
Algorithmica (2009) 54: 379–399
DOI 10.1007/s00453-007-9128-0

Speeding Up HMM Decoding and Training
by Exploiting Sequence Repetitions

Yury Lifshits · Shay Mozes · Oren Weimann ·
Michal Ziv-Ukelson

Received: 10 June 2007 / Accepted: 5 November 2007 / Published online: 28 November 2007
© Springer Science+Business Media, LLC 2007

Abstract We present a method to speed up the dynamic program algorithms used
for solving the HMM decoding and training problems for discrete time-independent
HMMs. We discuss the application of our method to Viterbi’s decoding and train-
ing algorithms (IEEE Trans. Inform. Theory IT-13:260–269, 1967), as well as to the
forward-backward and Baum-Welch (Inequalities 3:1–8, 1972) algorithms. Our ap-
proach is based on identifying repeated substrings in the observed input sequence.
Initially, we show how to exploit repetitions of all sufficiently small substrings (this
is similar to the Four Russians method). Then, we describe four algorithms based
alternatively on run length encoding (RLE), Lempel-Ziv (LZ78) parsing, grammar-
based compression (SLP), and byte pair encoding (BPE). Compared to Viterbi’s al-
gorithm, we achieve speedups of �(logn) using the Four Russians method, �( r

log r
)
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using RLE, �(
logn

k
) using LZ78, �( r

k
) using SLP, and �(r) using BPE, where k

is the number of hidden states, n is the length of the observed sequence and r is
its compression ratio (under each compression scheme). Our experimental results
demonstrate that our new algorithms are indeed faster in practice. We also discuss a
parallel implementation of our algorithms.

Keywords HMM · Viterbi · Dynamic programming · Compression

1 Introduction

Over the last few decades, Hidden Markov Models (HMMs) proved to be an ex-
tremely useful framework for modelling processes in diverse areas such as error-
correction in communication links [40], speech recognition [9], optical character
recognition [1], computational linguistics [29], and bioinformatics [17].

The core HMM-based applications fall in the domain of classification methods and
are technically divided into two stages: a training stage and a decoding stage. During
the training stage, the emission and transition probabilities of an HMM are estimated,
based on an input set of observed sequences. This stage is usually executed once as
a preprocessing stage and the generated (“trained”) models are stored in a database.
Then, a decoding stage is run, again and again, in order to classify input sequences.
The objective of this stage is to find the most probable sequence of states to have
generated each input sequence given each model, as illustrated in Fig. 1.

Obviously, the training problem is more difficult to solve than the decoding prob-
lem. However, the techniques used for decoding serve as basic ingredients in solv-
ing the training problem. The Viterbi algorithm (VA) [40] is the best known tool
for solving the decoding problem. Following its invention in 1967, several other
algorithms have been devised for the decoding and training problems, such as the
forward-backward and Baum-Welch [5] algorithms. These algorithms are all based
on dynamic programming and their running times depend linearly on the length of
the observed sequence. The challenge of speeding up VA by utilizing HMM topology
was posed in 1997 by Buchsbaum and Giancarlo [9] as a major open problem. In this
contribution, we address this open problem by using text compression and present
the first provable speedup of these algorithms.

The traditional aim of text compression is the efficient use of resources such as
storage and bandwidth. Here, we will compress the observed sequences in order to

Fig. 1 The HMM on the
observed sequence
X = x1, x2, . . . , xn and states
1,2, . . . , k. The highlighted path
is a possible path of states that
generate the observed sequence.
VA finds the path with highest
probability
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speed up HMM algorithms. Note that this approach, denoted “acceleration by text-
compression”, has been recently applied to some classical problems on strings. Var-
ious compression schemes, such as LZ77, LZW-LZ78, Huffman coding, Byte Pair
Encoding (BPE) and Run Length Encoding (RLE), were employed to accelerate ex-
act string matching [21, 25, 28, 37], subsequence matching [11], approximate pattern
matching [6, 21, 22, 32] and sequence alignment [2, 3, 10, 16, 27]. In light of the prac-
tical importance of HMM-based classification methods in state-of-the-art research,
and in view of the fact that such techniques are also based on dynamic programming,
we set out to answer the following question: can “acceleration by text compression”
be applied to HMM decoding and training algorithms?

Our results In this study we address the above challenge of speeding up HMM
dynamic programming algorithms (Viterbi, forward-backward and Baum-Welch) by
compression. We compress only in one dimension, the sequence axis, since typically
n � k and the states are non-repetitive. This compression enables the algorithm to
adapt to the data and to utilize its repetitions. We present a basic toolkit of operations
that could be further extended beyond this paper and applied to variant HMM-based
problems in order to utilize common and repeated substrings. In general, the input
sequences can be pre-compressed, as an offline stage, before our algorithms are ap-
plied. Such pre-compression, which is usually time-linear in the size of the input
sequences, is done in this case not in order to save space but rather as a good invest-
ment in preparation for an all-against-all classification scheme in which each input
sequence will be decoded many times according to various models and thus it pays
off to pre-compress it once and for all.

Let X denote the input sequence and let n denote its length. Let k denote the
number of states in the HMM and |�| denote the size of alphabet. For any given
compression scheme, let n′ denote the number of parsed blocks in X and let r = n/n′
denote the compression ratio. Our results are as follows.

1. Using the Four Russians method, we accelerate decoding by a factor of �(logn).
Here we assume that k < n

2|�|2 logn
.

2. RLE is used to accelerate decoding by a factor of �( r
log r

).

