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Abstract. In many practical applications, the task is to optimize a non-linear objective
function over the vertices of a well-studied polytope as, e.g., the matching polytope or
the travelling salesman polytope (TSP). Prominent examples are the quadratic assignment
problem and the quadratic knapsack problem; further applications occur in various areas
such as production planning or automatic graph drawing. In order to apply branch-and-cut
methods for the exact solution of such problems, the objective function has to be linearized.
However, the standard linearization usually leads to very weak relaxations. On the other
hand, problem-specific polyhedral studies are often time-consuming. Our goal is the design
of general separation routines that can replace detailed polyhedral studies of the resulting
polytope and that can be used as a black box.
As unconstrained binary quadratic optimization is equivalent to the maximum cut problem,
knowledge about cut polytopes can be used in our setting. Other separation routines are
inspired by the local cuts that have been developed by Applegate, Bixby, Chvátal and Cook
for faster solution of large-scale traveling salesman instances. Finally, we apply quadratic
reformulations of the linear constraints as proposed by Helmberg, Rendl and Weismantel
for the quadratic knapsack problem.
By extensive experiments, we show that a suitable combination of these methods leads to
a drastical speedup in the solution of constrained quadratic 0–1 problems. We also discuss
possible generalizations of these methods to arbitrary non-linear objective functions.
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1 Introduction

Optimizing a linear objective function over binary variables under additional linear constraints is
NP-hard in general. One of the most successful frameworks for solving such problems is branch-
and-cut. In order to develop fast branch-and-cut algorithms, it is crucial to determine good outer
descriptions of the polytope P consisting of the convex hull of all feasible solutions of the problem at
hand. The branch-and-cut approach is well developed, and the facial description of many polytopes
corresponding to classical combinatorial optimization problems is well understood. For several
problems practically efficient implementations exist.

Instead of a linear objective function, we often desire to optimize a non-linear objective function
over the vertices of P . We consider problems where the non-linearities are locally defined, i.e., where
every non-linear term in the objective function depends on few variables. In this paper, we focus
on quadratic functions, so that every non-linear term is a product of only two variables. However,
the proposed methods can be adapted to general non-linear functions, as discussed later. The
easiest example of a binary quadratic optimization problem is the maximum cut problem, which
is equivalent to optimizing a degree-two polynomial over the hyper cube [8].

Many practical applications lead to non-linear objective functions in a natural way. Several
crossing minimization problems that arise in automatic graph drawing and VLSI design can be
modeled as quadratic optimization problems over linear ordering type polytopes. To give another
example, the tool switching problem arising in production planning can be solved by minimizing
a polynomial of degree three over a polytope that is closely related to the TSP.

In most integer programming based approaches to such non-linear 0–1 problems, the first step
is to linearize the objective function by introducing artificial variables that represent the non-
linear terms. This leads to the problem of optimizing the linearized objective function over some
polytope Q defined in a higher-dimensional space, instead of optimizing a non-linear objective
function over the original polytope P .

Clearly, all valid linear inequalities of P yield valid linear inequalities for Q. A naive branch-
and-cut approach for the optimization over Q would use the separation routines known for P ,
in combination with simple linear constraints modeling the connection between original and new
variables. According to our experience, the performance of such an approach is very weak. Often,
facet-inducing inequalities for P do not induce facets of Q, and the variables modeling non-linear
terms change the polyhedral structure significantly. This can even happen if only one product is
introduced and linearized.

In view of this, one could decide to undertake a polyhedral investigation of Q and try to
develop specialized separation routines. Doing this will – very probably – be time consuming.
Instead, much (human and computer) time could be saved by having some effective black-box
routines at hand that speed up the solution algorithms but need only very limited knowledge
about the problem structure. For quadratic problems, we provide such black-box routines and
show that they drastically improve the running time of the solution algorithms.

Assuming that P is well understood, we ask the following question: How can we exploit the
knowledge of P for optimizing over Q, without detailed polyhedral studies of Q? Even if the user
is willing to invest some specific knowledge of Q, he/she can still combine her own separation
strategies with our general methods outlined below. Moreover, the constraints produced by our
methods might give the user some more insight into the polyhedral structure of Q and point at
important classes of cutting planes, which could be separated right from the start, using tailored
separation algorithms.

We address the general separation problem from two complementary directions. First assume
that the objective function is quadratic. In case the problem is unconstrained, one can formulate
it as a maximum cut problem on an associated graph [8]. Even in the presence of constraints, valid
inequalities for the cut polytope remain valid for Q after transformation, and can be separated
using the same transformation. In several applications, the transformed constraints of P induce a
face of the corresponding cut polytope, which gives some theoretical evidence that the inequalities
derived from the cut polytope can be helpful. This approach can be generalized to arbitrary
non-linear objective functions using the constructions proposed in [5, 6].



