
JADERBERG, VEDALDI, ZISSERMAN: SPEEDING UP CONVOLUTIONAL NEURAL... 1

Speeding up Convolutional Neural Networks
with Low Rank Expansions
Max Jaderberg
max@robots.ox.ac.uk

Andrea Vedaldi
vedaldi@robots.ox.ac.uk

Andrew Zisserman
az@robots.ox.ac.uk

Visual Geometry Group
Department of Engineering Science
University of Oxford
Oxford, UK

Abstract

The focus of this paper is speeding up the application of convolutional neural net-
works. While delivering impressive results across a range of computer vision and ma-
chine learning tasks, these networks are computationally demanding, limiting their de-
ployability. Convolutional layers generally consume the bulk of the processing time, and
so in this work we present two simple schemes for drastically speeding up these layers.
This is achieved by exploiting cross-channel or filter redundancy to construct a low rank
basis of filters that are rank-1 in the spatial domain. Our methods are architecture ag-
nostic, and can be easily applied to existing CPU and GPU convolutional frameworks
for tuneable speedup performance. We demonstrate this with a real world network de-
signed for scene text character recognition [15], showing a possible 2.5× speedup with
no loss in accuracy, and 4.5× speedup with less than 1% drop in accuracy, still achieving
state-of-the-art on standard benchmarks.

1 Introduction
Many applications of machine learning, and most recently computer vision, have been dis-
rupted by the use of convolutional neural networks (CNNs). The combination of an end-
to-end learning system with minimal need for human design decisions, and the ability to
efficiently train large and complex models, have allowed them to achieve state-of-the-art
performance in a number of benchmarks [10, 14, 19, 33, 37, 38]. However, these high per-
forming CNNs come with a large computational cost due to the use of chains of several
convolutional layers, often requiring implementations on GPUs [16, 19] or highly optimized
distributed CPU architectures [40] to process large datasets. The increasing use of these net-
works for detection in sliding window approaches [9, 28, 33] and the desire to apply CNNs
in real-world systems means the speed of inference becomes an important factor for appli-
cations. In this paper we introduce an easy-to-implement method for significantly speeding
up pre-trained CNNs requiring minimal modifications to existing frameworks. There can
be a small associated loss in performance, but this is tunable to a desired accuracy level.
For example, we show that a 4.5× speedup can still give state-of-the-art performance in our
example application of character recognition.

c© 2014. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

Citation
Citation
{Jaderberg, Vedaldi, and Zisserman} 2014{}

Citation
Citation
{Goodfellow, Bulatov, Ibarz, Arnoud, and Shet} 2013{}

Citation
Citation
{Jaderberg, Simonyan, Vedaldi, and Zisserman} 2014{}

Citation
Citation
{Krizhevsky, Sutskever, and Hinton} 2012

Citation
Citation
{Sermanet, Eigen, Zhang, Mathieu, Fergus, and LeCun} 2013

Citation
Citation
{Taigman, Yang, Ranzato, and Wolf} 2014

Citation
Citation
{Toshev and Szegedy} 2013

Citation
Citation
{Jia} 2013

Citation
Citation
{Krizhevsky, Sutskever, and Hinton} 2012

Citation
Citation
{Vanhoucke, Senior, and Mao} 2011

Citation
Citation
{Farabet, Couprie, Najman, and LeCun} 2012

Citation
Citation
{Oquab, Bottou, Laptev, and Sivic} 2014

Citation
Citation
{Sermanet, Eigen, Zhang, Mathieu, Fergus, and LeCun} 2013

2 JADERBERG, VEDALDI, ZISSERMAN: SPEEDING UP CONVOLUTIONAL NEURAL...

While a few other CNN acceleration methods exist, our key insight is to exploit the
redundancy that exists between different feature channels and filters [6]. We contribute
two approximation schemes to do so (Sect. 2) and two optimization methods for each scheme
(Sect. 2.2). Both schemes are orthogonal to other architecture-specific optimizations and can
be easily applied to existing CPU and GPU software. Performance is evaluated empirically
in Sect. 3 and results are summarized in Sect. 4.

Related work. There are only a few general speedup methods for CNNs. Denton et al. [7]
use low rank approximations and clustering of filters achieving 1.6× speedup of single con-
volutional layers (not of the whole network) with a 1% drop in classification accuracy. Ma-
malet et al. [22] design the network to use rank-1 filters from the outset and combine them
with an average pooling layer; however, the technique cannot be applied to general network
designs. Vanhoucke et al. [40] show that 8-bit quantization of the layer weights can result in
a speedup with minimal loss of accuracy. Not specific to CNNs, Rigamonti et al. [32] show
that multiple image filters can be approximated by a shared set of separable (rank-1) filters,
allowing large speedups with minimal loss in accuracy. We build on this approach in our
work.

Moving to hardware-specific optimizations, cuda-convnet [19] and Caffe [16]
show that highly optimized CPU and GPU code can give superior computational perfor-
mance in CNNs. [23] performs convolutions in the Fourier domain through FFTs computed
efficiently over batches of images on a GPU. Other methods from [40] show that specific
CPU architectures can be taken advantage of, e.g. by using SSSE3 and SSSE4 fixed-point
instructions and appropriate alignment of data in memory. Farabet et al. [8] show that using
bespoke FPGA implementations of CNNs can greatly increase processing speed.

To speed up test-time in a sliding window context for a CNN, [13] shows that multi-scale
features can be computed efficiently by simply convolving the CNN across a flattened multi-
scale pyramid. Furthermore, search space reduction techniques such as selective search [39]
drastically cut down the number of times a full forward pass of the CNN must be computed
by cheaply identifying a small number of candidate object locations in the image.