3. Using LZ78, we accelerate decoding by a factor of �(
logn

k
). Our algorithm guar-

antees no degradation in efficiency even when k > logn and is experimentally
more than five times faster than VA when applied to DNA sequences.

4. SLP is used to accelerate decoding by a factor of �( r
k
).

5. BPE is used to accelerate decoding by a factor of �(r).
6. The same speedup factors apply to the Viterbi training algorithm.
7. For the Baum-Welch training algorithm, we show how to preprocess a repeated

substring of size � once in O(�k4) time so that we may replace the usual O(�k2)

processing work for each occurrence of this substring with an alternative O(k4)

computation. This is beneficial for any repeat with λ non-overlapping occurrences,

such that λ > �k2

�−k2 .
8. We show how to implement our algorithms in parallel, achieving slightly better

results in comparison to a fully parallel implementation of VA that does not exploit
repetitions.
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Roadmap The rest of the paper is organized as follows. In Sect. 2 we give a uni-
fied presentation of the HMM dynamic programming. We then show in Sect. 3 how
these algorithms can be improved by identifying repeated substrings. Five different
implementations of this general idea are presented in Sect. 4. Section 5 discusses the
recovery of the optimal state-path. In Sect. 6 we show how to adapt the algorithms
to the training problem. A parallel implementation of our algorithms is described in
Sect. 7, and experimental results are presented in Sect. 8. We summarize and discuss
future work in Sect. 9.

2 Preliminaries

Let � denote a finite alphabet and let X ∈ �n, X = x1, x2, . . . , xn be a sequence of
observed letters. A Markov model is a set of k states, along with emission probabili-
ties ek(σ )—the probability to observe σ ∈ � given that the state is k, and transition
probabilities Pi,j —the probability to make a transition to state i from state j .

The Viterbi Algorithm The Viterbi algorithm (VA) finds the most probable sequence
of hidden states given the model and the observed sequence, i.e., the sequence of
states s1, s2, . . . , sn which maximize

n∏

i=1

esi (xi)Psi ,si−1 . (1)

The dynamic program of VA calculates a vector vt [i] which is the probability of the
most probable sequence of states emitting x1, . . . , xt and ending with the state i at
time t . v0 is usually taken to be the vector of uniform probabilities (i.e., v0[i] = 1

k
).

vt+1 is calculated from vt according to

vt+1[i] = ei(xt+1) · max
j

{Pi,j · vt [j ]}. (2)

Definition 1 (Viterbi Step) We call the computation of vt+1 from vt a Viterbi step.

Clearly, each Viterbi step requires O(k2) time. Therefore, the total runtime required
to compute the vector vn is O(nk2). The probability of the most likely sequence
of states is the maximal element in vn. The actual sequence of states can be then
reconstructed in linear time.

It is useful for our purposes to rewrite VA in a slightly different way. Let Mσ be a
k × k matrix with elements Mσ

i,j = ei(σ ) · Pi,j . We can now express vn as:

vn = Mxn � Mxn−1 � · · · � Mx2 � Mx1 � v0, (3)

where (A � B)i,j = maxk{Ai,k · Bk,j } is the so called max-times matrix multiplica-
tion. Similar notation was already considered in the past. In [18], for example, writing
VA as a linear vector recursion allowed the authors to employ parallel processing and
pipelining techniques in the context of VLSI and systolic arrays.
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Fig. 2 The VA dynamic program table on sequence X = x1, x2, . . . , x13 and states 1,2,3,4,5,6. The
marked cell corresponds to v8[4] = e4(x8) · max{P4,1 · v7[1],P4,2 · v7[2], . . . ,P4,6 · v7[6]}

VA computes vn using (3) from right to left in O(nk2) time. Notice that if (3)
is evaluated from left to right the computation would take O(nk3) time (matrix-
vector multiplication vs. matrix-matrix multiplication). Throughout, we assume that
the max-times matrix-matrix multiplications are done naïvely in O(k3). Faster meth-
ods for max-times matrix multiplication [12, 13] and standard matrix multiplication
[15, 39] can be used to reduce the k3 term. However, for small values of k this is not
profitable.

The Forward-Backward Algorithms The forward-backward algorithms are closely
related to VA and are based on very similar dynamic programming. In contrast to
VA, these algorithms apply standard matrix multiplication instead of max-times mul-
tiplication. The forward algorithm calculates ft [i], the probability to observe the se-
quence x1, x2, . . . , xt requiring that st = i as follows:

ft = Mxt · Mxt−1 · · · · · Mx2 · Mx1 · f0. (4)

The backward algorithm calculates bt [i], the probability to observe the sequence
xt+1, xt+2, . . . , xn given that st = i as follows:

bt = bn · Mxn · Mxn−1 · · · · · Mxt+2 · Mxt+1 . (5)

Another algorithm which is used in the training stage and employs the forward-
backward algorithm as a subroutine, is the Baum-Welch algorithm, to be further dis-
cussed in Sect. 6.

3 Exploiting Repeated Substrings in the Decoding Stage

Consider a substring W = w1,w2, . . . ,w� of X, and define

M(W) = Mw� � Mw�−1 � · · · � Mw2 � Mw1 . (6)

Intuitively, Mi,j (W) is the probability of the most likely path starting with state j ,
making a transition into some other state, emitting w1, then making a transition into
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yet another state and emitting w2 and so on until making a final transition into state i

and emitting w�.
In the core of our method stands the following observation, which is immediate

from the associative nature of matrix multiplication.

Observation 1 We may replace any occurrence of Mw� �Mw�−1 �· · ·�Mw1 in (3)
with M(W).

