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Abstract. We present a method to speed up the dynamic program algorithms used for solving the HMM
decoding and training problems for discrete time-independent HMMs. We discuss the application of our
method to Viterbi’s decoding and training algorithms [33], as well as to the forward-backward and Baum-
Welch [6] algorithms. Our approach is based on identifying repeated substrings in the observed input
sequence. Initially, we show how to exploit repetitions of all sufficiently small substrings (this is similar to
the Four Russians method). Then, we describe four algorithms based alternatively on run length encoding
(RLE), Lempel-Ziv (LZ78) parsing, grammar-based compression (SLP), and byte pair encoding (BPE).
Compared to Viterbi’s algorithm, we achieve speedups of ©(logn) using the Four Russians method,

(1og7) using RLE, Q(lo%) using LZ78, 2(;) using SLP, and 2(r) using BPE, where k is the number
of hidden states, n is the length of the observed sequence and r is its compression ratio (under each
compression scheme). Our experimental results demonstrate that our new algorithms are indeed faster
in practice. Furthermore, unlike Viterbi’s algorithm, our algorithms are highly parallelizable.

Key words: HMM, Viterbi, dynamic programming, compression

1 Introduction

Over the last few decades, Hidden Markov Models (HMMs) proved to be an extremely useful frame-
work for modeling processes in diverse areas such as error-correction in communication links [33],
speech recognition [8], optical character recognition [2], computational linguistics [25], and bioinfor-
matics [16].

The core HMM-based applications fall in the domain of classification methods and are technically
divided into two stages: a training stage and a decoding stage. During the training stage, the emission
and transition probabilities of an HMM are estimated, based on an input set of observed sequences.
This stage is usually executed once as a preprocessing stage and the generated (“trained”) models
are stored in a database. Then, a decoding stage is run, again and again, in order to classify input
sequences. The objective of this stage is to find the most probable sequence of states to have generated
each input sequence given each model, as illustrated in Fig. 1.

Obviously, the training problem is more difficult to solve than the decoding problem. However, the
techniques used for decoding serve as basic ingredients in solving the training problem. The Viterbi
algorithm (VA) [33] is the best known tool for solving the decoding problem. Following its invention
in 1967, several other algorithms have been devised for the decoding and training problems, such as
the forward-backward and Baum-Welch [6] algorithms. These algorithms are all based on dynamic
programs whose running times depend linearly on the length of the observed sequence. The challenge
of speeding up VA by utilizing HMM topology was posed in 1997 by Buchsbaum and Giancarlo [8] as

* A preliminary version of this paper appeared in [27].
** Work conducted while visiting MIT



Fig. 1. The HMM on the observed sequence X = x1,x2,...,%, and states 1,2, ..., k. The highlighted path is a possible
path of states that generate the observed sequence. VA finds the path with highest probability.

a major open problem. In this contribution, we address this open problem by using text compression
and present the first provable speedup of these algorithms.

The traditional aim of text compression is the efficient use of resources such as storage and
bandwidth. Here, we will compress the observed sequences in order to speed up HMM algorithms.
Note that this approach, denoted “acceleration by text-compression”, has been recently applied to
some classical problems on strings. Various compression schemes, such as LZ77, LZW-LZ78, Huffman
coding, Byte Pair Encoding (BPE) and Run Length Encoding (RLE), were employed to accelerate
exact string matching [19, 24, 31, 22], subsequence matching [10], approximate pattern matching [1,
18, 20, 28] and sequence alignment [3,4,9, 15, 23]. In light of the practical importance of HMM-based
classification methods in state-of-the-art research, and in view of the fact that such techniques are
also based on dynamic programming, we set out to answer the following question: can “acceleration
by text compression” be applied to HMM decoding and training algorithms?

Our results. In this study we address the above challenge of speeding up HMM dynamic program-
ming algorithms (Viterbi, forward-backward and Baum-Welch) by compression. We compress only
in one dimension, the sequence axis, since typically n >> k and the states are non-repetitive. This
compression enables the algorithm to adapt to the data and to utilize its repetitions. We present a
basic toolkit of operations that could be further extended beyond this paper and applied to variant
HMM-based problems in order to utilize common and repeated substrings. In general, the input
sequences can be pre-compressed, as an offline stage, before our algorithms are applied. Such pre-
compression, which is usually time-linear in the size of the input sequences, is done in this case not in
order to save space but rather as a good investment in preparation for an all-against-all classification
scheme in which each input sequence will be decoded many times according to various models and
thus it pays off to pre-compress it once and for all.

Let X denote the input sequence and let n denote its length. Let k£ denote the number of states
in the HMM and |X| denote the size of alphabet. For any given compression scheme, let n’ denote
the number of parsed blocks in X and let r = n/n’ denote the compression ratio. Our results are as
follows.