Note, the methods we propose are not specific to any processing architecture and can be
combined with many of the other speedup methods given above.

2 Filter Approximations

Filter banks are used widely in computer vision as a method of feature extraction, and when
used in a convolutional manner, generate feature maps from input images. For an input
x ∈ RH×W , the set of output feature maps Y = {y1,y2, . . . ,yN}, yn ∈ RH ′×W ′ are generated
by convolving x with N filters F = { fi} ∀i ∈ [1 . . .N] such that yi = fi ∗ x. The collection
of filters F can be learnt, for example, through dictionary learning methods [18, 20, 31] or
CNNs, and are generally full rank and expensive to convolve with large images. Using a
direct implementation of convolution, the complexity of convolving a single channel input
image with a bank of N 2D filters of size d× d is O(d2NH ′W ′). We next introduce our
method for accelerating this computation that takes advantage of the fact that there exists
significant redundancy between different filters and feature channels.

One way to exploit this redundancy is to approximate the filter set by a linear combination
of a smaller basis set of M filters [32, 35, 36]. The basis filter set S= {si} ∀i∈ [1 . . .M] is used
to generate basis feature maps which are then linearly combined such that yi '∑

M
k=1 aiksk ∗x.

Citation
Citation
{Denil, Shakibi, Dinh, and deprotect unhbox voidb@x penalty @M {}Freitas} 2013

Citation
Citation
{Denton, Zaremba, Bruna, LeCun, and Fergus} 2014

Citation
Citation
{Mamalet and Garcia} 2012

Citation
Citation
{Vanhoucke, Senior, and Mao} 2011

Citation
Citation
{Rigamonti, Sironi, Lepetit, and Fua} 2013

Citation
Citation
{Krizhevsky, Sutskever, and Hinton} 2012

Citation
Citation
{Jia} 2013

Citation
Citation
{Mathieu, Henaff, and LeCun} 2013

Citation
Citation
{Vanhoucke, Senior, and Mao} 2011

Citation
Citation
{Farabet, LeCun, Kavukcuoglu, Culurciello, Martini, Akselrod, and Talay} 2011

Citation
Citation
{Iandola, Moskewicz, Karayev, Girshick, Darrell, and Keutzer} 2014

Citation
Citation
{vanprotect unhbox voidb@x penalty @M {}de Sande, Uijlings, Gevers, and Smeulders} 2011

Citation
Citation
{Kavukcuoglu, Sermanet, Boureau, Gregor, Mathieu, and LeCun} 2010

Citation
Citation
{Lee, Grosse, Ranganath, and Ng} 2009

Citation
Citation
{Rigamonti, Brown, and Lepetit} 2011

Citation
Citation
{Rigamonti, Sironi, Lepetit, and Fua} 2013

Citation
Citation
{Song, Zickler, Althoff, Girshick, Fritz, Geyer, Felzenszwalb, and Darrell} 2012

Citation
Citation
{Song, Darrell, and Girshick} 2013

JADERBERG, VEDALDI, ZISSERMAN: SPEEDING UP CONVOLUTIONAL NEURAL... 3

This can lead to a speedup in feature map computation as a smaller number of filters need be
convolved with the input image, and the final feature maps are composed of a cheap linear
combination of these. The complexity in this case is O((d2M +MN)H ′W ′), so a speedup
can be achieved if M < d2N

d2+N .
As shown in Rigomonti et al. [32], further speedups can be achieved by choosing the

filters in the approximating basis to be rank-1 and so making individual convolutions sepa-
rable. This means that each basis filter can be decomposed in to a sequence of horizontal
and vertical filters si ∗ x = vi ∗ (hi ∗ x) where si ∈ Rd×d , vi ∈ Rd×1, and hi ∈ R1×d . Using
this decomposition, the convolution of a separable filter si can be performed in O(2dH ′W ′)
operations instead of O(d2H ′W ′).

The separable filters of [32] are a low-rank approximation, but performed in the spatial
filter dimensions. Our key insight is that in CNNs substantial speedups can be achieved
by also exploiting the cross-channel redundancy to perform low-rank decomposition in the
channel dimension as well. We explore both of these low-rank approximations in the sequel.

Note that the FFT [23] could be used as an alternative speedup method to accelerate indi-
vidual convolutions in combination with our low-rank cross-channel decomposition scheme.
However, separable convolutions have several practical advantages: they are significantly
easier to implement than a well tuned FFT implementation, particularly on GPUs; they do
not require feature maps to be padded to a special size, such as a power of two as in [23];
they are far more memory efficient; and, they yield a good speedup for small image and filter
sizes too (which can be common in CNNs), whilst FFT acceleration tends to be better for
large filters due to the overheads incurred in computing the FFTs.

2.1 Approximating Convolutional Neural Network Filter Banks

CNNs are obtained by stacking multiple layers of convolutional filter banks on top of each
other, followed by a non-linear response function. Each filter bank or convolutional layer
takes an input which is a feature map zi(u,v) where (u,v) ∈ Ωi are spatial coordinates and
zi(u,v) ∈RC contains C scalar features or channels zc

i (u,v). The output is a new feature map
zi+1 ∈ RH ′×W ′×N such that zn

i+1 = hi(Win ∗ zi + bin) ∀n ∈ [1 . . .N], where Win and bin denote
the n-th filter kernel and bias respectively, and hi is a non-linear activation function such as
the Rectified Linear Unit (ReLU) hi(z) =max{0,z}. Convolutional layers can be intertwined
with normalization, subsampling, and pooling layers which build translation invariance in
local neighbourhoods. Other layer types are possible as well, but generally the convolutional
ones are the most expensive. The process starts with z1 = x, where x is the input image, and
ends by, for example, connecting the last feature map to a logistic regressor in the case of
classification. All the parameters of the model are jointly optimized to minimize a loss over
the training set using Stochastic Gradient Descent (SGD) with back-propagation.