The application of observation 1 to the computation of (3) saves �−1 Viterbi steps
each time W appears in X, but incurs the additional cost of computing M(W) once.

An Intuitive Exercise Let λ denote the number of times a given word W appears,
in non-overlapping occurrences, in the input string X. Suppose we naïvely compute
M(W) using (|W |−1) max-times matrix multiplications, and then apply observation
1 to all occurrences of W before running VA. We gain some speedup in doing so if

(|W | − 1)k3 + λk2 < λ|W |k2,

λ > k.
(7)

Hence, if there are at least k non-overlapping occurrences of W in the input sequence,
then it is worthwhile to naïvely precompute M(W), regardless of its size |W |.

Definition 2 (Good Substring) We call a substring W good if we decide to compute
M(W).

We can now give a general four-step framework of our method:

(I) Dictionary Selection: choose the set D = {Wi} of good substrings.
(II) Encoding: precompute the matrices M(Wi) for every Wi ∈ D.

(III) Parsing: partition the input sequence X into consecutive good substrings X =
Wi1Wi2 · · ·Win′′ and let X′ denote the compressed representation of this parsing
of X, such that X′ = i1i2 · · · in′′ .

(IV) Propagation: run VA on X′, using the matrices M(Wi).

The above framework introduces the challenge of how to select the set of good
substrings (step I) and how to efficiently compute their matrices (step II). In the next
section we show how the RLE, LZ78, SLP and BPE compression schemes can be
applied to address this challenge, and how the above framework can be utilized to
exploit repetitions of all sufficiently small substrings (this is similar to the Four Rus-
sians method). In practice, the choice of the appropriate compression scheme should
be made according to the nature of the observed sequences. For example, genomic
sequences tend to compress well with BPE [37] and binary images in facsimile or in
optical character recognition [1–3, 10, 27, 30] are well compressed by RLE. LZ78
guarantees asymptotic compression for any sequence and is useful in cases such as
the CpG islands [7] identification problem in DNA sequences [14, 17], where k is
smaller than logn. (The interested reader is referred to Sect. 8 for a brief discussion
of this application.)
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Another challenge is how to parse the sequence X (step III) in order to maximize
acceleration. We show that, surprisingly, this optimal parsing may differ from the
initial parsing induced by the selected compression scheme. To our knowledge, this
feature was not applied by previous “acceleration by compression” algorithms.

Throughout this paper we focus on computing path probabilities rather than the
paths themselves. The actual paths can be reconstructed in linear time as described in
Sect. 5.

4 Five Different Implementations of the General Framework

4.1 Acceleration Via the Four Russians Method

The most naïve approach is probably using all possible substrings of sufficiently small
length � as good ones. This approach is quite similar to the Four Russians method [4],
and leads to a �(logn) asymptotic speedup.

(I) Dictionary Selection: all possible strings of length � over alphabet |�| are good
substrings.

(II) Encoding: For i = 2, . . . , �, compute M(W) for all strings W with length i by
computing M(W ′) � M(σ), where W = W ′σ for some previously computed
string W ′ of length i − 1 and some letter σ ∈ �.

(III) Parsing: X′ is constructed by splitting the input X into blocks of length �.
(IV) Propagation: run VA on X′, using the matrices M(Wi) as described in Sect. 3.

Time and Space Complexity The encoding step takes O(2|�|�k3) time as we com-
pute O(2|�|�) matrices and each matrix is computed in O(k3) time by a sin-

gle max-times multiplication. The propagation step takes O(nk2

�
) time resulting in

an overall running time of O(2|�|�k3 + nk2

�
). Choosing � = 1

2 log|�|(n), the run-

ning time is O(2
√

nk3 + 2nk2

log|�|(n)
). This yields a speedup of �(logn) compared

to VA, assuming that k <
√

n
log|�|(n)

. In fact, the optimal length is approximately

� = logn−log logn−log k−1
log |�| , since then the preprocessing and the propagation times are

roughly equal. This yields a �(�) = �(logn) speedup, provided that � > 2, or equiv-
alently that k < n

2|�|2 logn
. Note that for large k the speedup can be further improved

using fast matrix multiplication [12, 15, 39].

4.2 Acceleration Via Run-length Encoding

In this section we obtain an �( r
log r

) speedup for decoding an observed sequence with
run-length compression ratio r . A string S is run-length encoded if it is described as
an ordered sequence of pairs (σ, i), often denoted “σ i”. Each pair corresponds to a
run in S, consisting of i consecutive occurrences of the character σ . For example,
the string aaabbcccccc is encoded as a3b2c6. Run-length encoding serves as a pop-
ular image compression technique, since many classes of images (e.g., binary images
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in facsimile transmission or for use in optical character recognition) typically con-
tain large patches of identically-valued pixels. The four-step framework described in
Sect. 3 is applied as follows.

(I) Dictionary Selection: for every σ ∈ � and every i = 1,2, . . . , logn we choose
σ 2i

as a good substring.
(II) Encoding: since M(σ 2i

) = M(σ 2i−1
)�M(σ 2i−1

), we can compute the matrices
using repeated squaring.

(III) Parsing: Let W1W2 · · ·Wn′ be the RLE of X, where each Wi is a run of some
σ ∈ �. X′ is obtained by further parsing each Wi into at most log |Wi | good
substrings of the form σ 2j

.
(IV) Propagation: run VA on X′, as described in Sect. 3.

Time and Space Complexity The offline preprocessing stage consists of steps I and
II. The time complexity of step II is O(|�|k3 logn) by applying max-times repeated
squaring in O(k3) time per multiplication. The space complexity is O(|�|k2 logn).
This work is done offline once, during the training stage, in advance for all se-
quences to come. Furthermore, for typical applications, the O(|�|k3 logn) term is
much smaller than the O(nk2) term of VA.