1. Using the Four Russians method, we accelerate decoding by a factor of ©(logn). Here we assume

2. RLE is used to accelerate decoding by a factor of £2( logT).

3. Using LZ78, we accelerate decoding by a factor of Q(loin). Our algorithm guarantees no degra-

dation in efficiency even when k£ > logn and is experimentally more than five times faster than
VA when applied to DNA sequences.

4. SLP is used to accelerate decoding by a factor of £2(7).

. BPE is used to accelerate decoding by a factor of £2(r).

6. The same speedup factors apply to the Viterbi training algorithm.

ot



7. For the Baum-Welch training algorithm, we show how to preprocess a repeated substring of size ¢
once in O(¢k*) time so that we may replace the usual O(¢k?) processing work for each occurrence
of this substring with an alternative O(k?) computation. This is beneficial for any repeat with A
non-overlapping occurrences, such that A > %.

8. As opposed to VA, our algorithms are highly parallelizable.

Roadmap. The rest of the paper is organized as follows. In section 2 we give a unified presentation of
the HMM dynamic programs. We then show in section 3 how these algorithms can be improved by
identifying repeated substrings. Five different implementations of this general idea are presented in
section 4. Section 5 discusses the recovery of the optimal state-path. In section 6 we show how to adapt
the algorithms to the training problem. A parallel implementation of our algorithms is described in
section 7, and experimental results are presented in section 8. We summarize and discuss future work
in section 9.

2 Preliminaries

Let X' denote a finite alphabet and let X € X X = xz1,x9,..., T, be a sequence of observed letters.
A Markov model is a set of k states, along with emission probabilities ei(o) - the probability to
observe o € X given that the state is k, and transition probabilities P; ; - the probability to make a
transition to state ¢ from state j.

The Viterbi Algorithm. The Viterbi algorithm (VA) finds the most probable sequence of hidden
states given the model and the observed sequence. i.e., the sequence of states s1,so,...,s, which
maximize

Hesi(mi)Psi,si,1 (1)
i=1

The dynamic program of VA calculates a vector v.[i] which is the probability of the most probable
sequence of states emitting x1,...,z; and ending with the state ¢ at time ¢. vy is usually taken to be
the vector of uniform probabilities (i.e., vg[i] = %) v¢41 is calculated from v, according to

vey1i] = ei(we41) 'mfx{Pi,j “ve[j]} (2)

Definition 1 (Viterbi Step). We call the computation of vi+1 from vy a Viterbi step.

Clearly, each Viterbi step requires O(k?) time. Therefore, the total runtime required to compute the
vector vy, is O(nk?). The probability of the most likely sequence of states is the maximal element in
vy,. The actual sequence of states can be then reconstructed in linear time.
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X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X111 X12 Xi3

Fig. 2. The VA dynamic program table on sequence X = x1,x2,...,x13 and states 1,2,3,4,5,6. The marked cell
corresponds to vs[4] = es(ws) - max{Ps1 - v7[1], Pa2 - v7[2],..., Pas - v7[6]}.



It is useful for our purposes to rewrite VA in a slightly different way. Let M7 be a k x k matrix
with elements M7, = ei(o) - P; j. We can now express vy, as:

Q)n:MIn @Mzn—IQQMIQQMﬁCl @,UO (3)

where (A® B); j = maxp{A; - By ;} is the so called max-times matrix multiplication. VA computes
vy, using (3) from right to left in O(nk?) time. Notice that if (3) is evaluated from left to right the
computation would take O(nk?) time (matrix-vector multiplication vs. matrix-matrix multiplication).
Throughout, we assume that the max-times matrix-matrix multiplications are done naively in O(k?).
Faster methods for max-times matrix multiplication [11,12] and standard matrix multiplication [14,
32] can be used to reduce the k3 term. However, for small values of k this is not profitable.

The Forward-Backward Algorithms. The forward-backward algorithms are closely related to VA
and are based on very similar dynamic programs. In contrast to VA, these algorithms apply standard
matrix multiplication instead of max-times multiplication. The forward algorithm calculates f[i],

the probability to observe the sequence x1, xo, ..., x; requiring that s; = ¢ as follows:
fr= M. M1 M= . M™ . f, (4)
The backward algorithm calculates b;[i], the probability to observe the sequence i1, x¢y2,..., Ty

given that s; = ¢ as follows:
bt = b?’l . Mxn . MCCn—l ..... Mitt+2 . Mq;t+1 (5)

Another algorithm which is used in the training stage and employs the forward-backward algorithm
as a subroutine, is the Baum-Welch algorithm, to be further discussed in Section 6.

A motivating example. We briefly describe one concrete example from computational biology to
which our algorithms naturally apply. CpG islands [7] are regions of DNA with a large concentration
of the nucleotide pair C'G. These regions are typically a few hundred to a few thousand nucleotides
long, located around the promoters of many genes. As such, they are useful landmarks for the
identification of genes. The observed sequence (X) is a long DNA sequence composed of four possible
nucleotides (X = {A4,C,G,T}). The length of this sequence is typically a few millions nucleotides
(n ~ 2%). A well-studied classification problem is that of parsing a given DNA sequence into CpG
islands and non CpG regions. Previous work on CpG island classification used Markov models with
either 8 or 2 states (k =8 or k = 2) [13, 16].