The N filters Wn learnt for each layer (for convenience we drop the layer subscript i) are
full rank, 3D filters with the same depth as the number of channels of the input, such that
Wn(u,v) ∈ RC. For example, for a 3-channel color image input, C = 3. The convolution
Wn ∗ z of a 3D filter Wn with the 3D image z is the 2D image Wn ∗ z = ∑

C
c=1 W c

n ∗ zc, where
W c

n ∈Rd×d is a single channel of the filter. This is a sum of 2D convolutions so we can think
of each 3D filter as being a collection of 2D filters, whose output is collapsed to a 2D signal.
However, since N such 3D filters are applied to z, the overall output is a new 3D image with
N channels. This process is illustrated for the case C = 1,N > 1 in Fig. 1 (a). The resulting
computational cost for a convolutional layer with N filters of size d× d acting on C input

Citation
Citation
{Rigamonti, Sironi, Lepetit, and Fua} 2013

Citation
Citation
{Rigamonti, Sironi, Lepetit, and Fua} 2013

Citation
Citation
{Mathieu, Henaff, and LeCun} 2013

Citation
Citation
{Mathieu, Henaff, and LeCun} 2013

4 JADERBERG, VEDALDI, ZISSERMAN: SPEEDING UP CONVOLUTIONAL NEURAL...

(a) (b)

Figure 1: (a) The original convolutional
layer acting on a single-channel input
i.e. C=1. (b) The approximation to that
layer using the method of Scheme 1. (c)
The approximation to that layer using the
method of Scheme 2. Individual filter di-
mensions are given above the filter lay-
ers. (c)

channels is O(CNd2H ′W ′).
We now propose two schemes to approximate a convolutional layer of a CNN to reduce

the computational complexity and discuss their training in Sec. 2.2. Both schemes follow the
same intuition: that CNN filter banks can be approximated using a low rank basis of filters
that are separable in the spatial domain.

Scheme 1. The first method for speeding up convolutional layers is to directly apply the
method suggested in Sect. 2 to the filters of a CNN (Fig. 1 (b)). As described above, a
single convolutional layer with N filters Wn ∈ Rd×d×C requires evaluating NC 2D filters
F = {W c

n ∈Rd×d : n ∈ [1 . . .N],c ∈ [1 . . .C]}. Note that there are N filters {W c
n : n ∈ [1 . . .N]}

operating on each input channel zc. These can be approximated as linear combinations of
a basis of M < N (separable) filters Sc = {sc

m : m ∈ [1 . . .M]} as W c
n ' ∑

M
m=1 acm

n sc
m. Since

convolution is a linear operator, filter reconstruction and image convolution can be swapped,
yielding the approximation

Wn ∗ z =
C

∑
c=1

W c
n ∗ zc '

C

∑
c=1

M

∑
m=1

acm
n (sc

m ∗ zc). (1)

To summarize, the direct calculation involves computing NC 2D filters W c
n ∗ zc with cost

O(NCd2H ′W ′), while the approximation involves computing MC 2D filters sc
m ∗ zc with cost

O(MC(d2+N)H ′W ′) – the additional MCNH ′W ′ term accounting for the need to recombine
the basis response linearly. Due to the second term, the approximation is efficient only if
M� d2, i.e. if the number of filters in the basis is less than the filter area.

The first cost term CMd2H ′W ′ would also suggest that efficiency requires the condition
M � N; however, this can be considerably ameliorated by using separable filters in the
basis. In this case the approximation cost is reduced to O(MC(d +N)H ′W ′); together with
the former condition, Scheme 1 is then efficient if M� d min{d,N}.

Note that this scheme uses C filter basis S1,S2, . . . ,SC as each operates on a different
input channel. In practice, we choose S1 = S2 = · · · = SC = S because empirically there is
no actual gain in performance and a single channel basis is simpler and more compact.

Scheme 2. Scheme 1 focuses on approximating 2D filters. As a consequence, each input
channel zc is approximated by a particular basis of 2D separable filters. Redundancy among
feature channels is exploited, but only in the sense of the N output channels. In contrast,

JADERBERG, VEDALDI, ZISSERMAN: SPEEDING UP CONVOLUTIONAL NEURAL... 5

Scheme 2 is designed to take advantage of both input and output redundancies by considering
3D filters throughout. The idea is simple: each convolutional layer is factored as a sequence
of two regular convolutional layers but with rectangular (in the spatial domain) filters, as
shown in Fig. 1 (c). The first convolutional layer has K filters of spatial size d×1 resulting
in a filter bank {vk ∈ Rd×1×C : k ∈ [1 . . .K]} and producing output feature maps V such that
V (u,v) ∈ RK . The second convolutional layer has N filters of spatial size 1×d resulting in
a filter bank {hn ∈ R1×d×K : n ∈ [1 . . .N]}. Differently from Scheme 1, the filters operate on
multiple channels simultaneously. The rectangular shape of the filters is selected to match a
separable filter approximation. To see this, note that convolution by one of the original filters
Wn ∗ z = ∑

C
c=1 W c

n ∗ zc is approximated by

Wn∗z' hn∗V =
K

∑
k=1

hk
n∗V k =

K

∑
k=1

hk
n∗(vk ∗z) =

K

∑
k=1

hk
n∗

C

∑
c=1

vc
k ∗zc =

C

∑
c=1

[
K

∑
k=1

hk
n ∗ vc

k

]
∗zc (2)

which is the sum of separable filters hk
n ∗ vc

k. The computational cost of this scheme is
O(KCdH ′W) for the first vertical filters and O(NKdH ′W ′) for the second horizontal fil-
ter. Assuming that the image width W � d is significantly larger than the filter size, the
output image width W ≈W ′ is about the same as the input image width W ′. Hence the total
cost can be simplified to O(K(N +C)dH ′W ′). Compared to the direct convolution cost of
O(NCd2H ′W ′), this scheme is therefore convenient provided that K(N +C)� NCd. For
example, if K, N, and C are of the same order, the speedup is about d times.