On the other hand, we want to exploit the knowledge of the structure of the feasible solutions
in P . Our proposed separation routine is inspired by the local cuts that have been developed by
Applegate, Bixby, Chvátal and Cook (ABC2) [1]. With the help of local cuts, they could solve big
TSP instances being unsolved before. Recently, we proposed a variant of the local cut generation
procedure that has some advantageous features [4]. We call our cutting planes target cuts. The
main difference to the local cuts lies in a modified LP formulation that makes it possible to avoid
the time-consuming tilting steps, as always a facet of the projected polytope is determined that
can immediately be lifted to a valid inequality for Q.

For non-linear problems, the local or target cut approach is well-suited, as every non-linear
term is determined by the original variables, so that the number of vertices does not change
from P to Q. In particular, going from linear to non-linear objective functions does not slow down
the cut generation significantly. Another advantage of this approach is that the separation can
be implemented as a general framework that applies to all problems in this class. The user only
needs to input some information about the structure of the feasible solutions, which is much easier
than understanding the structure of the corresponding polytope. This approach can be applied to
arbitrary non-linear problems in which the non-linearities are locally defined.

Another general technique to strengthen a given LP relaxation corresponding to a quadratic
problem with linear constraints consists of a quadratic reformulation of the constraints. The idea
is to replace each linear constraint by an equivalent quadratic one. The latter can be linearized as
usual, using the present product variables or introducing new ones if necessary. Moreover, since
we assume variables to be binary, we can replace each square term x2 by the original variable x.
The latter replacement usually leads to a stronger relaxation than the one given by the original
linear constraints. Such quadratic replacements have been examined systematically by Helmberg
et al. [10] for the quadratic knapsack problem. They show experimentally that, in an SDP setting,
the reformulations lead to much stronger dual bounds. It turns out that the same holds in our IP
setting, and that these stronger bounds often lead to faster running times.

Our main contribution is to show that these three approaches are very easy to use and lead
to much better performance of general branch-and-cut approaches. By extensive computational
experiments we show that not only the number of nodes in the enumeration tree but also the
running time decreases dramatically, when compared to an algorithm that only uses the standard
separation routines for the well-studied polytope P .

For some classical quadratic 0–1 problems, such as the quadratic knapsack problem or the
quadratic assignment problem, special-purpose algorithms and implementations exist that exploit
the problem structure and lead to efficient algorithms. Clearly, we cannot compete with such
problem-specific approaches. In this work, we aim at designing general-purpose methods that help
improve the solution algorithms for quadratic problems for which not much is known about their
structure. In particular, the reference point for our evaluation is the basic approach using standard
linearization and separation for P .

The outline of this paper is as follows. We fix notation in Section 2. In Section 3, we discuss
cutting planes derived from the cut polytope. In Section 4, we introduce target cuts and their
usage in the context of quadratic problems. Subsequently, we discuss methods to replace linear
constraints by stronger quadratic ones in Section 5. In Section 6, we explain some motivating
applications: the quadratic matching problem in Section 6.1 and the quadratic linear ordering and
the linear arrangement problem in Section 6.2 and 6.3. In Section 7, we present experimental results
for these applications. Finally, in Section 8, we discuss possible generalizations of our techniques
to higher-degree polynomials and general non-linear objective functions.

A preliminary version of this paper appeared in the proceedings of WEA 2008 [3].

2 Definitions

Consider a combinatorial optimization problem on a finite set E with feasible solutions I ⊆ 2E

and with a linear objective function c(I) =
∑

e∈I ce, where ce ∈ R for all e ∈ E. Without loss of
generality, we desire to minimize c(I) over all I ∈ I. Let the polytope P ⊆ RE denote the convex



hull of all incidence vectors of feasible solutions. The corresponding integer linear program reads

min
∑

e∈E cexe

(P) s.t. x ∈ P
x ∈ {0; 1}E

In the following, we focus on objective functions that are quadratic in the variables x, i.e., we
consider problems of the form

min
∑

e∈E cexe +
∑

e,f∈E;e 6=f cefxexf

(QP) s.t. x ∈ P
x ∈ {0; 1}E ,

For problems defined on a graph G = (V,E) with variables corresponding to edges, and for two
edges e = (i, j) and f = (k, l), we will use the notations cef , c(i,j)(k,l), and cijkl interchangeably.
In order to address (QP) by integer programming techniques, we apply the standard linearization:
for each pair {e, f} with cef 6= 0, we introduce a binary variable yef modeling xexf , along with
the constraints yef ≤ xe, yef ≤ xf , and yef ≥ xe + xf − 1. The linearized problem then reads

min
∑

e∈E cexe +
∑

e,f∈E;e 6=f cefyef

(LQP) s.t. x ∈ P
yef ≤ xe, xf for all {e, f} with cef 6= 0
yef ≥ xe + xf − 1 for all {e, f} with cef 6= 0
yef ∈ {0; 1} for all {e, f} with cef 6= 0

x ∈ {0; 1}E .

