation
and variance approximations are better and what kinds of
bounds can be derived. We expect these approaches to yield
slight overestimates because, in reality, the variance includes
covariance terms that are negative, as discussed in the next
section.

Under the binomial assumptions, we have the simple
estimate

E(a ∩ b|pA, pB) ≈ npa pb ) npab (33)

and

E(axb|pA, pB) ≈ n(pa + pb - pa pb)) npaxb (34)

with paxb ) pa + pb - papb. Thus, using eq 12 with the
binomial approximation, given pA and pB, the probability of
pruning rejection is given by the binomial tail

P(1- t

1+ t
(A+B)e axb) ≈ ∑

i)f(A,B,t)

n (n

i ) paxb
i (1- paxb)

n-i (35)

with f(A, B, t) )  (1 - t)/(1+t)(A+B) . The fraction of the
database that needs to be searched is equal to

P(1- t

1+ t
(A+B)g axb) ≈ ∑

i)0

g(A,B,t) (n

i ) paxb
i (1- paxb)

n-i (36)

where g(A, B, t) )  (1 - t)/(1 + t)(A+B) . Approximating
the Binomial distribution with a Gaussian yields a Gaussian
integral. Thus, the fraction 1 - f(A, B) of the database that
needs to be searched is approximately given by

1- f(A, B) ≈∫
-∞

1-t

1+t
(A+B) N(x;µ, σ2) dx)

∫
-∞

1-t

1+t
(A+B) 1

√2πσ
e-

1

2

(x - npaxb)2

σ2 dx (37)

with µ ) npaxb and σ2
) npaxb(1 - paxb). These expressions

can be further integrated with respect to B to derive the average
fraction 1 - f(A) of the database to be searched, given A. In
previous work,10 we have seen that a reasonable approximation
to the distributions of B in a database such as ChemDB is a
Normal distribution N(µD,σD

2 ). Finally, these expressions can
also be integrated over the queries A to yield the fraction 1 -

f of the database to be searched, averaged over the queries. The
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distribution over the queries can be taken to be normal N(µQ,σQ
2 )

but can be different from the distribution over all molecules.10

For instance, as t approaches 1, the sum in eq 36 contains only
one term equal to (1 - paxb)n, so that

1- f(A) ≈∫
-∞

+∞ 1

√2πσD

e-
1

2

(B - µB)2

σB
2 (1- paxb)

n dB (38)

In the proper regime, for n being sufficiently large, this can
be further approximated by using (1 - paxb)n ≈ 1 - npaxb.

5.3. Exact Model with Indistinguishable Balls. In the
binomial approximation, starting from A, we assume that all
of the bits are independent and fingerprints are derived using
the binomial B(N, pA). These fingerprints in general do not
have exactly A 1-bits but include a certain amount of extra
fluctuations. A more rigorous calculation can be obtained
by assuming that, given A, fingerprints are drawn uniformly
over all vectors of length N with exactly A 1-bits. In this
model, the components are still exchangeable but not
independent of each other: for instance, if a ball goes into
box 1, only A - 1 balls are left to be distributed among the
n boxes. To simplify the analysis, in this section, we assume
that M g A so that there cannot be any “overflow” from any
box. In this case, eqs 13–18 are still true. What we need is
to update the values of P(Y1 ) k) under the fixed-size model.

The total number of ways of distributing the A bits among
the N ) Mn slots is given by

(N

A )) (Mn

A ) (39)

The number of ways of having k balls associated with the
first box is given by (k

M)( (A-k)
M(n-1)), which gives the probability

P(Y1 ) k))
(M

k )(M(n- 1)

(A- k) )
(N

A )
(40)

This probability is of course 0 for k > M or k > A. Similarly,
for pairwise terms needed to compute the covariances, we have

P(Y1 ) k, Y2 ) l))
(M

k )(M

l )( M(n- 2)

(A- k- l) )
(N

A )
(41)

which again requires k e inf(A, M), l e inf(A, M), and k +

l e A to be nonzero. From here, we can proceed as described
in the general case to derive exact expressions, or use the
lower-order terms to derive approximations when the number
of balls is relatively small compared to the number of boxes.
Note that, from these equations, we can easily compute all
of the quantities in eqs 19–24 for the XOR conditioned on
the values of A and B. In particular, eq 40 is exactly what is
needed to compute the covariance terms of eq 23.