Steps III and IV both apply one operation per occurrence of a good substring in X′:
step III computes, in constant time, the index of the next parsing-comma, and step IV
applies a single Viterbi step in k2 time. Since |X′| = ∑n′

i=1 log |Wi |, the complexity
is

n′∑

i=1

k2 log |Wi | = k2 log(|W1| · |W2| · · · |Wn′ |) ≤ k2 log((n/n′)n′
) = O

(
n′k2 log

n

n′

)
.

Thus, the speedup compared to the O(nk2) time of VA is �(
n
n′

log n
n′

) = �( r
log r

).

4.3 Acceleration Via LZ78 Parsing

In this section we obtain an �(
logn

k
) speedup for decoding, and a constant speedup

in the case where k > logn. We show how to use the LZ78 [41] parsing to find good
substrings and how to use the incremental nature of the LZ78 parse to compute M(W)

for a good substring W in O(k3) time.
LZ78 parses the string X into substrings ( LZ78-words) in a single pass over X.

Each LZ78-word is composed of the longest LZ78-word previously seen plus a single
letter. More formally, LZ78 begins with an empty dictionary and parses according
to the following rule: when parsing location i, look for the longest LZ78-word W

starting at position i which already appears in the dictionary. Read one more letter
σ and insert Wσ into the dictionary. Continue parsing from position i + |W | + 1.
For example, the string “AACGACG” is parsed into four words: A, AC, G, ACG.
Asymptotically, LZ78 parses a string of length n into O(hn/ logn) words [41], where
0 ≤ h ≤ 1 is the entropy of the string. The LZ78 parse is performed in linear time by
maintaining the dictionary in a trie. Each node in the trie corresponds to an LZ78-
word. The four-step framework described in Sect. 3 is applied as follows.
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(III) Dictionary Selection: the good substrings are all the LZ78-words in the LZ78-
parse of X.

(II) Encoding: construct the matrices incrementally, according to their order in the
LZ78-trie, M(Wσ) = M(W) � Mσ .

(III) Parsing: X′ is the LZ78-parsing of X.
(IV) Propagation: run VA on X′, as described in Sect. 3.

Time and Space Complexity Steps I and III were already conducted offline during
the pre-processing compression of the input sequences (in any case LZ78 parsing is
linear). In step II, computing M(Wσ) = M(W)�Mσ , takes O(k3) time since M(W)

was already computed for the good substring W . Since there are O(n/ logn) LZ78-
words, calculating the matrices M(W) for all W s takes O(k3n/ logn). Running VA
on X′ (step IV) takes just O(k2n/ logn) time. Therefore, the overall runtime is dom-
inated by O(k3n/ logn). The space complexity is O(k2n/ logn).

The above algorithm is useful in many applications, such as CpG island classifi-
cation (see Sect. 8), where k < logn. However, in those applications where k > logn

such an algorithm may actually slow down VA.
We next show an adaptive variant that is guaranteed to speed up VA, regardless

of the values of n and k. This graceful degradation retains the asymptotic �(
logn

k
)

acceleration when k < logn.

4.4 An Improved Algorithm with LZ78 Parsing

Recall that given M(W) for a good substring W , it takes k3 time to calculate M(Wσ).
This calculation saves k2 operations each time Wσ occurs in X in comparison to
the situation where only M(W) is computed. Therefore, in step I we should include
in D, as good substrings, only words that appear as a prefix of at least k LZ78-
words. Finding these words can be done in a single traversal of the trie. The following
observation is immediate from the prefix monotonicity of occurrence tries.

Observation 2 Words that appear as a prefix of at least k LZ78-words are repre-
sented by trie nodes whose subtrees contain at least k nodes.

In the previous case it was straightforward to transform X into X′, since each phrase
p in the parsed sequence corresponded to a good substring. Now, however, X does not
divide into just good substrings and it is unclear what is the optimal way to construct
X′ (in step III). Our approach for constructing X′ is to first parse X into all LZ78-
words and then apply the following greedy parsing to each LZ78-word W : using the
trie, find the longest good substring w′ ∈ D that is a prefix of W , place a parsing
comma immediately after w′ and repeat the process for the remainder of W .

Time and Space Complexity The improved algorithm utilizes substrings that guar-
antee acceleration (with respect to VA) so it is therefore faster than VA even when
k = �(logn). In addition, in spite of the fact that this algorithm re-parses the original
LZ78 partition, the algorithm still guarantees an �(

logn
k

) speedup over VA as shown
by the following lemma.
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Lemma 1 The running time of the above algorithm is bounded by O(k3n/logn).

Proof The running time of step II is at most O(k3n/ logn). This is because the size of
the entire LZ78-trie is O(n/ logn) and we construct the matrices, in O(k3) time each,
for just a subset of the trie nodes. The running time of step IV depends on the number
of new phrases (commas) that result from the re-parsing of each LZ78-word W . We
next prove that this number is at most k for each word.

Consider the first iteration of the greedy procedure on some LZ78-word W . Let
w′ be the longest prefix of W that is represented by a trie node with at least k de-
scendants. Assume, contrary to fact, that |W | − |w′| > k. This means that w′′, the
child of w′, satisfies |W | − |w′′| ≥ k, in contradiction to the definition of w′. We
have established that |W | − |w′| ≤ k and therefore the number of re-parsed words is
bounded by k + 1. The propagation step IV thus takes O(k3) time for each one of the
O(n/ logn) LZ78-words. So the total time complexity remains O(k3n/ logn). �

Based on Lemma 1, and assuming that steps I and III are pre-computed offline, the
running time of the above algorithm is O(nk2/e) where e = �(max(1,

logn
k

)). The
space complexity is O(k2n/ logn).