3 Exploiting Repeated Substrings in the Decoding Stage

Consider a substring W = wq, wa, ..., wy of X, and define
MW)=M"oM"1'®---0M"?c0 M (6)

Intuitively, M; ;(W) is the probability of the most likely path starting with state j, making a transition
into some other state, emitting wy, then making a transition into yet another state and emitting ws
and so on until making a final transition into state ¢ and emitting wy.

In the core of our method stands the following observation, which is immediate from the associa-
tive nature of matrix multiplication.

Observation 1. We may replace any occurrence of MWt M™t=1©---@ M™ in eq. (3) with M (W).

The application of observation 1 to the computation of equation (3) saves ¢ — 1 Viterbi steps each
time W appears in X, but incurs the additional cost of computing M (W) once.



An intuitive exercise. Let A denote the number of times a given word W appears, in non-
overlapping occurrences, in the input string X. Suppose we naively compute M (W) using (|W]—1)
max-times matrix multiplications, and then apply observation 1 to all occurrences of W before run-
ning VA. We gain some speedup in doing so if

(W] = 1)k + Mk < \|[W|k?
2>k (7)

Hence, if there are at least k& non-overlapping occurrences of W in the input sequence, then it is
worthwhile to naively precompute M (W), regardless of it’s size |W].

Definition 2 (Good Substring). We call a substring W good if we decide to compute M(W).
We can now give a general four-step framework of our method:

(I) Dictionary Selection: choose the set D = {W;} of good substrings.
(IT) Encoding: precompute the matrices M (W;) for every W; € D.
(III) Parsing: partition the input sequence X into consecutive good substrings X = W; W;, --- W, ,
and let X’ denote the compressed representation of this parsing of X, such that X' =
119 -+« by
(IV) Propagation: run VA on X', using the matrices M (W;).

The above framework introduces the challenge of how to select the set of good substrings (step
I) and how to efficiently compute their matrices (step II). In the next section we show how the RLE,
LZ78, SLP and BPE compression schemes can be applied to address this challenge, and how the above
framework can be utilized to exploit repetitions of all sufficiently small substrings (this is similar to
the Four Russians method). In practice, the choice of the appropriate compression scheme should be
made according to the nature of the observed sequences. For example, genomic sequences tend to
compress well with BPE [31] and binary images in facsimile or in optical character recognition [2—4,
9,23,26] are well compressed by RLE. LZ78 guarantees asymptotic compression for any sequence
and is useful in cases such as the CpG islands [7] identification problem in DNA sequences [13, 16],
where k is smaller than log n.

Another challenge is how to parse the sequence X (step III) in order to maximize acceleration.
We show that, surprisingly, this optimal parsing may differ from the initial parsing induced by the
selected compression scheme. To our knowledge, this feature was not applied by previous “acceleration
by compression” algorithms.

Throughout this paper we focus on computing path probabilities rather than the paths themselves.
The actual paths can be reconstructed in linear time as described in section 5.

4 Five Different Implementations of the General Framework

4.1 Acceleration via the Four Russians Method

The most naive approach is probably using all possible substrings of sufficiently small length ¢ as
good ones. This approach is quite similar to the Four Russians method [5], and leads to a @(logn)
asymptotic speedup.

(I) Dictionary Selection: all possible strings of length ¢ over alphabet |X| are good substrings.
(IT) Encoding: For i = 2...4, compute M (W) for all strings W with length i by computing
M(W')® M(c), where W = W'o for some previously computed string W’ of length ¢ — 1
and some letter o € X.
(III) Parsing: X' is constructed by splitting the input X into blocks of length /.
(IV) Propagation: run VA on X', using the matrices M (W;) as described in section 3.



Time and Space Complexity. The encoding step takes O(2|X|k3) time as we compute O(2|X[%)
matrices and each matrix is computed in O(k®) time by a single max-times multiplication. The
propagation step takes O("T]fz) time resulting in an overall running time of O(2|%|‘k3 + "T'fz) Choos-

ing ¢ = %logm(n), the running time is 0(2\/ﬁk3 + logg’in))' This yields a speedup of ©(logn)
compared to VA, assuming that k£ < %. In fact, the optimal length is approximately ¢ =

, since then the preprocessing and the propagation times are roughly equal. This

log n—log logn—log k—1
log ||
yields a ©(¢) = O(logn) speedup, provided that ¢ > 2, or equivalently that k < 2|E|2+gn' Note that

for large k the speedup can be further improved using fast matrix multiplication [11, 14, 32].