In both schemes, we are assuming that the full rank original convolutional filter bank can
be decomposed into a linear combination of a set of separable basis filters. The difference
between the schemes is how/where they model the interaction between input and output
channels, which amounts to how the low rank channel space approximation is modelled. In
Scheme 1 it is done with the linear combination layer, whereas with Scheme 2 the channel
interaction is modelled with 3D vertical and horizontal filters inducing a summation over
channels as part of the convolution.

2.2 Optimization
This section deals with the details on how to attain the optimal separable basis representation
of a convolutional layer for the schemes. The first method (Sec. 2.2.1) aims to reconstruct
the original filters directly by minimizing filter reconstruction error. The second method
(Sec. 2.2.2) approximates the convolutional layer indirectly, by minimizing the empirical
reconstruction error of the filter output.

2.2.1 Filter Reconstruction Optimization

The first way that we can attain the separable basis representation is to aim to minimize the
reconstruction error of the original filters with our new representation.

Scheme 1. The separable basis can be learnt simply by minimizing the L2 reconstruction
error of the original filters, whilst penalizing the nuclear norm ‖sm‖∗ of the filters sm. In fact,
the nuclear norm ‖sm‖∗ is a proxy for the rank of sm ∈Rd×d and rank-1 filters are separable.
This yields the formulation:

min
{sm},{an}

N

∑
n=1

C

∑
c=1

∥∥∥∥∥W c
n −

M

∑
m=1

acm
n sm

∥∥∥∥∥
2

2

+λ

M

∑
m=1
‖sm‖∗. (3)

6 JADERBERG, VEDALDI, ZISSERMAN: SPEEDING UP CONVOLUTIONAL NEURAL...

(a) (b)
Figure 2: Example network schematics of how to optimize separable basis approximation layers in a
data reconstruction setting. (a) Approximating Conv2 with Sep2. (b) Approximating Conv3 with Sep3,
incorporating the approximation of Conv2 as well. Conv2 and Conv3 represent the original full-rank
convolutional layers, whereas Sep2 and Sep3 represent the approximation structure that is learnt by
back-propagating the L2 error between the outputs.

This minimization is biconvex, so given sm a unique an can be found, therefore a minimum is
found by alternating between optimizing sm and an. A suitably large λ ensures the resulting
filters are rank-1. For full details of the implementation of this optimization see [32].

Scheme 2. The set of horizontal and vertical filters can be learnt by explicitly minimizing
the L2 reconstruction error of the original filters. From (2) we can see that the original filter
can be approximated by minimizing the objective function

min
{hk

n},{vc
k}

N

∑
n=1

C

∑
c=1

∥∥∥∥∥W c
n −

K

∑
k=1

hk
n ∗ vc

k

∥∥∥∥∥
2

2

. (4)

This optimization is simpler than for Scheme 1 due to the lack of nuclear norm constraints,
which we are able to avoid by modelling the separability explicitly with two variables. We
perform conjugate gradient descent, alternating between optimizing the horizontal and ver-
tical filter sets.

2.2.2 Data Reconstruction Optimization

The problem with optimizing the separable basis through minimizing original filter recon-
struction error is that this does not necessarily give the most optimized basis set for the end
CNN prediction performance. As an alternative, one can optimize a scheme’s separable basis
by aiming to reconstruct the outputs of the original convolutional layer given training data.
For example, for Scheme 2 this amounts to

min
{hk

n},{vc
k}

|X |

∑
i=1

N

∑
n=1

∥∥∥∥∥Wn ∗Φl−1(xi)−
C

∑
c=1

K

∑
k=1

hk
n ∗ vc

k ∗Φl−1(xi)

∥∥∥∥∥
2

2

(5)

where l is the index of the convolutional layer to be approximated and Φl(xi) is the evaluation
of the CNN up to and including layer l on data sample xi ∈ X where X is the set of training
examples. This optimization can be done quite elegantly by simply mirroring the CNN
with the un-optimized separable basis layers, and training only the approximation layer by
back-propagating the L2 error between the output of the original layer and the output of the
approximation layer (see Fig. 2). This is done layer by layer.

There are two main advantages of this method for optimization of the approximation
schemes. The first is that the approximation is conditioned on the manifold of the training
data – original filter dimensions that are not relevant or redundant in the context of the train-
ing data will by ignored by minimizing data reconstruction error, but will still be penalised
by minimizing filter reconstruction error (Sec. 2.2.1) and therefore uselessly using up model

Citation
Citation
{Rigamonti, Sironi, Lepetit, and Fua} 2013

JADERBERG, VEDALDI, ZISSERMAN: SPEEDING UP CONVOLUTIONAL NEURAL... 7

Layer name Filter size In channels Out channels Filters Maxout groups Time
Conv1 9×9 1 48 96 2 0.473ms (8.3%)
Conv2 9×9 48 64 128 2 3.008ms (52.9%)
Conv3 8×8 64 128 512 4 2.160ms (38.0%)
Conv4 1×1 128 37 148 4 0.041ms (0.7%)

Softmax - 37 37 - - 0.004ms (0.1%)

Table 1: The details of the layers in the CNN used with the forward pass timings of each layer.

capacity. Secondly, stacks of approximated layers can be learnt to incorporate the approxi-
mation error of previous layers by feeding the data through the approximated net up to layer
l rather than the original net up to layer l (see Fig. 2 (b)). This additionally means that all the
approximation layers could be optimized jointly with back-propagation.