4.5 Acceleration Via Straight-Line Programs

In this subsection we show that if an input sequence has a grammar representation
with compression ratio r , then HMM decoding can be accelerated by a factor of
�( r

k
).

Let us shortly recall the grammar-based approach to compression. A straight-line
program (SLP) is a context-free grammar generating exactly one string. Moreover,
only two types of productions are allowed: Xi → a and Xi → XpXq with i > p,q .
The string represented by a given SLP is a unique text corresponding to the last
nonterminal Xz. We say that the size of an SLP is equal to its number of productions.

Example 1 Consider the string abaababaabaab. It could be generated by the fol-
lowing SLP:

X1 → b

X2 → a

X3 → X2X1
X4 → X3X2
X5 → X4X3
X6 → X5X4
X7 → X6X5

Rytter [35] proved that the resulting encoding of most popular compression
schemes can be transformed to straight-line programs quickly and without large
expansion. In particular, consider an LZ77 encoding [42] with n′′ blocks for a
text of length n. Rytter’s algorithm produces an SLP-representation with size n′ =
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O(n′′ logn) of the same text, in O(n′) time. Moreover, n′ lies within a logn factor
from the size of a minimal SLP describing the same text. Note also that any text com-
pressed by the LZ78-LZW encoding can be transformed directly into a straight-line
program within a constant factor. However, here we focus our SLP example on LZ77
encoding since in certain cases LZ77 is exponentially shorter than LZ78, so even with
the logn degradation associated with transforming LZ77 into an SLP, we may still
get an exponential speedup over LZ78 from section 4.4.

We next describe how to use SLP to achieve the speedup.

(I) Dictionary Selection: let X be an SLP representation of the input sequence.
We choose all strings corresponding to nonterminals X1, . . . ,Xn′ as good sub-
strings.

(II) Encoding: compute M(Xi) in the same order as in X . Every concatenating rule
requires just one max-times multiplication.

(III) Parsing: Trivial (the input is represented by the single matrix representing Xn′ ).
(IV) Propagation: vt = M(Xn′) � v0.

Time and Space Complexity Let n′ be the number of rules in the SLP constructed
in the parsing step (r = n/n′ is the ratio of the grammar-based compression). The
parsing step has an O(n) time complexity and is computed offline. The number of
max-times multiplications in the encoding step is n′. Therefore, the overall complex-
ity of decoding the HMM is n′k3, leading to a speedup factor of �( r

k
).

In the next section we give another example of a grammar-based compression
scheme where the size of the uncompressed text may grow exponentially with re-
spect to its description, and that furthermore allows, in practice, to shift the Encoding
Step (III) to an off-line preprocessing stage, thus yielding a speedup factor of �(r).

4.6 Acceleration Via Byte-Pair Encoding

In this section byte pair encoding is utilized to accelerate the Viterbi decoding com-
putations by a factor of �(r), where n′ is the number of characters in the BPE-
compressed sequence X and r = n/n′ is the BPE compression ratio of the sequence.
The corresponding pre-processing term for encoding is O(|�′|k3), where �′ denotes
the set of character codes in the extended alphabet.

Byte pair encoding [19, 36, 37] is a simple form of data compression in which
the most common pair of consecutive bytes of data is replaced with a byte that does
not occur within that data. This operation is repeated until either all new characters
are used up or no pair of consecutive two characters appears frequently in the sub-
stituted text. For example, the input string ABABCABCD could be BPE encoded
to XYYD, by applying the following two substitution operations: First AB → X,
yielding XXCXCD, and then XC → Y . A substitution table, which stores for each
character code the replacement it represents, is required to rebuild the original data.
The compression ratio of BPE has been shown to be about 30% for biological se-
quences [37].

The compression time of BPE is O(|�′|n). Alternatively, one could follow the
approach of Shibata et al. [36, 37], and construct the substitution-table offline, during
system set-up, based on a sufficient set of representative sequences. Then, using this
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pre-constructed substitution table, the sequence parsing can be done in time linear in
the total length of the original and the substituted text. Let σ ∈ �′ and let Wσ denote
the word represented by σ in the BPE substitution table. The four-step framework
described in Sect. 3 is applied as follows.

(I) Dictionary Selection: all words appearing in the BPE substitution table are good
substrings, i.e. D = {Wσ } for all σ ∈ �′.

(II) Encoding: if σ is a substring obtained via the substitution operation AB → σ

then

M(Wσ ) = M(WA) � M(WB).

So each matrix can be computed by multiplying two previously computed ma-
trices.

(III) Parsing: given an input sequence X, apply BPE parsing as described in [36, 37].
(IV) Propagation: run VA on X′, using the matrices M(Wi) as described in Sect. 3.

Time and Space Complexity Step I was already taken care of during the system-
setup stage and therefore does not count in the analysis. Step II is implemented as an
offline, preprocessing stage that is independent of the observed sequence X but de-
pendent on the training model. It can therefore be conducted once in advance, for all
sequences to come. The time complexity of this off-line stage is O(|�′|k3) since each
matrix is computed by one max-times matrix multiplication in O(k3) time. The space
complexity is O(|�′|k2). Since we assume Step III is conducted in pre-compression,
the compressed decoding algorithm consists of just Step IV. In the propagation step
(IV), given an input sequence of size n, compressed into its BPE-encoding of size n′
(e.g. n′ = 4 in the above example, where X = ABABCABCD and X′ = XYYD),
we run VA using at most n′ matrices. Since each VA step takes k2 time, the time
complexity of this step is O(n′k2). Thus, the time complexity of the BPE-compressed
decoding is O(n′k2) and the speedup, compared to the O(nk2) time of VA, is �(r).