For completeness, two other approximate ball models are
described in the Appendix. These can be used for some
approximations but in general are less accurate than the Exact
model.

6. SIMULATION RESULTS

6.1. Assessment of the Statistical Models: Conver-

gence. We investigate first the number of terms needed in
the expansion of the mean (eq 14) and the variance (eq 18)

for the two main models, the Binomial model and the Exact
model. The answer to this question is provided in Figure 2
for the mean and Figure 3 for the variance, in the case of n

) 128, which is used in all of the simulations.
Figure 2 shows that, as far as the convergence of the mean

is concerned, the Binomial and Exact models behave
similarly in terms of approximations. Taking only one term
in the expansion of eq 14 gives essentially indistinguishable
results from more elaborate expansions only for the lower
range of values of A, up to 50 or so. Taking two or more
terms in eq 14 gives results that are close to the correct value
on the entire range of A, and virtually identical to the exact
value when using three or four terms. In any case, for the
expectation, all of the terms in the expansion of eq 14 can
be taken into account for both the Binomial and the Exact
models. Thus, in the rest of the paper, we use the exact values
corresponding to the full expansion for the expectation values
of the Binomial and Exact models. Note from the zoomed-
in regions of Figure 2 that the expectation values for the
two models are slightly different.

Figure 3 shows a similar behavior for the variance of the
Binomial model. Because the variance of the Binomial model
does not contain any covariance terms, it can be computed
exactly using the full expansion of P(X1 ) 1) associated with
eq 14 and the related equations. The first-order expansion
(Y1 ) 1) gives a reasonable approximation to the variance
only for values of A up to 40 or so. Second-order expansion
(Y1 ) 1 or Y1 ) 3) and beyond gives a good approximation
over the entire range of A with results practically indistin-
guishable from the values obtained with the full expansion
as soon as at least three terms are used in the expansion (Y1

) 1 or Y1 ) 3 or Y1 ) 5). In the rest of the paper, for the
Binomial model, we use the full expansion of the variance
since it can be computed exactly. On the other hand, for the
Exact model, the covariance terms are not equal to zero, and
the full expansion cannot be computed exactly. Thus, for
the Exact model, the expansion is computed using all of the
odd terms up to 2m - 1 with m ) 1-4. For instance, for m

) 3, we include the following pairs of (Y1, Y2) values in the
expansion of the covariance (eq 18): (1,1), (1,3), (3,1), (3,3),
(1,5), (5,1), (3,5), (5,3), and (5,5). We call this the “third-
order” expansion of the covariance. Note that the third- and
fourth-order expansions give very similar answers. The first-
and second-order expansions, however, give unrealistic
results as soon as A is greater than 40 or so, leading even to
erroneous negative variance estimates. Thus, to compromise
between accuracy and efficiency, in the rest of the paper,
we use the third-order expansion to estimate the variance
terms of the Exact model.

For the other two approximate models given in the
Appendix, it is possible to use all of the terms in the
expansion of the expectation, as in the case of the Binomial
and Exact models. For the variance of the two additional
models given in the Appendix, we have been able to use up
to m ) 3 for the model with distinguishable balls, and up to
m ) 5 for the model with indistinguishable balls (see the
Appendix).

6.2. Assessment of the Statistical Models: Accuracy. We
address how the Binomial and Exact models fit real data by
considering first the prediction of the mean and variance of
the number a of 1-bits in the XOR-compressed vector of a
fingerprint containing A 1-bits. As can be seen in Figure 4,
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both the Binomial model and the Exact model give excellent
predictions of the expectation of a given A, both in simulated
data as well as in real data extracted from ChemDB. As
shown in the right subfigure of Figure 4, the Approximate
model in the Appendix with distinguishable balls significantly
underestimates the expected value of a.

When one looks at the variance of a given A in Figure 5,
one sees that the Binomial still provides reasonable predic-
tions but tends to overestimate the variance, as predicted by
the theory since negative covariance terms are ignored. The
Exact model, on the other hand, provides excellent predic-
tions of the variance across the entire range of values of A.
The Approximate model in the Appendix with distinguish-
able balls yields predictions that are better than those of the
Binomial model.

In short, the Exact model gives very good predictions of
real behavior for both the mean and the variance. The simpler
Binomial model can be used to approximate the behavior
accurately for the mean, but much less so for the variance,
which tends to be overestimated by the Binomial model.