4.2 Acceleration via Run-length Encoding

In this section we obtain an ‘Q(logr

compression ratio r. A string S is run-length encoded if it is described as an ordered sequence of pairs
(0,1), often denoted “o’”. Each pair corresponds to a run in S, consisting of i consecutive occurrences
of the character o. For example, the string aaabbccecce is encoded as a®b?c®. Run-length encoding
serves as a popular image compression technique, since many classes of images (e.g., binary images
in facsimile transmission or for use in optical character recognition) typically contain large patches
of identically-valued pixels. The four-step framework described in section 3 is applied as follows.

) speedup for decoding an observed sequence with run-length

2i

(I) Dictionary Selection: for every o € X and every i = 1,2,...,logn we choose o* as a good
substring. _ _ _

(I) Encoding: since M (c2') = M(c% ")OM(c? "), we can compute the matrices using repeated
squaring.

(IIT) Parsing: Let Wi W - - - W, be the RLE of X, where each W; is a run of some o € X. X' is
obtained by further parsing each W; into at most log |IW;| good substrings of the form o2’.
(IV) Propagation: run VA on X', as described in Section 3.

Time and Space Complerity. The offline preprocessing stage consists of steps I and II. The time
complexity of step IT is O(|X|k?logn) by applying max-times repeated squaring in O(k3) time
per multiplication. The space complexity is O(]X|k?logn). This work is done offline once, during
the training stage, in advance for all sequences to come. Furthermore, for typical applications, the
O(|2|k31logn) term is much smaller than the O(nk?) term of VA.

Steps III and IV both apply one operation per occurrence of a good substring in X': step III
computes, in constant time, the index Pf the next parsing-comma, and step IV applies a single
Viterbi step in k% time. Since | X'| = Y7 log|W;], the complexity is

n’ n
> KlogIWil = Flog(IWi] - [Wal -+ [Wo]) < Klog((n/n)"™) = O(n'klog ).
i=1
9

Thus, the speedup compared to the O(nk?) time of VA is £2( ) = 25g7)-

lo

4.3 Acceleration via LZ78 Parsing

In this section we obtain an £2( 10%") speedup for decoding, and a constant speedup in the case where

k > logn. We show how to use the LZ78 [34] parsing to find good substrings and how to use the
incremental nature of the LZ78 parse to compute M (W) for a good substring W in O(k3) time.
LZ78 parses the string X into substrings ( LZ78-words) in a single pass over X. Each LZ78-word
is composed of the longest LZ78-word previously seen plus a single letter. More formally, LZ78 begins
with an empty dictionary and parses according to the following rule: when parsing location 4, look




for the longest LZ78-word W starting at position ¢ which already appears in the dictionary. Read
one more letter o and insert Wo into the dictionary. Continue parsing from position i + |W|+ 1. For
example, the string “AACGACG” is parsed into four words: A, AC, G, ACG. Asymptotically, LZ78
parses a string of length n into O(hn/logn) words [34], where 0 < h < 1 is the entropy of the string.
The LZ78 parse is performed in linear time by maintaining the dictionary in a trie. Each node in
the trie corresponds to an LZ78-word. The four-step framework described in section 3 is applied as
follows.

(I) Dictionary Selection: the good substrings are all the LZ78-words in the LZ78-parse of X.
(IT) Encoding: construct the matrices incrementally, according to their order in the LZ78-trie,
MWao)=MW)o M°.
(III) Parsing: X' is the LZ78-parsing of X.
(IV) Propagation: run VA on X', as described in section 3.

Time and Space Complexity. Steps I and III were already conducted offline during the pre-processing
compression of the input sequences (in any case LZ78 parsing is linear). In step II, computing
M(Weo) = M(W)® M?, takes O(k?) time since M (W) was already computed for the good sub-
string W. Since there are O(n/logn) LZ78-words, calculating the matrices M (W) for all Ws takes
O(k3n/logn). Running VA on X' (step IV) takes just O(k?n/logn) time. Therefore, the overall
runtime is dominated by O(k3n/logn). The space complexity is O(k?n/logn).

The above algorithm is useful in many applications, such as CpG island classification, where
k < logn. However, in those applications where k > logn such an algorithm may actually slow down
VA.

We next show an adaptive variant that is guaranteed to speed up VA, regardless of the values of

n and k. This graceful degradation retains the asymptotic Q(IO%”) acceleration when k < logn.

4.4 An improved algorithm with LZ78 Parsing

Recall that given M (W) for a good substring W, it takes k% time to calculate M (W¢). This cal-
culation saves k? operations each time Wo occurs in X in comparison to the situation where only
M (W) is computed. Therefore, in step I we should include in D, as good substrings, only words that
appear as a prefix of at least k LZ78-words. Finding these words can be done in a single traversal of
the trie. The following observation is immediate from the prefix monotonicity of occurrence tries.

Observation 2. Words that appear as a prefiz of at least k LZ78-words are represented by trie nodes
whose subtrees contain at least k nodes.