5 Optimal State-Path Recovery

In this section we show how our decoding algorithms can trace back the optimal
path, within the same space complexity and in O(n) time. To do the traceback, VA
keeps, along with the vector vt (see (2)), a vector of the maximizing arguments of (2),
namely:

ut+1[i] = argmaxj {Pi,j · vt [j ]}. (8)

It then traces the states of the most likely path in reverse order. The last state sn is
simply the largest element in vn, argmaxj {vn[j ]}. The rest of the states are obtained
from the vectors u by st−1 = ut [st ]. We use exactly the same mechanism in the prop-
agation step (IV) of our algorithm. The problem is that in our case, this only retrieves
the states on the boundaries of good substrings but not the states within each good
substring. We solve this problem in a similar manner.

Note that in all of our decoding algorithms every good substring W is such that
W = WAWB where both WA and WB are either good substrings or single letters.
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In LZ78-accelerated decoding, WB is a single letter, when using RLE WA = WB =
σ |W |/2, SLP consists just of production rules involving a single letter or exactly two
non-terminals, and with BPE WA,WB ∈ �′. For this reason, we keep, along with the
matrix M(W), a matrix R(W) whose elements are:

R(W)i,j = argmaxk{M(WA)i,k � M(WB)k,j }. (9)

Now, for each occurrence of a good substring W = w1,w2, . . . ,w� we can recon-
struct the most likely sequence of states s1, s2, . . . s� as follows. From the partial
traceback, using the vectors u, we know the two states s0 and s�, such that s0 is the
most likely state immediately before w1 was generated and s� is the most likely state
when w� was generated. We find the intermediate states by recursive application of
the computation s|WA| = R(W)s0,s� .

Time and Space Complexity In all compression schemes, the overall time required
for tracing back the most likely path is O(n). Storing the matrices R does not increase
the basic space complexity, since we already stored the similar-sized matrices M(W).

6 The Training Problem

In the training problem we are given as input the number of states in the HMM and
an observed training sequence X. The aim is to find a set of model parameters θ (i.e.,
the emission and transition probabilities) that maximize the likelihood to observe the
given sequence P(X| θ). The most commonly used training algorithms for HMMs
are based on the concept of Expectation Maximization. This is an iterative process
in which each iteration is composed of two steps. The first step solves the decoding
problem given the current model parameters. The second step uses the results of
the decoding process to update the model parameters. These iterative processes are
guaranteed to converge to a local maximum. It is important to note that since the
dictionary selection step (I) and the parsing step (III) of our algorithm are independent
of the model parameters, we only need run them once, and repeat just the encoding
step (II) and the propagation step (IV) when the decoding process is performed in
each iteration.

6.1 Viterbi Training

The first step of Viterbi training [17] uses VA to find the most likely sequence of
states given the current set of parameters (i.e., decoding). Let Aij denote the number
of times the state i follows the state j in the most likely sequence of states. Similarly,
let Ei(σ ) denote the number of times the letter σ is emitted by the state i in the most
likely sequence. The updated parameters are given by:

Pij = Aij∑
i′ Ai′j

and ei(σ ) = Ei(σ )∑
σ ′ Ei(σ ′)

. (10)

Note that the Viterbi training algorithm does not converge to the set of parameters
that maximizes the likelihood to observe the given sequence P(X| θ), but rather the
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set of parameters that locally maximizes the contribution to the likelihood from the
most probable sequence of states [17]. It is easy to see that the time complexity of
each Viterbi training iteration is O(k2n + n) = O(k2n) so it is dominated by the
running time of VA. Therefore, we can immediately apply our compressed decoding
algorithms from Sect. 4 to obtain a better running time per iteration.

6.2 Baum-Welch Training

The Baum-Welch training algorithm converges to a set of parameters that maximizes
the likelihood to observe the given sequence P(X| θ), and is the most commonly used
method for model training. Recall the forward-backward matrices: ft [i] is the prob-
ability to observe the sequence x1, x2, . . . , xt requiring that the t’th state is i and that
bt [i] is the probability to observe the sequence xt+1, xt+2, . . . , xn given that the t’th
state is i. The first step of Baum-Welch calculates ft [i] and bt [i] for every 1 ≤ t ≤ n

and every 1 ≤ i ≤ k. This is achieved by applying the forward and backward algo-
rithms to the input data in O(nk2) time (see (4) and (5)). The second step recalculates
A and E according to

Ai,j =
∑

t

P (st = j, st+1 = i|X,θ),

Ei(σ ) =
∑

t |xt=σ

P (st = i|X,θ),
(11)

where P(st = j, st+1 = i|X,θ) is the probability that a transition from state j to state
i occurred in position t in the sequence X, and P(st = i|X,θ) is the probability for
the t’th state to be i in the sequence X. These probabilities are calculated as follows
using the matrices ft [i] and bt [i] that were computed in the first step.

P(st = j, st+1 = i|X,θ) is given by the product of the probabilities to be in state j

after emitting x1, x2, . . . , xt , to make a transition from state j to state i, to emit xt+1
at state i and to emit the rest of X given that the state is i:

P(st = j, st+1 = i|X,θ) = ft [j ] · Pi,j · ei(xt+1) · bt+1[i]
P(X| θ)

, (12)

where the division by P(X| θ) = ∑
i fn[i] is a normalization by the probability to

observe X given the current model parameters. Similarly

P(st = i|X,θ) = ft [i] · bt [i]
P(X| θ)

. (13)

Finally, after the matrices A and E are recalculated, Baum-Welch updates the
model parameters according to (10).