We are interested in the polytope Q spanned by all feasible solutions of (LQP).
Note that other methods for linearizing (QP) have been proposed in the literature. Nevertheless,

we focus on the standard linearization, as it is the most natural and popular way to linearize (QP)
and as it can easily be implemented.

3 Cutting Planes from Max-Cut

Consider a graph G = (V,E) with edge weights we. For W ⊆ V , the cut δ(W ) is defined as

δ(W ) = {(u, v) ∈ E | u ∈ W, v 6∈ W} .

Its weight is
∑

e∈δ(W ) we. The maximum cut problem asks for a cut of maximum weight and
is NP-hard for general graphs. The corresponding cut polytope, i.e., the convex hull of incidence
vectors of cuts, is well studied [2, 9], and practically efficient branch-and-cut implementations exist
for its solution [12, 13].

It is a well-known result that the problem of optimizing a quadratic function over binary
variables without further constraints is equivalent to determining a maximum cut in an auxiliary
graph Glin = (Vlin, Elin) [8]. The latter contains a node for each variable xe. For each quadratic
term xexf occuring in the objective function with cef 6= 0, the edge set Elin contains an edge
between the nodes corresponding to xe and xf . Furthermore, an additional root node and edges
from this node to all nodes in Vlin are introduced. Now there exists a simple linear transformation
between the edge variables of Glin in the maximum cut setting and the linear variables and their
products in the unconstrained quadratic optimization setting. Under this transformation, P is
isomorphic to the cut polytope of Glin [8].

If P is the unit hypercube, solving (LQP) thus amounts to determining a maximum cut in Glin,
i.e., to optimizing over a cut polytope defined in the Elin-dimensional space. If P is a strict subset of
the unit hypercube, i.e., if additional constraints are present, these constraints can be transformed
as well and we derive that P is isomorphic to a cut polytope with further linear constraints. In



particular, all inequalities valid for the cut polytope still yield inequalities valid for (LQP) and
can be used in a cutting plane approach.

Clearly, intersecting the cut polytope with arbitrary hyperplanes in general yields a non-integer
polytope. The structure of the resulting polytope can be very different from a cut polytope. In this
case it is not clear whether the knowledge about the cut polytope can help solving the constrained
optimization problem. However, several relevant applications exist in which the intersection of the
cut polytope with a set of hyperplanes cuts out a face of a cut polytope, at least if certain product
variables are present, e.g., for quadratic assignment and quadratic matching. The proof for the
quadratic matching polytope is a slight modification of the proof for the quadratic assignment
polytope. For the quadratic linear ordering problem, the same result can be obtained, see [7].

In any case, we obtain a correct separation algorithm for (LQP) based on cut separation.
Within a branch-and-cut framework, we can always work in the original model and apply other
separation algorithms as desired. When it comes to the cut separation, we build the graph Glin,
transform the fractional point, and separate the inequalities known for the cut polytope. Found
cutting planes are transformed back to yield cutting planes for (LQP).

4 Target Cuts for Quadratic 0–1 Problems

Usually, separation routines aim at generating faces or facets of some polytope in question that
share similar structure. They are said to follow the template paradigm. Recently, ABC2 proposed
some general separation routine yielding so-called local cuts that are inequalities outside the tem-
plate paradigm for which the structure is not known [1]. The size of the problem is first reduced
by projecting the incidence vectors of feasible solutions onto a small-dimensional space; ABC2 do
this by shrinking nodes into supernodes.

For r ≤ m, let π denote a projection Rm → R
r and let Q = π(Q) ⊆ Rr denote the convex

hull of the projected feasible solutions. Let x∗ ∈ Rm be the point to be separated and x∗ = π(x∗)
be its projection to Rr. A face-inducing inequality that separates some projected fractional point
from Q can be obtained by solving an appropriately chosen linear program. Its size is basically
determined by the number of its vertices. Thus, if the dimension of Q is not too big, this is fast
in practice. Furthermore, the size of the linear program can be reduced by several considerations,
and by delayed column generation only necessary feasible solutions are enumerated. A found local
cut is then sequentially lifted and tilted until it becomes a facet for Q and then lifted to become
feasible for the original TSP polytope.