In the previous case it was straightforward to transform X into X', since each phrase p in the
parsed sequence corresponded to a good substring. Now, however, X does not divide into just good
substrings and it is unclear what is the optimal way to construct X’ (in step III). Our approach for
constructing X' is to first parse X into all LZ78-words and then apply the following greedy parsing
to each LZ78-word W: using the trie, find the longest good substring w’ € D that is a prefix of W,
place a parsing comma immediately after w’ and repeat the process for the remainder of W.

Time and Space Complexity. The improved algorithm utilizes substrings that guarantee acceleration
(with respect to VA) so it is therefore faster than VA even when k = {2(logn). In addition, in spite
of the fact that this algorithm re-parses the original LZ78 partition, the algorithm still guarantees
an Q(l"%") speedup over VA as shown by the following lemma.

Lemma 1. The running time of the above algorithm is bounded by O(k3n/logn).



Proof. The running time of step II is at most O(k3n/logn). This is because the size of the entire
LZ78-trie is O(n/logn) and we construct the matrices, in O(k?) time each, for just a subset of the
trie nodes. The running time of step IV depends on the number of new phrases (commas) that result
from the re-parsing of each LZ78-word W. We next prove that this number is at most & for each
word.

Consider the first iteration of the greedy procedure on some LZ78-word W. Let w’ be the longest
prefix of W that is represented by a trie node with at least k descendants. Assume, contrary to fact,
that |W|— |w’| > k. This means that w”, the child of w’, satisfies |W|— |w”| > k, in contradiction to
the definition of w’. We have established that |W| — |w’| < k and therefore the number of re-parsed
words is bounded by k + 1. The propagation step IV thus takes O(k3) time for each one of the
O(n/logn) LZ78-words. So the total time complexity remains O(k3n/logn). 0

Based on Lemma 1, and assuming that steps I and III are pre-computed offline, the running time of
the above algorithm is O(nk?/e) where e = £2(max(1, 10%”)). The space complexity is O(k%n/logn).

4.5 Acceleration via Straight-Line Programs

In this subsection we show that if an input sequence has a grammar representation with compression
ratio r, then HMM decoding can be accelerated by a factor of £2(7).

Let us shortly recall the grammar-based approach to compression. A straight-line program (SLP)
is a context-free grammar generating exactly one string. Moreover, only two types of productions are
allowed: X; — a and X; — X, X, with ¢ > p,q. The string represented by a given SLP is a unique
text corresponding to the last nonterminal X,. We say that the size of an SLP is equal to its number
of productions.

Example. Consider the string abaababaabaab. It could be generated by the following SLP:

X —b I~

Xz —a PN AN
Xy = XXy 2N A AN
X1 %X, R 0 o e
X5 — Xa X3 ROPRARA R
X7 — X6X5 abaababaabaab

Rytter [29] proved that the resulting encoding of most popular compression schemes can be
transformed to straight-line programs quickly and without large expansion. In particular, consider
an LZ77 encoding [35] with n” blocks for a text of length n. Rytter’s algorithm produces an SLP-
represention with size n’ = O(n”logn) of the same text, in O(n') time. Moreover, n’ lies within
a logn factor from the size of a minimal SLP describing the same text. Note also that any text
compressed by the LZ78-LZW encoding can be transformed directly into a straight-line program
within a constant factor. However, here we focus our SLP example on LZ77 encoding since in certain
cases LZ77 is exponentially shorter than LZ78, so even with the logn degradation associated with
transforming LZ77 into an SLP, we may still get an exponential speedup over LZ78 from section 4.4.

We next describe how to use SLP to achieve the speedup.

(I) Dictionary Selection: let X be an SLP representation of the input sequence. We choose all
strings corresponding to nonterminals X7, ..., X, as good substrings.
(IT) Encoding: compute M (X;) in the same order as in X. Every concatenating rule requires
just one max-times multiplication.
(ITII) Parsing: Trivial (the input is represented by the single matrix representing X,).
(IV) Propagation: vy = M(X,/) ® vo.



Time and Space Complezity. Let n’ be the number of rules in the SLP constructed in the parsing
step (r = n/n’ is the ratio of the grammar-based compression). The parsing step has an O(n) time
complexity and is computed offline. The number of max-times multiplications in the encoding step
is n/. Therefore, the overall complexity of decoding the HMM is n/k3, leading to a speedup factor of

In the next section we give another example of a grammar-based compression scheme where
the size of the uncompressed text may grow exponentially with respect to its description, and that
furthermore allows, in practice, to shift the Encoding Step (III) to an off-line preprocessing stage,
thus yielding a speedup factor of £2(r).

4.6 Acceleration via Byte-Pair Encoding

In this section byte pair encoding is utilized to accelerate the Viterbi decoding computations by a
factor of £2(r), where n' is the number of characters in the BPE-compressed sequence X and r = n/n’
is the BPE compression ratio of the sequence. The corresponding pre-processing term for encoding
is O(|X'|k?), where X’ denotes the set of character codes in the extended alphabet.