We next describe how to accelerate the Baum-Welch algorithm. It is important
to notice that, in the first step of Baum-Welch, our algorithms to accelerate VA
(Sects. 4.2 and 4.3) can be used to accelerate the forward-backward algorithms by
simply replacing the max-times matrix multiplication with regular matrix multipli-
cation. However, the accelerated forward-backward algorithms will only calculate ft

and bt on the boundaries of good substrings. In what follows, we explain how to
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Fig. 3 The contribution of an occurrence of the good string W to A12, computed as the some of the arrow
probabilities

solve this problem and speed up the second step of Baum-Welch as well. We focus
on updating the matrix A, updating the matrix E can be done in a similar fashion.

We observe that when accumulating the contribution of some appearance of a good
substring W to A, Baum-Welch performs O(k2|W |) operations, but updates at most
k2 entries (the size of A). Therefore, we may gain a speedup by precalculating the
contribution of each good substring to A and E. More formally, let W = w1w2 · · ·w�

be a substring of the observed sequence X starting s characters from the beginning
(i.e., W = xs+1xs+2 · · ·xs+� as illustrated in Fig. 3). According to (11) and (12), the
contribution of this occurrence of W to Aij is:

s+�−1∑

t=s

ft [j ] · Pi,j · ei(xt+1) · bt+1[i]
P(X| θ)

= 1

P(X| θ)

�−1∑

t=0

ft+s[j ] · Pij · ei(wt+1) · bt+s+1[i].

However, by (4) we have

ft+s = Mxt+s · Mxt+s−1 · · ·Mx1 · f0

= Mxt+s · Mxt+s−1 · · ·Mxs+1 · fs

= Mwt · Mwt−1 · · ·Mw1 · fs

and similarly by (5) bt+s+1 = bs+� · Mw� · Mw�−1 · · ·Mwt+2 . The above sum thus
equals

1

P(X| θ)

�−1∑

t=0

(Mwt Mwt−1 · · ·Mw1 · fs)j · Pij · ei(wt+1) · (bs+� · Mw�Mw�−1 · · ·Mwt+2)i

= 1

P(X| θ)

�−1∑

t=0

k∑

α=1

(Mwt Mwt−1 · · ·Mw1 )j,α · fs [α] · Pij · ei(wt+1)
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·
k∑

β=1

bs+�[β] · (Mw�Mw�−1 · · ·Mwt+2)β,i

=
k∑

α=1

k∑

β=1

fs [α] · bs+�[β]

· 1

P(X| θ)

�−1∑

t=0

(Mwt Mwt−1 · · ·Mw1)j,α · Pij · ei(wt+1) · (Mw�Mw�−1 · · ·Mwt+2)β,i

︸ ︷︷ ︸
R

αβ
ij

≡
k∑

α=1

k∑

β=1

fs [α] · bs+�[β] · Rαβ
ij

. (14)

Notice that the four dimensional array R
αβ
ij can be computed in an encoding step (II)

in O(�k4) time and is not dependant on the string context prior to Xs or following
Xs+�. Furthermore, the vectors fs and bs+� where already computed in the first step
of Baum-Welch since they refer to boundaries of a good substring. Therefore, R can
be used according to (14) to update Aij for a single occurrence of W and for some
specific i and j in O(k2) time. So R can be used to update Aij for a single occurrence
of W and for every i, j in O(k4) time. To get a speedup we need λ, the number of
times the good substring W appears in X to satisfy:

�k4 + λk4 < λ�k2,

λ >
�k2

� − k2
.

(15)

This is reasonable if k is small. If � = 2k2, for example, then we need λ to be greater
than 2k2. In the CpG islands problem (see Sect. 8), if k = 2 then any substrings of
length eight is good if it appears more than eight times in the text.

7 Parallelization

In this section we discuss the possibility of a parallel implementation of our algo-
rithms. We first note that the classical formulation of the decoding algorithms by the
basic recursion in (2) imposes a constraint on a parallel implementation. It is possible
to compute the maximum in (2) in parallel, and eliminate the linear dependency on k,
the number of states. However, the dependency of vt+1 on vt makes it difficult to
avoid the dependency of the running time on n, the length of the input.

Once VA is cast into the form of (3), it is easy to achieve full parallelization, both
with respect to the number of states in the model and with respect to the length of
the input. Similar ideas were previously considered in [18, 26] in the context of
VLSI architectures for Viterbi decoders in data communications. Even though the
basic ideas appear in [18, 26], we did not find in the literature an explicit description
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and analysis of a fully parallel VA algorithm. We therefore describe parallel VA,
both with and without exploiting repetitions. We describe and analyze the general
idea in the CREW (Concurrent Read, Exclusive Write) PRAM model for the Four-
Russians variant of our method. The same approach applies to the other algorithms
described above with the exception of the SLP-based algorithm, assuming that the
parsing step (III) is performed in advance.