An obvious alternative optimization strategy would be to replace the original convo-
lutional layers with the un-optimized approximation layers and train just those layers by
back-propagating the classification error of the approximated CNN. However, this does not
actually result in better classification accuracy than doing L2 data reconstruction optimiza-
tion – in practice, optimizing the separable basis within the full network leads to overfitting
of the training data, and attempts to minimize this overfitting through regularization methods
like dropout [12] lead to under-fitting, most likely due to the fact that we are already trying to
heavily approximate our original filters. However, this is an area that needs to be investigated
in more detail.

3 Experiments
In this section we demonstrate the application of both proposed filter approximation schemes
and show that we can achieve large speedups with a very small drop in accuracy. We use a
pre-trained CNN that performs case-insensitive character classification of scene text. Char-
acter classification is an essential part of many text spotting pipelines such as [3, 4, 15, 24,
25, 26, 27, 29, 30, 41, 43].

We first give the details of the base CNN model used for character classification which
will be subject to speedup approximations. The optimization processes and how we attain
the approximations of Scheme 1 & 2 to this model are given, and finally we discuss the
results of the separable basis approximation methods on accuracy and inference time of the
model.

Test Model. For scene character classification, we use a four layer CNN with a softmax
output. This model is the case-insensitive model described fully in [15]. The CNN outputs
a probability distribution p(c|x) over an alphabet C which includes all 26 letters and 10
digits, as well as a noise/background (no-text) class, with x being a grey input image patch
of size 24×24 pixels, which has been zero-centred and normalized by subtracting the patch
mean and dividing by the standard deviation. The non-linearity used between convolutional
layers is maxout [11] which amounts to taking the maximum response over a number of
linear models e.g. the maxout of two feature channels z1

i and z2
i is simply their pointwise

maximum: hi(zi(u,v)) = max{z1
i (u,v),z

2
i (u,v)}. Table 1 gives the details of the layers for

the model used, which is connected in the linear arrangement Conv1-Conv2-Conv3-Conv4-
Softmax.

Datasets & Evaluation. The training dataset consists of 163,222 collected character samples
from a number of scene text and synthesized character datasets [1, 2, 5, 17, 21, 34, 42]. The

Citation
Citation
{Hinton, Srivastava, Krizhevsky, Sutskever, and Salakhutdinov} 2012

Citation
Citation
{{Alsharif} and {Pineau}} 2014

Citation
Citation
{Bissacco, Cummins, Netzer, and Neven} 2013

Citation
Citation
{Jaderberg, Vedaldi, and Zisserman} 2014{}

Citation
Citation
{Neumann and Matas} 2010

Citation
Citation
{Neumann and Matas} 2011

Citation
Citation
{Neumann and Matas} 2012

Citation
Citation
{Neumann and Matas} 2013

Citation
Citation
{Posner, Corke, and Newman} 2010

Citation
Citation
{Quack} 2009

Citation
Citation
{Wang, Babenko, and Belongie} 2011

Citation
Citation
{Yang, Quehl, and Sack} 2012

Citation
Citation
{Jaderberg, Vedaldi, and Zisserman} 2014{}

Citation
Citation
{Goodfellow, Warde-Farley, Mirza, Courville, and Bengio} 2013{}

Citation
Citation
{icd}

Citation
Citation
{kai}

Citation
Citation
{deprotect unhbox voidb@x penalty @M {}Campos, Babu, and Varma} 2009

Citation
Citation
{Karatzas, Shafait, Uchida, Iwamura, Mestre, Mas, Mota, Almazan, deprotect unhbox voidb@x penalty @M {}las Heras, etprotect unhbox voidb@x penalty @M {}al.} 2013

Citation
Citation
{Lucas} 2005

Citation
Citation
{Shahab, Shafait, and Dengel} 2011

Citation
Citation
{Wang, Wu, Coates, and Ng} 2012

8 JADERBERG, VEDALDI, ZISSERMAN: SPEEDING UP CONVOLUTIONAL NEURAL...

10 20 30 40
0

1

2

3

4

5

6x 10
4

Conv2 Theoretical Speedup

C
on

v2
 R

ec
on

st
ru

ct
io

n
E

rr
or

Scheme 1 Filter recon
Scheme 1 Data recon
Scheme 2 Filter recon
Scheme 2 Data recon

2 4 6 8 10 12 14 16
0

1

2

3

4

5

6x 10
4

Conv2 Actual Speedup

C
on

v2
 R

ec
on

st
ru

ct
io

n
E

rr
or

Scheme 1 Filter recon
Scheme 1 Data recon
Scheme 2 Filter recon
Scheme 2 Data recon

10 20 30 40 50 60
0

500

1000

1500

2000

2500

3000

3500

Conv3 Theoretical Speedup

C
on

v3
 R

ec
on

st
ru

ct
io

n
E

rr
or

Scheme 1 Filter recon
Scheme 1 Data recon
Scheme 2 Filter recon
Scheme 2 Data recon

5 10 15 20 25 30 35
0

500

1000

1500

2000

2500

3000

3500

Conv3 Actual Speedup

C
on

v3
 R

ec
on

st
ru

ct
io

n
E

rr
or

Scheme 1 Filter recon
Scheme 1 Data recon
Scheme 2 Filter recon
Scheme 2 Data recon

Figure 3: Reconstruction error for the theoretical and actual attained speedups on test data for Conv2
& Conv3. Theoretical speedups are obtained by considering the theoretical number of operations
required for the different schemes with direct convolution. We do not go below 10× theoretical speedup
for Scheme 1 as computation takes too long.

test set is the collection of 5379 cropped characters from the ICDAR 2003 training set after
removing all non-alphanumeric characters as in [3, 41]. We evaluate the case-insensitive
accuracy of the classifier, ignoring the background class. The Test Model achieves state-of-
the-art results of 91.3% accuracy compared to the next best result of 89.8% [3].