Byte pair encoding [17,30, 31] is a simple form of data compression in which the most common
pair of consecutive bytes of data is replaced with a byte that does not occur within that data.
This operation is repeated until either all new characters are used up or no pair of consecutive two
characters appears frequently in the substituted text. For example, the input string ABABCABCD
could be BPE encoded to XYY D, by applying the following two substitution operations: First
AB — X, yielding XXCXCD, and then XC — Y. A substitution table, which stores for each
character code the replacement it represents, is required to rebuild the original data. The compression
ratio of BPE has been shown to be about 30% for biological sequences [31].

The compression time of BPE is O(|X'|n). Alternatively, one could follow the approach of Shibata
et al. [30,31], and construct the substitution-table offline, during system set-up, based on a sufficient
set of representative sequences. Then, using this pre-constructed substitution table, the sequence
parsing can be done in time linear in the total length of the original and the substituted text. Let
o € X and let W, denote the word represented by o in the BPE substitution table. The four-step
framework described in section 3 is applied as follows.

(I) Dictionary Selection: all words appearing in the BPE substitution table are good substrings,
i.e. D ={W,} for all o € X'.
(IT) Encoding: if o is a substring obtained via the substitution operation AB — ¢ then

M(Wy,) = MWa4)© M(Wg).

So each matrix can be computed by multiplying two previously computed matrices.
(III) Parsing: given an input sequence X, apply BPE parsing as described in [30, 31].
(IV) Propagation: run VA on X', using the matrices M (W;) as described in section 3.

Time and Space Complexity. Step I was already taken care of during the system-setup stage and
therefore does not count in the analysis. Step II is implemented as an offline, preprocessing stage that
is independent of the observed sequence X but dependent on the training model. It can therefore
be conducted once in advance, for all sequences to come. The time complexity of this off-line stage
is O(|X’|k?) since each matrix is computed by one max-times matrix multiplication in O(k?) time.
The space complexity is O(]X'|k?). Since we assume Step III is conducted in pre-compression, the
compressed decoding algorithm consists of just Step IV. In the propagation step (IV), given an input
sequence of size n, compressed into its BPE-encoding of size n’ (e.g. n’ = 4 in the above example,
where X = ABABCABCD and X' = XYY D), we run VA using at most n/ matrices. Since each
VA step takes k2 time, the time complexity of this step is O(n'k?). Thus, the time complexity of the
BPE-compressed decoding is O(n’k?) and the speedup, compared to the O(nk?) time of VA, is £2(r).



5 Optimal state-path recovery

In this section we show how our decoding algorithms can trace back the optimal path, within the
same space complexity and in O(n) time. To do the traceback, VA keeps, along with the vector v,
(see eq. (2)), a vector of the maximizing arguments of eq. (2), namely:

wa[[i] = argmaz;{ P j - vi[j]} (8)

It then traces the states of the most likely path in reverse order. The last state s,, is simply the
largest element in vy, argmax;{v,[j]}. The rest of the states are obtained from the vectors u by
st—1 = ug[s¢]. We use exactly the same mechanism in the propagation step (IV) of our algorithm.
The problem is that in our case, this only retrieves the states on the boundaries of good substrings
but not the states within each good substring. We solve this problem in a similar manner.

Note that in all of our decoding algorithms every good substring W is such that W = W, Wp
where both W4 and Wp are either good substrings or single letters. In LLZ78-accelerated decoding,
Wg is a single letter, when using RLE W4 = Wg = o/"1/2, SLP consists just of production rules
involving a single letter or exactly two non-terminals, and with BPE W4, Wg € Y. For this reason,
we keep, along with the matrix M (W), a matrix R(W') whose elements are:

R(W);; = argmaxi{M(Wa)ir © M(Wg)j;} 9)

Now, for each occurrence of a good substring W = w1, ws, ..., wp we can reconstruct the most likely
sequence of states si, sg,...sp as follows. From the partial traceback, using the vectors u, we know
the two states sgp and sy, such that sg is the most likely state immediately before w; was generated
and sy is the most likely state when wy was generated. We find the intermediate states by recursive
application of the computation sy,| = R(W)s, s,-

Time and Space Complezity. In all compression schemes, the overall time required for tracing back
the most likely path is O(n). Storing the matrices R does not increase the basic space complexity,
since we already stored the similar-sized matrices M (W).

6 The Training Problem

In the training problem we are given as input the number of states in the HMM and an observed
training sequence X. The aim is to find a set of model parameters 6 (i.e., the emission and transition
probabilities) that maximize the likelihood to observe the given sequence P(X|6). The most com-
monly used training algorithms for HMMs are based on the concept of Expectation Maximization.
This is an iterative process in which each iteration is composed of two steps. The first step solves
the decoding problem given the current model parameters. The second step uses the results of the
decoding process to update the model parameters. These iterative processes are guaranteed to con-
verge to a local maximum. It is important to note that since the dictionary selection step (I) and
the parsing step (III) of our algorithm are independent of the model parameters, we only need run
them once, and repeat just the encoding step (II) and the propagation step (IV) when the decoding
process is performed in each iteration.