Our algorithms, as well as VA in the form of (3), are essentially a sequence of ma-
trix multiplications (either max-times or regular matrix multiplication) which may be
evaluated in any order. The product of two k-by-k matrices can be easily computed in
parallel in O(log k) time using O(k3) processors. Any parallel matrix multiplication
algorithm can be used. For completeness, we briefly describe a very naïve and simple
algorithm. The basic building block is an EREW computation of the maximum (or
sum) of k elements in O(log k) time. This computation can be done in �logk� steps.
At the first step we use k/2 processors to compute the k/2 maxima of each consec-
utive non overlapping pair of input elements. We then recurse on the output. After
at most �logk� steps we obtain the global maximum. To compute the product of two
matrices, perform this procedure in parallel for each of the k2 entries of the output ma-
trix (this is where concurrent reads are used). The product of x k-by-k matrices can
therefore be calculated in parallel in O(logx logk) time using O(xk3) processors.
Therefore, VA in the form of (3) can be performed in parallel. The maximal number
of processors used concurrently is O(nk3), and the running time is O(logn logk).
For our Four-Russians algorithm, we first compute in parallel all possible matrices
for words of length 1

2 log|�|(n). This corresponds to step (II) of the algorithm. Next,

we perform step (IV) by computing, in parallel, the product of 2n
log|�|(n)

matrices. The

maximal number of processors used concurrently along this computation is O( nk3

logn
),

and the running time is O(log n
logn

log k) = O(logn logk). As can be seen, this does
not improve the asymptotic running time, but does decrease the required number of
processors. It should be noted that if the number of processors is bounded (as as-
sumed in [18, 26]), then exploiting repetitions does improve the asymptotic running
time. Tracing the optimal path can also be done in parallel using O(n) processors in
O(logn) time in both cases.

8 Experimental Results

Hidden Markov models (HMMs) have been successfully applied to a variety of prob-
lems in molecular biology, ranging from alignment problems to gene finding and an-
notation [8, 20, 24, 33, 34, 38]. Therefore, in this section we demonstrate the practical
advantages of our approach in speeding up HMM-based applications for genomic se-
quence analysis. A simple example of such an application, which is often taught in
computational biology classes, is that of CpG island identification. CpG islands [7]
are regions of DNA with a large concentration of the nucleotide pair CG. These re-
gions are typically a few hundred to a few thousand nucleotides long, located around
the promoters of many genes. As such, they are useful landmarks for the identifica-
tion of genes. The observed sequence (X) is a long DNA sequence composed of four
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possible nucleotides (� = {A,C,G,T }). The length of this sequence is typically a
few millions nucleotides (n  225). A well-studied classification problem is that of
parsing a given DNA sequence into CpG islands and non CpG regions. Previous work
on CpG island classification used Markov models with either 8 or 2 states (k = 8 or
k = 2) [14, 17].

We implemented both our improved LZ78-compressed algorithm from Sect. 4.4
and classical VA in C++ and compared their execution times on a sequence of approx-
imately 22,000,000 nucleotides from the human Y chromosome and on a sequence
of approximately 1,500,000 nucleotides from chromosome 4 of S. Cerevisiae ob-
tained from the UCSC genome database. The benchmarks were performed on a sin-
gle processor of a SunFire V880 server with 8 UltraSPARC-IV processors and 16 GB
main memory. The implementation is just for calculating the probability of the most
likely sequence of states, and does not trace back the optimal sequence itself. As we
have seen, this is the time consuming part of the algorithm. We measured the running
times for different values of k. In practice we found that the simple implementation
of our algorithm (choosing all LZ78-words as good substrings) is a little slower than
the regular VA implementation. However, an implementation of the refined algorithm
(choosing just LZ78-words that appear as a prefix of more than k LZ78-words) per-
forms roughly five times faster than VA. The fastest variant of our algorithm uses as
good substrings all LZ78-words that appear as a prefix of more than a threshold of
the LZ78-words. The optimal threshold is dynamically computed in the parsing step
(III) of our algorithm.

Unlike the procedure described in Sect. 4.3, this variant parses X into good sub-
strings by applying the greedy procedure from Sect. 4.3 to the entire sequence X,
rather than to each LZ78-word individually. As we explained in the previous sections
we are only interested in the running time of the encoding and propagation steps (II
and IV) since the combined parsing/dictionary-selections steps (I and III) may be
performed in advance and are not repeated by the training and decoding algorithms.
A comparison of the running time of steps II and IV of this variant to the running
time of the corresponding calculation by VA is shown in Fig. 4.

Fig. 4 Comparison of the
cumulative running time of steps
II and IV of our algorithm
(marked x) with the running
time of VA (marked o), for
different values of k. Time is
shown in arbitrary units on a
logarithmic scale. Runs on the
1.5 Mbp chromosome 4 of S.
cerevisiae are in solid lines.
Runs on the 22 Mbp human
Y-chromosome are in dotted
lines. The roughly uniform
difference between
corresponding pairs of curves
reflects a speedup factor of more
than five
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As k becomes larger, the optimal threshold and the number of good substrings
decreases. Our algorithm performs faster than VA even for surprisingly large values
of k. For example, for k = 60 our algorithm is roughly three times faster than VA. It
is very likely that by using better heuristics for identifying good substrings one can
get even faster implementations.

9 Conclusions and Future Work

In this paper we described a method for speeding up dynamic program algorithms
used for solving HMM decoding and training. By utilizing repeated substrings in the
observed input sequence, we presented the first provable speedups of the well known
Viterbi algorithm. We based the identification of repeated substrings alternatively on
the Four Russians method, and compression schemes such as RLE, LZ78, SLP and
BPE. Our algorithms are faster than Viterbi in practice, and highly parallelizable.

Naturally, it would be interesting to apply our results to other compression
schemes. Other promising directions for future work include extending our results to
higher order HMMs, HMMs with numerical observables [23], hierarchical HMMs,
infinite alphabet size, and sparse transition matrices.
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