6.3. Assessment of Database Pruning. Heat maps for the
average fraction of the database being pruned using the XOR
bounds are given in Figure 6 under different models. The
upper-left heat map corresponds to the empirical data in
ChemDB. It shows that overall the XOR approach is very
effective at pruning the search space. Even in the more
difficult case of queries with the highest observed density
(A ) 128 or so), most of the database can be eliminated

from the search for Tanimoto thresholds as low as 0.6 or
so. A similar behavior, with a slight overall decrease in the
degree of pruning, is seen in the upper-right heat map
corresponding to randomly generated fingerprints using
independent Bernoulli trials, with a different probability pi

of producing a 1-bit for each component i. The values pi are
set to the empirical ChemDB frequencies. The difference in
behavior with respect to the real data is due to the correlations
between the components of the ChemDB data. The two lower
heat maps correspond to the Binomial and Exact models.
The overall level of pruning is slightly better for the Exact
model, presumably due again to its nonzero correlations.
Both the Exact model and the Binomial model provide a
good approximation of the behavior of ChemDB. The Exact
model is slightly more accurate, especially for larger values
of A. However, to assess pruning levels, the Binomial model
can also be used as a reasonable approximation to the overall
behavior and is computationally less demanding than the
Exact model.

Slices through these heatmaps for threshold values of 0.4,
0.5, 0.6, and 0.7 are shown in Figure 7. The Exact model
approximates the ChemDB data better than the Binomial
model (green curve) at all thresholds, but especially for low
thresholds (t ) 0.4). The Exact model (blue curve) tends to
overapproximate the pruning of the ChemDB data (red solid
curve), especially for low thresholds, because of its inherent
assumption of uniformly distributed 1-bits in the fingerprints.
1-bits in ChemDB fingerprints are not uniformly distributed

Figure 2. (Upper left) Expected value of the number a of 1-bits in the XOR-folded fingerprints given the number A of 1-bits in the
unfolded fingerprint computed under the Binomial model. The blue, green, red, and cyan curves correspond to using 1, 2, 3, and 4 terms,
respectively, in the complete expansion of the expectation (eq 26). Purple crosses correspond to the full expansion. (Upper right) Magnified
view of the box insert from upper left. (Lower left) Expected value of the number a of 1-bits in the XOR-folded fingerprints given the
number A of 1-bits in the unfolded fingerprint computed under the Exact model. The blue, green, red, and cyan curves correspond to using
1, 2, 3, and 4 terms, respectively, in the complete expansion of the expectation (eq 14). Purple crosses correspond to the full expansion.
(Lower right) Magnified view of the box insert.
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and as a result tend to produce on average a smaller value
for axb, which in turn results in fewer molecules being
pruned (see Equation 12).

It is also worthwhile to compare the level of pruning
provided by the XOR bound, corresponding to eq 9, to the
level of pruning previously described10 using the bit bound,
corresponding to eq 3. The very significant improvement

associated with the XOR bound is clearly visible in Figure
8 by comparing the green and blue areas. Note also a small
further improvement by combining both approaches, shown
in red, corresponding to the relatively rare cases of molecules
that are pruned using the bit bound but not the XOR bound.
Because the bit bound is simpler and faster to compute, in
our database implementation, we first filter molecules using

Figure 3. (Upper left) Variance of the number a of 1-bits in the XOR-folded fingerprints given the number A of 1-bits in the unfolded
fingerprint computed under the Binomial model. The blue, green, red, and cyan curves correspond to using 1, 2, 3, and 4 terms respectively
in the complete expansion associated with the variance (eq 26, since all covariance terms are 0). Purple crosses correspond to the full
expansion. (Upper right) Magnified view of the box insert. (Lower left) Variance of the number a of 1-bits in the XOR-folded fingerprints
given the number A of 1-bits in the unfolded fingerprint computed under the Exact model. The blue, green, red, and cyan curves correspond
to using m ) 1, 2, 3, and 4 terms, respectively, in the expansion of the variance (eq 18). Note that, for m ) 1 (blue curve) and m ) 2
(green), the errors resulting from omitting higher-order terms result in unrealistic (negative) variance estimates. (Lower right) Magnified
view of the box insert.