Recently, we proposed a variant of the local cuts that we call target cuts [4]. The local cut
framework can easily be adapted to target cuts, however the time-consuming tilting steps can be
omitted. The reason for this is that we propose a different cut-generating linear program that
generates a facet of Q right away. Furthermore, the volume of the generated facet is expected to
be big. In the following, we briefly explain the target cuts separation. Details can be found in [4].
Subsequently, we will show that their use is favorable in the context of quadratic problems.

Assuming for now that Q is full-dimensional, we choose a point q in the interior of Q. In case
the projected non-feasible point x∗ is not contained in Q, we want to return a cutting plane that
separates x∗ from Q. We argue in [4] that a facet from Q can be obtained by solving the following
linear program:

max a>(x∗ − q)
s.t. a>(xi − q) ≤ 1 for all i = 1, . . . , s

a ∈ Rr

(1)

Here, x1, . . . , xs are the vertices of Q. A facet for Q violated by x∗ can be read off the optimum
solution of (1) as follows. If the optimum value of (1) is greater than 1, the corresponding inequality
a>(x− q) ≤ 1 is violated by x∗. Otherwise, x∗ is contained in Q.

In case the dimension of Q is smaller than r, the linear program (1) can be unbounded. In this
case, a>(x− q) = 0 is a valid equation for Q violated by x∗, if a is an unbounded ray in (1).



In order to reduce the size of LP (1), we adapted the delayed column generation procedure
proposed for local cuts to the target cut case. The procedure requires an oracle for maximiz-
ing any linear function over Q. Having this at hand, one starts with a small, possibly empty,
set of vertices x1, . . . , xh. Then a target cut a>(x − q) ≤ 1 is produced for the polytope Qh =
conv{x1, . . . , xh}, by solving the corresponding linear program. Then, the oracle is called to max-
imize the left-hand side of the inequality. In case the maximum is bigger than 1, we add the
maximal solution as a new xh+1 to (1). Otherwise we stop the procedure, having found a valid
target cut. This process is iterated until the generated inequality is found to be valid. The number
of columns added in this procedure is usually much smaller than the number of vertices of Q.

In order to use target cuts for quadratic problems, we need to specify which projection to
choose. In general, there is no easy answer to this question, and the user might have to test the
performance of different projections in order to find which one gives best results. The projection
needs to allow fast recognition or enumeration of the points in Rr that can be extended to fea-
sible solutions in the original space. For several applications this is possible with the trivial, i.e.,
orthogonal, projection onto some sub-graph or sub-space, or the projection through shrinking of
nodes into supernodes. For a given (linear) projection, lifting of a found inequality is trivial.

For some problems, certain projections seem to be favorable to others. For example, in a
problem in which the global structure is important, as is the case for the TSP, a projection
through shrinking should be prefered in case it allows to characterize the points in Rr having
a preimage in Rm under π. On the other hand, there are problems in which the local structure
seems to be characteristic of the problem, as, e.g., for the matching problem. In the latter, trivial
projections can be used.

The usage of target cuts allows the implementation of a general framework in which only the
projection and the oracle need to be specified for the particular application; everything else is
problem-independent. Moreover, target cuts are well-suited for quadratic 0–1 problems: the size
of the cut generating program (1) remains moderate, as there is a bijection between the vertices
of the polytope P and those of Q. Therefore, the projected linearized polytope Q has the same
number of vertices as π(P ), so that the number of rows of (1) does not grow with the introduction
of product variables. In other words, the additional product variables do not affect the performance
considerably, which allows to deal with non-trivial chunk sizes.

5 Quadratic Reformulations of Linear Inequalities

It is well-known that LP relaxations can often be improved by replacing the linear constraints
by equivalent quadratic ones. The latter can then be linearized as usual by variables representing
the resulting products of original variables. Since all variables are binary in our context, every
square term x2

e can be replaced by the original variable xe. Due to this latter replacement, the
new relaxation is often stronger than the original one, in particular in combination with a tight
polyhedral description of the quadratic structure as described in Section 3.

However, there is a trade-off between the stronger bounds obtained by the reformulation and
the increase in the number of variables implied by the linearization. In the case of a quadratic
objective function, the situation is favorable, since all (or many) product variables are already
present in the LP, so that using linearized quadratic reformulations usually does not increase
complexity too much.