6.1 Viterbi training

The first step of Viterbi training [16] uses VA to find the most likely sequence of states given the
current set of parameters (i.e., decoding). Let A;; denote the number of times the state i follows
the state j in the most likely sequence of states. Similarly, let E;(0) denote the number of times the
letter o is emitted by the state ¢ in the most likely sequence. The updated parameters are given by:

20 and e(o) = =) (10)
> Airj

P =
’ 2o Eild')
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Note that the Viterbi training algorithm does not converge to the set of parameters that maximizes
the likelihood to observe the given sequence P(X|#) , but rather the set of parameters that locally
maximizes the contribution to the likelihood from the most probable sequence of states [16]. It is
easy to see that the time complexity of each Viterbi training iteration is O(k?n + n) = O(k?n) so
it is dominated by the running time of VA. Therefore, we can immediately apply our compressed
decoding algorithms from section 4 to obtain a better running time per iteration.

6.2 Baum-Welch training

The Baum-Welch training algorithm converges to a set of parameters that maximizes the likelihood to
observe the given sequence P(X|6), and is the most commonly used method for model training. Recall
the forward-backward matrices: f;[i] is the probability to observe the sequence z1, z2, . . ., z; requiring
that the ¢’th state is ¢ and that b.[é] is the probability to observe the sequence xyy1, 42, ..., 2, given
that the ¢’th state is i. The first step of Baum-Welch calculates fi[i] and b.[i] for every 1 <t < n
and every 1 < ¢ < k. This is achieved by applying the forward and backward algorithms to the input
data in O(nk?) time (see egs. (4) and (5)). The second step recalculates A and E according to

Aij = ZP(St = J, st+1 = i| X, 0)
t

Ei(o)= Y _ P(s;=i|X,0) (11)

t\xt:a

where P(s; = 7,841 = 1| X, 0) is the probability that a transition from state j to state ¢ occurred in
position ¢ in the sequence X, and P(s; = i|X,#) is the probability for the ¢’th state to be i in the
sequence X . These probabilities are calculated as follows using the matrices f;[i] and b;[i] that were
computed in the first step.

P(sy = j,s:4+1 = | X, 0) is given by the product of the probabilities to be in state j after emitting
x1,%2,...,%t, to make a transition from state j to state ¢, to emit z¢11 at state ¢ and to emit the
rest of X given that the state is i:

fildl - Pij - ei(@es) - by [d]
P(X]0)

where the division by P(X|6) = )", f»[i] is a normalization by the probability to observe X given
the current model parameters. Similarly

P(St :j7 St+1 = 7’|X70) =

(12)

P(s; =1i|X,0) = ‘w (13)

Finally, after the matrices A and E are recalculated, Baum-Welch updates the model parameters
according to (10).

We next describe how to accelerate the Baum-Welch algorithm. It is important to notice that, in
the first step of Baum-Welch, our algorithms to accelerate VA (sections 4.2 and 4.3) can be used to
accelerate the forward-backward algorithms by simply replacing the max-times matrix multiplication
with regular matrix multiplication. However, the accelerated forward-backward algorithms will only
calculate f; and b; on the boundaries of good substrings. In what follows, we explain how to solve
this problem and speed up the second step of Baum-Welch as well. We focus on updating the matrix
A, updating the matrix E can be done in a similar fashion.

We observe that when accumulating the contribution of some appearance of a good substring W
to A, Baum-Welch performs O(k?|W|) operations, but updates at most k? entries (the size of A).
Therefore, we may gain a speedup by precalculating the contribution of each good substring to A
and F. More Formally, let W = wjws - --wyp be a substring of the observed sequence X starting s

11
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Fig. 3. The contribution of an occurrence of the good string W to Ai2, computed as the some of the arrow probabilities.

characters from the beginning (i.e., W=xsy 12512 - xsy¢ as illustrated in Fig. 3). According to (11)
and (12), the contribution of this occurrence of W to A;; is:

s+0—1

Z fild] - P e;((fl‘fzal) be41[1]

X|9 me - Pij - ej(wer) - bryss i

However, by equation (4) we have

ft+5 = MZFtts . NfTt+s-1 .. [T 'fO
= M%tts . NfTt+s—1 .. \[Ts+1 .fs
= MWt . pMWt-1... pfW .fs

and similarly by equation (5) byysi1 = bsyp - M™e - M™We=1 ... M™t+2 The above sum thus equals

-1
1
B O (MM MY ) Py atis) - (e MMM AL s2),
t=0
1 -1 k k
~ PX|0) Z MM M) o - fslo] - Pij - ej(wit) st+é J - (MMt M2 ) g
t=0 a=1 p=1
k k -1
= Z Zfs[a] ~bsye]B X| ) Z (M™M=t e MY o - Py ej(wigr) - (M™WEM™E1 '”thﬂ)ﬂ,i
a=1p=1 t=0
Ry’
k k
=>">" filal beyl8] - B (14)
a=1p=1