Figure 4. (Left) Expected value of the number a of 1-bits in the XOR-folded fingerprints given the number A of 1-bits in the unfolded
fingerprint. The red curves correspond to the empirical average computed over the ChemDB database. The blue curve corresponds to the
expectation computed using the Binomial model (eqs 27–29). The green curve corresponds to a Monte Carlo simulation of the Binomial
model with 100 000 trials (essentially indistinguishable from the blue curve). (Right) Similar plot, but here the blue curve corresponds to
the expectation computed using the Exact model (eq 14 evaluated using eq 40). The green curve corresponds to the Approximate model
with distinguishable balls in the Appendix (eqs 45–47). The cobalt curve corresponds to a Monte Carlo simulation of the Exact model with
100 000 trials dropping a fixed number of balls A into N ) 128 boxes (uniform distribution of configurations for a fixed value of A).
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the bit bound, followed by application of the a - b bound
(eq 9, right bound) and the XOR bound (eq 9, middle bound)
(see Assessment of Speedup).

6.4. Assessment of Speedup. While the amount of prun-
ing is a fundamental consideration, speed benchmarks must
be conducted to make sure that the additional costs involved
with computing the XOR signatures and the related bounds
do not offset the pruning gains. In this regard, one must note
that the XOR signatures can be precomputed offline for all
of the molecules in the database. Only the XOR signature
of the query molecule needs to be computed at query time,
but this introduces only a very small overhead compared to
the rest of the operations. To address the tradeoff between

the time wasted in computing the XOR bounds versus the
time saved by the corresponding pruning, we benchmarked
the time taken by each algorithm by running many queries
on a single machine, corresponding to an Intel Pentium 4,
2.20 GHz CPU with 1 GB of RAM (Figure 9) using a
random subset of 100 000 molecules. Although 100 000 is
a fairly large sample size, experiments were repeated six
times, using six different samples of 100 000 molecules to
check for robustness. The standard deviations of the results
across the experiments did not exceed a few percentage
points (6.5% in the worst case).

For a Tanimoto threshold of 0.8, the best algorithm is
about 5.5 times faster than a full linear search of the database,

Figure 5. (Left) Same as Figure 4, left, but curves are for the variance of a given A (eqs 24–32). (Right) Same as Figure 4, right, but curves
are for the variance of a given A (eqs 15–18) computed using eqs 40 and 41.

Figure 6. (Upper left) Average fraction of database pruned using a random sample of 100 000 fingerprints from ChemDB, as a function
of the query bit count A and the threshold t. (Upper right) Average fraction of database pruned using a sample of 100 000 randomly
generated fingerprints as a function of the query bit count A and the threshold t. The fingerprints are randomly generated by using for each
component i a Bernoulli trial with probability pi. The values pi are set to the empirical values found in ChemDB. (Lower left) Probability
of pruning predicted as a function of the query bit count A and the threshold t using the Binomial model (eq 35). The values of B in eq 35
are obtained by sampling from a Gaussian distribution of the number B of 1-bits in the fingerprints in ChemDB. (Lower right) Probability
of pruning predicted as a function of the query bit count A and the threshold t using the Exact model. The values of B are obtained as above.
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and about 2.4 times faster than the previous state-of-the-art
based on the bit bound alone. Overall, the combination of
the bit bound with the XOR bound, or even the slightly better
combination of the bit bound, followed by the |a - b| bound,
followed by the XOR bound, leads to a robust 2-3-fold
speedup over the bit bound alone across the entire range of
possible thresholds. Figure 10 shows in more detail the fold
speedup difference between the bit bound pruning approach
and the bit bound approach followed by the XOR pruning
approach. Depending on the Tanimoto threshold, the fold
speedup varies from 1.5 to 4.5. Slight variations are seen

depending on whether the queries are randomly sampled from
the ChemDB database or randomly sampled from the queries
that are typically submitted to the ChemDB database.

Similar speedup results are seen with queries aimed at
retrieving the top K molecules, rather than the molecules
above a fixed similarity threshold. The algorithm to retrieve
the top K molecules proceeds as in our previous work,10 first
by binning molecules by their A values, then applying the
bounds within each bit in the order: bit, then |a - b|, and
finally XOR; starting from the bin associated with the query,
and moving in alternation toward smaller or higher values
of A.