This reformulation idea was used, e.g., by Johnson [11] in his integer linear programming model
for the quadratic assignment problem. A systematic investigation of such reformulations was given
by Helmberg et al. [10] for the case of a single linear inequality, i.e., for the quadratic knapsack
problem. They evaluate different reformulations in an SDP framework, giving theoretical results
comparing their strength and experimental results on the improvement of dual bounds.

More precisely, they propose two ways to reformulate a given linear inequality a>x ≤ b. First
note that we may assume a ≥ 0, otherwise we can consider complement variables 1 − xe. The
first reformulation, called (SQK2), is given by the quadratic inequality (a>x)2 ≤ b2. The second
reformulation replaces the single linear inequality by a set of new quadratic inequalities, obtained



by multiplying both sides of a>x ≤ b with xe, for each e ∈ E, and with (1− xf ) for some f ∈ E
chosen arbitrarily. The reformulation given by these |E|+ 1 constraints is called (SQK3).

As shown in [10], the reformulation (SQK3) is at least as strong as (SQK2), which in turn
is at least as strong as the original formulation, called (SQK1). These relations are reflected in
the experimental results given in [10], showing that the quality of the dual bounds increases from
(SQK1) to (SQK3). However, it is not obvious that this improvement is reflected in the running
times. In particular, it is not clear whether it pays off to replace a single constraint by |E| + 1
other constraints in order to improve the relaxation.

In the following, we investigate this experimentally in our IP setting. Additionally, we consider
combinations of (SQK1) to (SQK3) with the techniques explained in the previous sections. Since it
turned out that (SQK3) yields far too many constraints to be competitive in practice, we decided
to separate the new constraints dynamically, i.e., we add the constraints only when violated. This
approach is already suggested in [10].

One has to take care when separating quadratic constraints dynamically in the case where not
all product variables are present. In this case, when adding some linearized quadratic constraint, we
might also have to add the corresponding linearization variables and the linear constraints linking
these new variables to the corresponding original variables. This rises the following question: what
LP-value should we assume for an absent variable yef corresponding to a product xexf? In the
next LP solution, the new variable will be restricted only by the linear inequalities

yef ≤ xe, yef ≤ xf , yef ≥ 0, yef ≥ xe + xf − 1.

Hence we separate an inequality only if it is violated for all values of yef in this range. We can
thus choose the LP-value for yef as follows: if the coefficient of yef in the inequality to be added
is positive, we may set yef to its lower bound max{0, xe + xf − 1}. Otherwise, we set it to the
upper bound min{xe, xf}.

6 Applications

Applications of constrained quadratic 0–1 optimization problems abound. One of the classical
examples is the quadratic assignment problem; more recently the quadratic knapsack problem
has attracted some interest. In the following, we consider two other problems: the quadratic
matching and the quadratic linear ordering problem. More precisely, we consider applications
that are naturally modeled as such problems. In Section 6.1, we discuss the problem of finding
highly similar subgraphs, which can be modeled as a quadratic (bipartite) matching problem. In
Sections 6.2 and 6.3, we deal with two applications of quadratic linear ordering: the bipartite
crossing minimization problem and the linear arrangement problem.

6.1 Finding Highly Similar Subgraphs – Quadratic Matching

Assume we are given two graphs G1 = (V1, E1) and G2 = (V2, E2), and we want to get insight
into how similar the two graphs are. This problem occurs in several practical applications, e.g.,
in automatic graph drawing and computational biology. The task is to determine a matching of a
subset or all nodes of G1 to those of G2 such that as many edges as possible in the two graphs are
mapped onto each other. This problem is a generalization of the graph isomorphism problem.

In our situation, we also allow but penalize the case in which u1 ∈ V1 is matched with u2 ∈ V2

and v1 ∈ V1 with v2 ∈ V2, but exactly one of the edges (u1, v1) or (u2, v2) exists. A straight-forward
model for this problem is the following quadratic matching formulation

max
∑

i∈V1,j∈V2
xij +

∑
i,k∈V1,j,l∈V2

cijklxijxkl

(QMP) s.t.
∑

i∈V1
xij ≤ 1 ∀j ∈ V2∑

j∈V2
xij ≤ 1 ∀i ∈ V1

xij ∈ {0; 1} ∀i ∈ V1, j ∈ V2

with costs cijkl < 0 if either (i, k) ∈ E1 or (j, l) ∈ E2, but not both. Otherwise cijkl ≥ 0. In this
model, xij = 1 means that node i ∈ V1 is matched with node j ∈ V2.