Implementation Details. The CNN framework we use is the CPU implementation of
Caffe [16], where convolutions are performed by constructing a matrix of filter windows
of the input, im2col, and using BLAS for the matrix-matrix multiplication between the
filters and data windows. We found this to be the fastest CPU CNN implementation attain-
able. CNN training is done with SGD with momentum of 0.9 and weight decay of 0.0005.
Dropout of 0.5 is used on all layers except Conv1 to regularize the weights, and the learning
rate is adaptively reduced during the course of training.

For filter reconstruction optimization, we optimize a separable basis until a stable mini-
mum of reconstruction error is reached. For data reconstruction optimization, we optimize
each approximated layer in turn, and can incorporate a fine-tuning with joint optimization.

For the CNN presented, we only approximate layers Conv2 and Conv3. This is because
layer Conv4 has a 1×1 filter size and so would not benefit much from our speedup schemes.
We also don’t approximate Conv1 due to the fact that it acts on raw pixels from natural
images – the filters in Conv1 are very different to those found in the rest of the network and
experimentally we found that they cannot be approximated well by separable filters (also
observed in [7]). Omitting layers Conv1 and Conv4 from the schemes does not change
overall network speedup significantly, since Conv2 and Conv3 constitute 90% of the overall
network processing time, as shown in Table 1.

Citation
Citation
{{Alsharif} and {Pineau}} 2014

Citation
Citation
{Wang, Babenko, and Belongie} 2011

Citation
Citation
{{Alsharif} and {Pineau}} 2014

Citation
Citation
{Jia} 2013

Citation
Citation
{Denton, Zaremba, Bruna, LeCun, and Fergus} 2014

JADERBERG, VEDALDI, ZISSERMAN: SPEEDING UP CONVOLUTIONAL NEURAL... 9

1 2 3 4 5

0

5

10

15

20

Full net speedup factor

P
er

ce
nt

 lo
ss

 in
 a

cc
ur

ac
y

Scheme 1

Filter reconstruction
Data reconstruction
Joint data reconstruction

1 2 3 4 5 6 7

0

5

10

15

20

Full net speedup factor

P
er

ce
nt

 lo
ss

 in
 a

cc
ur

ac
y

Scheme 2

Filter reconstruction
Data reconstruction
Joint data reconstruction

(a) (b) (c)

Figure 4: (a) A selection of Conv2 filters from the original CNN (left), and the reconstructed versions
under Scheme 1 (centre) and Scheme 2 (right), where both schemes have the same model capacity
corresponding to 10x theoretical speedup. Visually the approximated filters look very different with
Scheme 1 naturally smoothing the representation, but both still achieve good accuracy. (b-c) The
percent loss in performance as a result of the speedups attained with Scheme 1 (b) and Scheme 2 (c).

Figure 5: Text spotting using the CNN character classifier. The maximum response map over the char-
acter classes of the CNN output with Scheme 2 indicates the scene text positions. The approximations
have sufficient quality to locate the text, even at 6.7× speedup.

Layer-wise Performance. Fig. 3 shows the output reconstruction error of each approxi-
mated layer with the test data. It is clear that the reconstruction error worsens as the speedup
achieved increases, both theoretically and practically. As the reconstruction error is that of
the test data features fed through the approximated layers, as expected the data reconstruc-
tion optimization scheme gives lower errors for the same speedup compared to the filter
reconstruction. This generally holds even when completely random Gaussian noise data is
fed through the approximated layers – data from a completely different distribution to what
the data optimization scheme has been trained on.

Looking at the theoretical speedups possible in Fig. 3, Scheme 1 gives better reconstruc-
tion error to speedup ratio, suggesting that the Scheme 1 model is perhaps better suited for
approximating convolutional layers. However, when the actual measured speedups are com-
pared, Scheme 1 is actually slower than that of Scheme 2 for the same reconstruction error.
This is due to the fact that the Caffe convolution routine is optimized for 3D convolu-
tion (summing over channels), so Scheme 2 requires only two im2col and BLAS calls.
However, to implement Scheme 1 with Caffe style convolution involving per-channel con-
volution without channel summation, means that there are many more costly im2col and

10 JADERBERG, VEDALDI, ZISSERMAN: SPEEDING UP CONVOLUTIONAL NEURAL...

BLAS calls, thus slowing down the layer evaluation and negating the model approximation
speedups. It is possible that using a different convolution routine with Scheme 1 will bring
the actual timings closer to the theoretically achievable timings.

Full Net Performance. Fig. 4 (b) & (c) show the overall drop in accuracy as the speedup
of the end-to-end network increases under different optimization strategies. Generally, joint
data optimization of Conv2 and Conv3 improves final classification performance for a given
speedup. Under Scheme 2 we can achieve a 2.5× speedup with no loss in accuracy, and a
4.5× speedup with only a drop of 1% in classification accuracy, giving 90.3% accuracy – still
state-of-the-art for this benchmark. The 4.5× configuration is obtained by approximating the
original 128 Conv2 filters with 31 horizontal filters followed by 128 vertical filters, and the
original 512 Conv3 filters with 26 horizontal filters followed by 512 vertical filters.