Notice that the four dimensional array R%ﬁ can be computed in an encoding step (II) in O(¢k*) time
and is not dependant on the string context prior to X; or following X, ,. Furthermore, the vectors
fs and bs1 ¢ where already computed in the first step of Baum-Welch since they refer to boundaries of
a good substring. Therefore, R can be used according to (14) to update A;; for a single occurrence of
W and for some specific i and j in O(k?) time. So R can be used to update A;; for a single occurrence
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of W and for every i,j in O(k?) time. To get a speedup we need ), the number of times the good
substring W appears in X to satisfy:

0k + et < ME?
0k?
A> —— 15
This is reasonable if k is small. If ¢ = 2k?, for example, then we need \ to be greater than 2k2. In
the CpG islands problem, if £ = 2 then any substrings of length eight is good if it appears more than
eight times in the text.

7 Parallelization

In this section we present a parallel version of our algorithm. We discuss our result for VA, but the
same applies for the forward and backward algorithms. The basic recursion of VA in eq. (2) imposes
a constraint on a parallel implementation. It is possible to compute the maximum in (2) in parallel
for all states ¢, but the dependency of v;41 on v; makes it difficult to achieve a sublinear parallel
algorithm. Once VA is cast into the form of eq. (3), there is a straightforward parallel implementation
which runs in O(logn) time using %k‘l processors. The max-times multiplication of two matrices can
be done in parallel in O(1) time using k* processors so we can calculate the product of n matrices in
O(logn) time. Note that for all of the algorithms in Section 3 except the SLP based algorithm, if the
parsing step (III) is performed in advance, then the same parallel algorithm applied to the sequence
of good substrings X’ runs in O(log(n')), where n’ is the length of the compressed representation.

8 Experimental Results

time (arbitrary units)

4 12 20 28 36 44 50
k

Fig. 4. Comparison of the cumulative running time of steps II and IV of our algorithm (marked x) with the running
time of VA (marked o), for different values of k. Time is shown in arbitrary units on a logarithmic scale. Runs on the
1.5Mbp chromosome 4 of S. cerevisiae are in solid lines. Runs on the 22Mbp human Y-chromosome are in dotted lines.
The roughly uniform difference between corresponding pairs of curves reflects a speedup factor of more than five.

We implemented both our improved LZ78-compressed algorithm from subsection 4.4 and clas-
sical VA in C++ and compared their execution times on a sequence of approximately 22,000,000
nucleotides from the human Y chromosome and on a sequence of approximately 1,500,000 nucleotides
from chromosome 4 of S. Cerevisiae obtained from the UCSC genome database. The benchmarks
were performed on a single processor of a SunFire V880 server with 8 UltraSPARC-IV processors
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and 16GB main memory. The implementation is just for calculating the probability of the most likely
sequence of states, and does not traceback the optimal sequence itself. As we have seen, this is the
time consuming part of the algorithm. We measured the running times for different values of k. In
practice we found that the simple implementation of our algorithm (choosing all LZ78-words as good
substrings) is a little slower than the regular VA implementation. However, an implementation of the
refined algorithm (choosing just LZ78-words that appear as a prefix of more than k& LZ78-words) per-
forms roughly five times faster than VA. The fastest variant of our algorithm uses as good substrings
all LZ78-words that appear as a prefix of more than a threshold of the LZ78-words. The optimal
threshold is dynamically computed in the parsing step (III) of our algorithm.

Unlike the procedure described in section 4.3, this variant parses X into good substrings by
applying the greedy procedure from section 4.3 to the entire sequence X, rather than to each LZ78-
word individually. As we explained in the previous sections we are only interested in the running time
of the encoding and propagation steps (II and IV) since the combined parsing/dictionary-selections
steps (I and III) may be performed in advance and are not repeated by the training and decoding
algorithms. A comparison of the running time of steps II and IV of this variant to the running time
of the corresponding calculation by VA is shown in Fig. 4.

As k becomes larger, the optimal threshold and the number of good substrings decreases. Our
algorithm performs faster than VA even for surprisingly large values of k. For example, for k = 60
our algorithm is roughly three times faster than VA. It is very likely that by using better heuristics
for identifying good substrings one can get even faster implementations.

9 Conclusions and Future Work

In this paper we described a method for speeding up dynamic program algorithms used for solving
HMM decoding and training. By utilizing repeated substrings in the observed input sequence, we
presented the first provable speedups of the well known Viterbi algorithm. We based the identifi-
cation of repeated substrings alternatively on the Four Russians method, and compression schemes
such as RLE, LZ78, SLP and BPE. Our algorithms are faster than Viterbi in practice, and highly
parallelizable.

Naturally, it would be interesting to apply our results to other compression schemes. Other
promising directions for future work include extending our results to higher order HMMs, HMMs
with numerical observables [21], hierarchical HMMs, infinite alphabet size, and sparse transition
matrices.
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