6.2 Bipartite Crossing Minimization – Quadratic Linear Ordering I

Consider a bipartite graph G = (V1 ∪ V2, E). We want to draw G in the plane so that the nodes
of V1 and V2 are placed on two parallel horizontal lines. The task is to minimize the number of
crossings between edges, assuming that all edges are drawn as straight lines. Several applications
exist in the area of automatic graph drawing. Clearly, the number of crossings only depends on
the orders of vertices on the two lines.

First, we assume that the nodes V1 on the upper level are layouted in some fixed order, whereas
the nodes on the lower level are allowed to permute within the layer. The permutation of the nodes
in V2 has to be chosen such that the number of edge crossings is minimal. Let i, j ∈ V1, k, l ∈ V2

and edges (i, k), (j, l) be present. Assume i is before j in the fixed order. No crossing exists in
case k is before l on the second level, otherwise there is a crossing.

Hence the bipartite crossing minimization problem with one fixed layer can easily be formulated
as a linear ordering problem. Now let us formulate the problem with two free layers as a quadratic
optimization problem over the linear ordering polytope. For i, j, k, l chosen as above, there is no
crossing in case i is before j and k is before l, or j is before i and l is before k. Let us introduce
variables xuv that take value 1 if u is drawn before v, and 0 otherwise. Then we have to solve the
problem

max
∑

(i,k),(j,l)∈E xijxkl

(QLO1) s.t. x ∈ PLO

xij ∈ {0; 1} ∀i, j ∈ V1 or i, j ∈ V2 ,

where PLO is the linear ordering polytope.

6.3 Linear Arrangement – Quadratic Linear Ordering II

The linear arrangement problems is given as follows. We are looking for a permutation of n objects
in such a way that a linear function c on the differences of positions of the objects is minimized.
More precisely, we desire to determine a permutation π of {1, . . . , n} minimizing∑

1≤i,j≤n

cij |π(i)− π(j)| .

To this end we use the fact that the distances of the positions of two elements i and j with respect
to a permutation π can be expressed in terms of betweenness variables. This distance equals 1 plus
the number of elements lying between i and j, i.e., |π(i)− π(j)| = 1 +

∑
k xikxkj where xij is the

usual linear odering variable modeling whether π(i) < π(j) or not. Therefore, up to a constant,
the linear arrangement problem can be rewritten as

max
∑

i 6=j 6=k 6=i cijxikxkj

(QLO2) s.t. x ∈ PLO

xij ∈ {0; 1} ∀i, j ∈ {1 . . . n}, i 6= j.

Note that for this application only products of linear ordering variables are required that are of
the type xikxkj , which are only O(n3) many.

7 Experiments

We implemented the three separation approaches discussed in Sections 3, 4 and 5 within the
branch-and-cut framework ABACUS, using CPLEX 11. All test runs were performed on Xeon
machines with 2.66 GHz.

For each application we addressed, we start a branch-and-cut algorithm with the linear pro-
gramming relaxation of the linearized problem (LQP). Separation routines for the polytopes P
are assumed to be readily available. We compare the performance of this basic approach with the
same approach extended by appropriately used maximum cut separation as described in Section 3,



quadratic reformulations as explained in Section 5, and the target cut separation as introduced in
Section 4. For the tested applications, we used trivial projections onto subsets of variables, called
chunks.

The chunks were chosen randomly in the sense that we first generate a subgraph randomly and
then project onto all those linear and product variables that are completely determined by the
subgraph. For the maximum cut separation, we separate the cycle inequalities [2]. For (SQK2), the
starting relaxation consists of all reformulated inequalities. As the number of constraints in (SQK3)
multiplies with the number of linear variables, we separate the reformulated inequalities on the
fly. As in the beginning of the optimization process we introduce only the set of product variables
having non-zero coefficient in the objective, it can happen that a violated reformulated inequality
has a non-zero coefficient on a product that was not yet introduced in the problem formulation.
In this case, we also introduce the needed product variables together with the corresponding
linearization constraints to the model, as explained in Section 5.

We aimed at developing one relatively abstract implementation that can easily be used for all
quadratic problems of type (QP) without having to incorporate many changes. Only the target-cut
oracle and the test whether some vector represents a feasible solution are specific to the problem
and have to be implemented separately for each application. We tested our approaches mainly
on randomly generated instances. We put an upper limit of 104 on the number of sub problems.
Instances that could not be solved within this limit are appropriately marked in the tables.

7.1 The Quadratic Matching Problem

For the quadratic matching problem, we studied instances defined on complete graphs. Note that
a product xijxkl is necessarily zero if i, j, k, l are not pairwise distinct. We create random instances
where for given pairwise distinct i, j, k, l the weight cijkl is non-zero with a given probability p. In
this case, the weight is randomly chosen from {−1000, . . . , 1000}. All linear weights cij are also
chosen randomly from {−1000, . . . , 1000}. An instance is thus defined by the number of nodes n,
the percentage p of products with non-zero coefficient, and a random seed r for the weights.