This speedup is particularly useful for sliding window schemes, allowing fast generation
of, for example, detection maps such as the character detection map shown in Fig. 5. There is
very little difference with even a 3.5× speedup, and when incorporated in to a full application
pipeline, the speedup can be tuned to give an acceptable end-pipeline result.

Comparing to an FFT based CNN [23], our method can result in greater speedups. With
the same layer setup (5×5 kernel, 16×16×256 input, 384 filters), Scheme 2 gives an actual
2.4× speedup with 256 basis filters (which should result in no performance drop), compared
to 2.2× in [23]. Comparing with [7], simply doing a filter reconstruction approximation
with Scheme 2 of the second layer of OverFeat [33] gives a 2× theoretical speedup with
only 0.5% drop in top-5 classification accuracy on ImageNet, far better than the 1.2% drop
in accuracy for the same theoretical speedup reported in [7]. However, these results are not
directly comparable since the exact test data is different. This accuracy should be further
improved if data optimization is used.

4 Conclusions

In this paper we have shown that the redundancies in representation in CNN convolutional
layers can be exploited by approximating a learnt full rank filter bank as combinations of a
rank-1 filter basis. We presented two schemes to do this, with two optimization techniques
for attaining the approximations. The resulting approximations require significantly less op-
erations to compute, resulting in large speedups observed with a real CNN trained for scene
text character recognition: a 4.5× speedup, only a drop of 1% in classification accuracy.

In future work it would be interesting to experiment with other arrangements of separa-
ble filters in layers, e.g. a horizontal basis layer, followed by a vertical basis layer, followed
by a linear combination layer. Looking at the filter reconstructions of the two schemes in
Fig. 4 (a), it is obvious that the two presented schemes act very differently, so the connection
between different approximation structures could be explored. Also it should be further in-
vestigated whether these model approximations can be effectively taken advantage of during
training, with low-rank filter layers being learnt in a discriminative manner.

Acknowledgements. Funding for this research is provided by the EPSRC and ERC grant
VisRec no. 228180. Also many thanks to Dr. Karen Simonyan for his countless, valuable
insights.

Citation
Citation
{Mathieu, Henaff, and LeCun} 2013

Citation
Citation
{Mathieu, Henaff, and LeCun} 2013

Citation
Citation
{Denton, Zaremba, Bruna, LeCun, and Fergus} 2014

Citation
Citation
{Sermanet, Eigen, Zhang, Mathieu, Fergus, and LeCun} 2013

Citation
Citation
{Denton, Zaremba, Bruna, LeCun, and Fergus} 2014

JADERBERG, VEDALDI, ZISSERMAN: SPEEDING UP CONVOLUTIONAL NEURAL... 11

References
[1] http://algoval.essex.ac.uk/icdar/datasets.html.

[2] http://www.iapr-tc11.org/mediawiki/index.php/kaist_scene_text_database.

[3] O. Alsharif and J. Pineau. End-to-End Text Recognition with Hybrid HMM Maxout
Models. In International Conference on Learning Representations, 2014.

[4] A. Bissacco, M. Cummins, Y. Netzer, and H. Neven. PhotoOCR: Reading text in
uncontrolled conditions. In International Conference of Computer Vision, 2013.

[5] T. de Campos, B. R. Babu, and M. Varma. Character recognition in natural images.
2009.

[6] M. Denil, B. Shakibi, L. Dinh, and N. de Freitas. Predicting parameters in deep learn-
ing. In Advances in Neural Information Processing Systems, pages 2148–2156, 2013.

[7] E. Denton, W. Zaremba, J. Bruna, Y. LeCun, and R. Fergus. Exploiting linear structure
within convolutional networks for efficient evaluation. arXiv preprint arXiv:1404.0736,
2014.

[8] C. Farabet, Y. LeCun, K. Kavukcuoglu, E. Culurciello, B. Martini, P. Akselrod, and
S. Talay. Large-scale fpga-based convolutional networks. Machine Learning on Very
Large Data Sets, 2011.

[9] C. Farabet, C. Couprie, L. Najman, and Y. LeCun. Scene parsing with multiscale
feature learning, purity trees, and optimal covers. arXiv preprint arXiv:1202.2160,
2012.

[10] I. J. Goodfellow, Y. Bulatov, J. Ibarz, S. Arnoud, and V. Shet. Multi-digit number
recognition from street view imagery using deep convolutional neural networks. In
International Conference on Learning Representations, 2013.

[11] I. J. Goodfellow, D. Warde-Farley, M. Mirza, A. Courville, and Y. Bengio. Maxout
networks. arXiv preprint arXiv:1302.4389, 2013.

[12] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhutdinov.
Improving neural networks by preventing co-adaptation of feature detectors. arXiv
preprint arXiv:1207.0580, 2012.

[13] F. Iandola, M. Moskewicz, S. Karayev, R. Girshick, T. Darrell, and K. Keutzer.
Densenet: Implementing efficient convnet descriptor pyramids. arXiv preprint
arXiv:1404.1869, 2014.

[14] M. Jaderberg, K. Simonyan, A. Vedaldi, and A. Zisserman. Synthetic data and artificial
neural networks for natural scene text recognition. arXiv preprint arXiv:1406.2227,
2014.

[15] M. Jaderberg, A Vedaldi, and A. Zisserman. Deep features for text spotting. In Euro-
pean Conference on Computer Vision, 2014.