7. CONCLUSION

In summary, a new approach has been developed for
fingerprint-based chemical searches, which relies on storing
together with each fingerprint a short signature of typical
length n ) 128 containing a lossy summary of the full
fingerprint, obtained by applying the logical XOR operator
to the full fingerprint modulo n. This short header can be
used to derive tight bounds on the similarity measure,
Tanimoto or other, between the query molecule and each
molecule in the database. In turn, the bounds can be used to
prune the database and restrict the search to only a fraction
of the molecules. Theoretical probabilistic models have been
introduced that allow one to understand the statistical
behavior of the XOR operation and precisely predict the

Figure 7. Curves representing the fraction of molecules discarded
from a given search as a function of the size A of the binary query
fingerprint and the similarity threshold t ) 0.4 (upper left), t ) 0.5
(upper right), t ) 0.6 (lower left), and t ) 0.7 (lower right). The
solid red line corresponds to pruning values computed using a
random sample of 100 000 molecules from the ChemDB database,
and the dotted red line corresponds to pruning values computed
using randomly generated fingerprints by using for each component
i a Bernoulli trial with probability pi. The values pi are set to the
empirical values found in ChemDB. The solid blue line corresponds
to pruning values predicted by the Exact model, and the green line
corresponds to pruning values predicted by the Binomial model.

Figure 8. Fraction of the database pruned by different methods as
a function of the Tanimoto threshold used in the search. The values
reflect the average pruning ratio over 100 randomly sampled query
molecules. The database consists of 100 000 randomly sampled
molecules from ChemDB. Results obtained using the bit bound
approach (eq 3) are shown in blue, while results for the XOR
approach are shown in green. Results in red are obtained by
combining both methods.

Figure 9. Timing benchmarks using different pruning methods as
a function of the Tanimoto threshold used in the search. Each
measurement reported corresponds to the average time to search
100 randomly sampled molecules from a database of 100 000
randomly selected molecules on an Intel Pentium 4, 2.20 GHz CPU
with 1 GB of RAM. Six different samples of 100 000 molecules
were used to test for robustness, and for each sample, 10 random
subsets of 100 molecules were used to establish query statistics.
The standard deviations of the results over different query or
database samples did not exceed a few percentage points (6.5% in
the worst case). The unit on the y axis (and the dotted black curve)
correspond to a full search of the database, molecule by molecule,
with no pruning. The blue curve corresponds to pruning using the
previous bit bound approach (eq 3). The cyan curve correspond to
pruning with the XOR approach (eq 9, middle bound). The green
curve corresponds to pruning using the bit bound approach first,
followed by the XOR approach. The red curve corresponds to
pruning by using the bit bound approach first, followed by pruning
using the difference |a - b| of the number of 1-bits in the XOR-
compressed vectors (eq 9, right bound), followed by pruning using
the XOR approach (eq 9, middle bound).
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statistical behavior of the resulting headers, bounds, and
amount of pruning. The XOR approach, and its theoretical
models, have been tested in simulations and shown to be
very effective in further speeding up chemical searches, with
2-fold or greater speedups over current implementations, at
a small storage cost. The XOR approach is not limited to
chemical data but ought to be applicable to other areas where
long binary vectors are used in combination with similarity
measures based on intersections and unions.
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APPENDIX

A. EXCHANGEABILITY WITHOUT INDEPENDENCE

A1. Approximate Model with Indistinguishable

Balls. Below, we give another nonexact way of approximat-
ing the quantities of interest assuming A fixed and consider-
ing the balls as indistinguishable. To compute probabilities
under this exchangeable fixed-size model, recall that there
are ( A

n+A-1) ways of placing A indistinguishable balls (or bits)
into n boxes. The number of ways of putting A balls into n

boxes, so that box 1 is empty, is ( A
n+A-2). The number of

ways of putting A balls into n boxes so that box 1 contains
exactly one ball is ( A-1

n+A- 1). More generally, the number of
ways of putting A balls into n boxes, so that box 1 contains
exactly k balls (k e A) is

(A+ n- k- 2

A- k ) (42)

Thus, for k e A

P(Y1 ) k))
(A+ n- k- 2

A- k )
(n+A- 1

A )
(43)

Likewise,

P(Y1 ) k, Y2 ) l))
(A+ n- k- l- 3

A- k- l )
(n+A- 1

A )
(44)

From here, we can proceed as described in the general case
to derive exact expressions, or use the lower-order terms to
derive approximations when the number of balls is relatively
small compared to the number of boxes (Figure 11).