Our implementations either determine a maximum quadratic matching or a minimum quadratic
perfect matching. In the basic branch-and-bound approach, we separate the blossom inequalities
that are known to be the only non-trivial facets of the matching polytope. We compare this basic
approach with a branch-and-cut algorithm that uses separation of cutting planes derived from
the cut polytope, from the reformulation (SQK3), and of target cuts on varying chunk sizes,
as explained in Sections 3, 4 and 5. Reformulation (SQK2) yields only trivial inequalities, and
therefore is always turned off. We also test an implementation in which all three features are
turned on.

It turns out that better performance can be achieved if the maximum-cut separation procedure
is only called in the root node of the branch-and-bound tree, and not after branching has been
done. For the target cuts, the extendable solutions under a trivial projection are the incidence
vectors of quadratic (not necessarily perfect) matchings. For their generation, two methods are
implemented: For big chunk sizes, a heuristic greedy oracle first tries to identify fast necessary
incidence vectors of quadratic matchings. In case it is successful, the delayed column generation
procedure continues. In case it is not successful, we test whether a violating vector exists by calling
an exact oracle. In the latter, the integer programming formulation for the quadratic matching
problem on the small chunk is solved exactly. The column generation procedure is iterated until
no more violating vector is found by the exact oracle. If the chunk sizes are not too big, one can
also do a brute-force enumeration of all characteristic vectors of feasible solutions instead of the
oracle calls. For the instance and oracle sizes studied here, the enumerative approach was faster
than the one using oracles.

We show some running times for instances of the maximum quadratic matching problem in
Table 1. Results for quadratic perfect matchings are comparable. We report the cpu time in seconds
and the number of subproblems needed to solve the instance to optimality. IP refers to the basic
algorithm, MxSyTz means that we apply cut generation if x = 1, reformulation (SQK3) if y = 3
and target cut separation with chunk size z.
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As can be expected, in practice the number of found blossom inequalities is very small, often
none of them is violated, and so the basic implementation in column IP solves the problem basically
via branching. The quadratic reformulation (SQK3) reduces the number of sub problems and can
be further improved by target cuts. The optimal size of the chunks depends on the size of the
instances. Clearly, using too large chunks can increase the total runtime, since the effect of having
to solve less subproblems is foiled by the long running time needed to compute the target cuts;
the latter increases exponentially in the size of the chunk. For the larger instances we considered,
the best results where obtained with chunks of 5 to 6 nodes. Compared to the pure IP solution or
the settings without quadratic reformulation, cut separation strongly improves the performance.
In case the quadratic reformulation is additionally turned on, the effect of the cutting planes of
max-cut is smaller. Usually, the number of sub problems reduces further, and sometimes the also
running time improves. However, instances exist in which the running time increase, so that cut
separation does not always pay off in case the quadratic reformulation is also used.

7.2 The Quadratic Linear Ordering Problem

According to our experience, separating inequalities known to be valid for the polytope P does
not speed up the optimization over Q considerably, and so our basic branch-and-cut algorithm for
the solution of (QLO1) and (QLO2) only separates the 3-dicycle inequalities. The latter are known
to be facets for the linear ordering polytope. In contrast to the quadratic matching case, max-cut
separation turns out to be very efficient for the quadratic linear ordering problem, and so it is
called in every node of the branch-and-bound tree. The target cut separation is again performed on
randomly chosen chunks that are generated via trivial projection. The vectors that are extendable
under the trivial projection are again linear orderings on the chunks. We test both reformulations
(SQK2) and (SQK3). Unlike for the Quadratic Matching problem, here both reformulations yield
new inequalities.

We studied instances defined on complete graphs. Again, weights of linear and product variables
are chosen randomly in {−1000, . . . , 1000} with probability p. An instance is defined by the number
of nodes n of the complete graph, p, and a random seed r for the randomly chosen weights.

In Tables 2 we show running times for instances of the quadratic linear ordering problem. As
above, we report the cpu time and the number of subproblems needed to solve the instance to
optimality. We do not show numbers for the options M0SxTy with x, y > 0 in which no max-cut
separation is done but a reformulation and target cut separation, as according to our experience
cut separation is fast and favorable.

Moreover, we created linear arrangement instances defined by random graphs, see Section 6.3,
and show the performance of the solution algorithms in Table 3. In order to show the effectiveness
of our methods, we report for the bigger instances only the results with reformulation, max-cut
separation and target cuts turned on.