[16] Y. Jia. Caffe: An open source convolutional architecture for fast feature embedding.
http://caffe.berkeleyvision.org/, 2013.

http://caffe.berkeleyvision.org/

12 JADERBERG, VEDALDI, ZISSERMAN: SPEEDING UP CONVOLUTIONAL NEURAL...

[17] D. Karatzas, F. Shafait, S. Uchida, M. Iwamura, S. R. Mestre, J. Mas, D. F. Mota,
J. Almazan, L. P. de las Heras, et al. ICDAR 2013 robust reading competition. In
Document Analysis and Recognition (ICDAR), 2013 12th International Conference on,
pages 1484–1493. IEEE, 2013.

[18] K. Kavukcuoglu, P. Sermanet, Y. Boureau, K. Gregor, M. Mathieu, and Y. LeCun.
Learning convolutional feature hierarchies for visual recognition. In NIPS, volume 1,
page 5, 2010.

[19] A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet classification with deep con-
volutional neural networks. In NIPS, volume 1, page 4, 2012.

[20] H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng. Convolutional deep belief networks for
scalable unsupervised learning of hierarchical representations. In Proceedings of the
26th Annual International Conference on Machine Learning, pages 609–616. ACM,
2009.

[21] S. Lucas. ICDAR 2005 text locating competition results. In Document Analysis and
Recognition, 2005. Proceedings. Eighth International Conference on, pages 80–84.
IEEE, 2005.

[22] F. Mamalet and C. Garcia. Simplifying convnets for fast learning. In Artificial Neural
Networks and Machine Learning–ICANN 2012, pages 58–65. Springer, 2012.

[23] M. Mathieu, M. Henaff, and Y. LeCun. Fast training of convolutional networks through
ffts. CoRR, abs/1312.5851, 2013.

[24] L. Neumann and J. Matas. A method for text localization and recognition in real-world
images. In Proc. Asian Conf. on Computer Vision, pages 770–783. Springer, 2010.

[25] L. Neumann and J. Matas. Text localization in real-world images using efficiently
pruned exhaustive search. In Proc. ICDAR, pages 687–691. IEEE, 2011.

[26] L. Neumann and J. Matas. Real-time scene text localization and recognition. In Proc.
CVPR, volume 3, pages 1187–1190. IEEE, 2012.

[27] L. Neumann and J. Matas. Scene text localization and recognition with oriented stroke
detection. In 2013 IEEE International Conference on Computer Vision (ICCV 2013),
pages 97–104, California, US, December 2013. IEEE. ISBN 978-1-4799-2839-2. doi:
10.1109/ICCV.2013.19.

[28] M. Oquab, L. Bottou, I. Laptev, and J. Sivic. Learning and transferring mid-level image
representations using convolutional neural networks. In Computer Vision and Pattern
Recognition (CVPR), 2014.

[29] I. Posner, P. Corke, and P. Newman. Using text-spotting to query the world. In Proc.
of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), 2010.

[30] T. Quack. Large scale mining and retrieval of visual data in a multimodal context. PhD
thesis, ETH Zurich, 2009.

JADERBERG, VEDALDI, ZISSERMAN: SPEEDING UP CONVOLUTIONAL NEURAL... 13

[31] R. Rigamonti, M. A. Brown, and V. Lepetit. Are sparse representations really relevant
for image classification? In Computer Vision and Pattern Recognition (CVPR), 2011
IEEE Conference on, pages 1545–1552. IEEE, 2011.

[32] R. Rigamonti, A. Sironi, V. Lepetit, and P. Fua. Learning separable filters. In Computer
Vision and Pattern Recognition (CVPR), 2013 IEEE Conference on, pages 2754–2761.
IEEE, 2013.

[33] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun. Overfeat:
Integrated recognition, localization and detection using convolutional networks. arXiv
preprint arXiv:1312.6229, 2013.

[34] A. Shahab, F. Shafait, and A. Dengel. ICDAR 2011 robust reading competition chal-
lenge 2: Reading text in scene images. In Proc. ICDAR, pages 1491–1496. IEEE,
2011.

[35] H. O. Song, S. Zickler, T. Althoff, R. Girshick, M. Fritz, C. Geyer, P. Felzenszwalb,
and T. Darrell. Sparselet models for efficient multiclass object detection. In Computer
Vision–ECCV 2012, pages 802–815. Springer, 2012.

[36] H. O. Song, T. Darrell, and R. B. Girshick. Discriminatively activated sparselets. In
Proceedings of the 30th International Conference on Machine Learning (ICML-13),
pages 196–204, 2013.

[37] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf. Deep-Face: Closing the gap to human-
level performance in face verification. In IEEE CVPR, 2014.

[38] A. Toshev and C. Szegedy. DeepPose: Human pose estimation via deep neural net-
works. arXiv preprint arXiv:1312.4659, 2013.

[39] K. van de Sande, J. Uijlings, T. Gevers, and A. Smeulders. Segmentation as selective
search for object recognition. In Computer Vision (ICCV), 2011 IEEE International
Conference on, pages 1879–1886. IEEE, 2011.

[40] V. Vanhoucke, A. Senior, and M. Z. Mao. Improving the speed of neural networks on
cpus. In Proc. Deep Learning and Unsupervised Feature Learning NIPS Workshop,
2011.

[41] K. Wang, B. Babenko, and S. Belongie. End-to-end scene text recognition. In Proc.
ICCV, pages 1457–1464. IEEE, 2011.

[42] T. Wang, D. J. Wu, A. Coates, and A. Y. Ng. End-to-end text recognition with con-
volutional neural networks. In Pattern Recognition (ICPR), 2012 21st International
Conference on, pages 3304–3308. IEEE, 2012.

[43] H. Yang, B. Quehl, and H. Sack. A framework for improved video text detection and
recognition. In Int. Journal of Multimedia Tools and Applications (MTAP), 2012.