A2. Approximate Model with Distinguishable Balls. Yet
another non-exact way of approximating the quantities of
interest assuming A fixed can be obtained by considering
the ball as distinguishable. In this case, there are nA ways of
putting the A distinguishable balls into the N boxes, provided
M g A. Under these assumptions, the number of ways of
putting A balls into n boxes, so that box 1 is empty, is (n -

1)A. The number of ways of putting A balls into n boxes so

Figure 10. Fold speedups associated with the experiments of Figure
9. Blue curves correspond to pruning using the bit bound approach.
Green curves correspond to pruning using the bit bound approach
first, followed by the XOR approach. For the upper-row figures,
the unit on the y axis corresponds to a full search of the database
with no pruning. For the lower-row figures, the unit on the y axis
corresponds to the bit bound approach. Left column results obtained
using 100 queries randomly selected from the ChemDB database.
Right column results obtained using 100 queries randomly selected
from the logs of ChemDB queries received over the Jan-Feb 2008
period.

Figure 11. (Left) Expected value of the number a of 1-bits in the XOR-folded fingerprints given the number A of 1-bits in the unfolded
fingerprint. The red curve corresponds to the actual average values in ChemDB. The blue curve is the theoretical value provided by the
Approximate model with indistinguishable balls (eqs 42–44). The green curve is obtained by Monte Carlo simulation with 100 000 trials
of dropping a fixed number A of balls into N ) 128 boxes, corresponding to a uniform distribution over all configurations. The green curve
corresponds to the Approximate model with distinguishable balls (eqs 45–47). (Right) Same figure, but for the variance.

SPEEDING UP CHEMICAL DATABASE SEARCHES J. Chem. Inf. Model., Vol. 48, No. 7, 2008 1377



that box 1 contains exactly one ball is A(n - 1)A-1. More
generally, the number of ways of putting A balls into n boxes,
so that box 1 contains exactly k balls (k e A), is

(A

k )(n- 1)A-k (45)

Thus, for k e A

P(Y1 ) k))
(A

k )(n- 1)A-k

n
A

(46)

Likewise

P(Y1 ) k, Y2 ) l))
(A

k )(A- k

l )(n- 2)A-k-l

n
A

(47)

A3.. Extensions to Count-Based Fingerprints. In count-
based fingerprints, a molecule A is represented by a vector
Ab ) (Ai) of length N, where the Ai are integers. Most often,
these integers count the number of occurrences of a particular
feature, substructure, or graph in A. For count-based
fingerprints, the MinMax similarity measure defined by
S(Ab, Bb) ) ∑i min(Ai, Bi)/∑i max(Ai, Bi) generalizes the
Tanimoto measure.

The bounds and pruning ideas presented in ref 10 and in this
paper can be extended to count-based fingerprints. While a
complete study of optimal signature for count-based fingerprints
is beyond the scope of this paper, here we show how the simple
bit bound approach can be extended to count-based fingerprints.
To derive bounds on S, we can first store with each molecule
A a header containing the number A ) ∑i Ai. Alternatively, or
in addition, we can store the number Aj of nonzero components
in Ab and their maximum value maxi Ai. In addition (see below),
one could also store the minimum of the Ai values which are
not equal to 0, denoted by mini Ai(* 0). We can then derive a
number of simple bounds such as

∑
i

min(Ai, Bi)emin(A, B)e
A+B

2
(48)

∑
i

min(Ai, Bi)emin(A, B) min(max
i

Ai, max
i

Bi) (49)

[This is because min(Ai, Bi) * 0 only for nonzero components
that are common to Ab and Bb and there are at most min(Aj ,Bj)
such components. Furthermore, for any component i,
min(Ai, Bi) e min(maxi Ai, maxi Bi).]

∑
i

max(Ai, Bi)gmax(A, B)g
A+B

2
(50)

∑
i

max(Ai, Bi)g

max(A, B) max(min
i

Ai(*0), min
i

Bi(*0))gmax(A, B) (51)

using an argument similar to the argument given for eq 49.
From these inequalities, one can easily get bounds on the
MinMax similarity such as

S(Af, Bf))
∑ i

min(Ai, Bi)

∑ i
max(Ai, Bi)

e
min(A, B)

max(A, B)
(52)

or

S(Af, Bf))
∑ i

min(Ai, Bi)

∑ i
max(Ai, Bi)

e

min(A, B)min(maxi, Ai, maxi, Bi)

max(A, B)max(miniAi(*0), miniBi(*0))
(53)

e

min(A, B)min(maxi, Ai, maxi, Bi)

max(A, B)
(54)

These inequalities are the equivalent for count-based fin-
gerprints of the bit bound for binary fingerprints. From these
inequalities on the MinMax similarity, one can proceed with
pruning the search space in the same way as for binary
fingerprints.