As for the quadratic matching case, the basic implementation solves the problem essentially
via branching. Only small instances can be solved to optimality. In case of failure, the gap between
upper and lower bounds is often quite large. The reformulation (SQK2) reduces the number of sub
problems however is usually outperformed by (SQK3) which is also reflected in our computational
results. Again the separation of inequalities from the cut polytope considerably improves the
running time. Also the target cut separation further reduces the number of subproblems and the
running time. The best chunk sizes are 5 to 6. Chunk size 7 reduces the number of sub problem
however often increases the running time. Best performance is usually achieved with all cutting
plane generation methods turned on, with suitably chosen chunk sizes for the target cut separation.
This is especially true for the linear arrangement problem.

It is not easy to compare the algorithmic performance for instances in which the pure IP solver
reached the sub problem limit of 10000. As even small instances might require large numbers of
sub problems in this basic approach, it may happen that the limit is reached after less running
time than the other approaches need to solve the instance to optimality. However, as can be seen
in the tables, there are many instances for which reaching the limit in the IP context already
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takes longer than solving the instance to optimality when using our methods. This shows that the
proposed methods considerably speed up the solution time.

7.3 The Quadratic Assignment Problem

As mentioned in the introduction, also well-studied quadratic problems like the QAP can be
addressed by our basic toolbox. Clearly, using such general methods we cannot compete with
problem-specific approaches to such problems. Nevertheless, it is interesting to study whether these
methods can improve basic IP-based solution algorithms for the QAP. We generated instances on
|V | nodes in which the cost of a product is again randomly chosen between {−1000, . . . , 1000}.
All product variables are modeled. We show the corresponding results in Table 4.

Clearly, if no reformulation is used, target cuts considerably improve the performance of the
solution algorithms. Furthermore, reformulation (SQK3) is very strong and drastically reduces
the number of sub problems and improves the running time when compared to the basic IP
approach. If the target cut separation is turned on additionally, the effect is not very strong. For
some instances, the performance improves even further, for some other instances the running time
increases slightly.

8 Generalization

In this paper, we focused on quadratic objective functions. However, the proposed techniques can
be generalized to polynomial or even arbitrary non-linear objective functions. In practice, this is
feasible if each non-linear expression in the objective function is defined locally, i.e., determined
by few original variables. Here we give a short description of these generalizations.

First, consider the separation of cutting planes derived from max-cut, as described in Section 3.
To generalize this approach, we propose to use the results presented in [6]; for the polynomial case,
see also [5]. For this, a few additional variables representing partial non-linear terms have to be
introduced. More precisely, for a non-linear term involving d original variables, e.g., a monomial of
degree d, we have to introduce up to d−1 new variables. This means that the number of additional
variables remains small if each term is defined locally. After this extension of the model, the
separation of cutting planes concerning the non-linear structure of the objective function reduces
to the separation problem for an auxiliary max-cut problem. For details of the construction, we
refer to [5, 6]. In the case of a quadratic objective function, this approach agrees with the separation
methods proposed in Section 3.

Second, the target cut separation discussed in Section 4 can be easily generalized to arbitrary
non-linear terms. Having chosen a chunk defined by a set of original variables, we can include any
non-linear term that is determined by these variables. Hence, the more locally a term is defined,
the more likely it is that all necessary original variables are contained in the chunk, so that the
term can be included. Observe that a non-linear term included in this way does not increase
the number of feasible solutions on the chunk, i.e., the number of vertices of Q. Moreover, note
that if some non-linear term is defined on a given chunk, then the same is true for all variables
corresponding to its partial terms. In other words, the new variables necessary for applying the
results of [5, 6] do not increase the complexity for target cut separation.

For the quadratic reformulation discussed in Section 5, it is not clear whether a generalization is
useful, since in general only few variables representing linearized products of two original variables
might be present in the model. We expect that the answer to this question is problem-specific. An
implementation and experimental evaluation of all three generalizations proposed in this section
is left as future work.

9 Conclusion

We present and evaluate two methods for improving the performance of branch-and-cut approaches
to quadratic 0–1 optimization problems, addressing the problem from two different directions. The
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first method addresses the quadratic structure, exploiting separation routines for cut polytopes,
while the second implicitly takes into account the specific structure of the underlying polytope,
applying a technique similar to local cut generation. Furthermore, we evaluate the quadratic
reformulation procedures introduced by Helmberg, Rendl, and Weismantel for several different
applications. Our results show that the total running time can be decreased significantly by a
suitable combination of these techniques.
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