REFERENCES AND NOTES

(1) Chen, J.; Swamidass, S. J.; Bruand, J.; Baldi, P. ChemDB: a public
database of small molecules and related chemoinformatics resources.
Bioinformatics 2005, 21, 4133–4139.

(2) Chen, J.; Linstead, E.; Swamidass, S. J.; Wang, D.; Baldi, P. ChemDB
Update - Full Text Search and Virtual Chemical Space. Bioinformatics
2007, 23, 2348–2351.

(3) Fligner, M. A.; Verducci, J. S.; Blower, P. E. A Modification of the
Jaccard/Tanimoto Similarity Index for Diverse Selection of Chemical
Compounds Using Binary Strings. Technometrics 2002, 44, 110–119.

(4) Flower, D. R. On the Properties of Bit String-Based Measures of
Chemical Similarity. J. Chem. Inf. Comput. Sci. 1998, 38, 379–386.

(5) James, C. A.; Weininger, D.; Delany, J. Daylight Theory
Manual. http://www.daylight.com/dayhtml/doc/theory/ (accessed
April 9, 2008).

(6) Xue, L.; Godden, J. F.; Stahura, F. L.; Bajorath, J. Profile scaling
increases the similarity search performance of molecular fingerprints
containing numerical descriptors and structural keys. J. Chem. Inf.
Comput. Sci. 2003, 43, 1218–1225.

(7) Xue, L.; Stahura, F. L.; Bajorath, J. Similarity search profiling reveals
effects of fingerprint scaling in virtual screening. J. Chem. Inf. Comput.
Sci. 2004, 44, 2032–2039.

(8) Leach, A. R.; Gillet, V. J. An Introduction to Chemoinformatics;
Kluwer Academic Publishers: Dordrecht, The Netherlands, 2003; Vol.
1, pp 53-75.

(9) Baldi, P.; Benz, R. W.; Hirschberg, D.; Swamidass, S. Lossless
Compression of Chemical Fingerprints Using Integer Entropy Codes
Improves Storage and Retrieval. J. Chem. Inf. Model. 2007, 47, 2098–
2109.

(10) Swamidass, S.; Baldi, P. Bounds and Algorithms for Exact Searches
of Chemical Fingerprints in Linear and Sub-Linear Time. J. Chem.
Inf. Model. 2007, 47, 302–317.

(11) Bloom, B. H. Space/time trade-offs in hash coding with allowable
errors. Commun. ACM 1970, 13, 422–426.

(12) Holliday, J. D.; Hu, C. Y.; Willett, P. Grouping of coefficients for the
calculation of inter-molecular similarity and dissimilarity using 2D
fragment bit-strings. Comb. Chem. High Throughput Screening 2002,
5, 155–166.

(13) Tversky, A. Features of similarity. Psychol. ReV. 1977, 84, 327–352.
(14) Rouvray, D. H. Definition and role of similarity concepts in the

chemical and physical sciences. J. Chem. Inf. Comput. Sci. 1992, 32,
580–586.

(15) Hert, J.; Willett, P.; Wilton, D. J.; Acklin, P.; Azzaoui, K.; Jacoby,
E.; Schuffenhauer, A. Comparison of topological descriptors for
similarity-based virtual screening using multiple bioactive reference
structures. Org. Biomol. Chem. 2004, 2, 3256–3266.

(16) Bender, A.; Mussa, H.; Glen, R.; Reiling, S. Similarity Searching of
Chemical Databases Using Atom Environment Descriptors (MOL-
PRINT 2D): Evaluation of Performance. J. Chem. Inf. Model. 2004,
44, 1708–1718.

(17) Hassan, M.; Brown, R. D.; Varma-O’Brien, S.; Rogers, D. Chemin-
formatics analysis and learning in a data pipelining environment. Mol.
DiVersity 2006, V10, 283–299.

(18) Swamidass, S.; Baldi, P. A Mathematical Correction for Fingerprint
Similarity Measures to Improve Chemical Retrieval. J. Chem. Inf.
Model. 2007, 47, 952–964.

CI800076S

1378 J. Chem. Inf. Model., Vol. 48, No. 7, 2008 BALDI ET AL.


