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Abstract—The GraphNet (aka S-Lasso), as well as other “spar-
sity + structure” priors like TV (Total-Variation), TV-L1, etc., are
not easily applicable to brain data because of technical problems
relating to the selection of the regularization parameters. Also, in
their own right, such models lead to challenging high-dimensional
optimization problems. In this manuscript, we present some
heuristics for speeding up the overall optimization process: (a)
Early-stopping, whereby one halts the optimization process when
the test score (performance on leftout data) for the internel cross-
validation for model-selection stops improving, and (b) univariate
feature-screening, whereby irrelevant (non-predictive) voxels are
detected and eliminated before the optimization problem is
entered, thus reducing the size of the problem. Empirical results
with GraphNet on real MRI (Magnetic Resonance Imaging)
datasets indicate that these heuristics are a win-win strategy, as
they add speed without sacrificing the quality of the predictions.
We expect the proposed heuristics to work on other models like
TV-L1, etc.

Index Terms—MRI; supervised learning; pattern-recognition;
sparsity; GraphNet; S-Lasso; TV-L1; spatial priors; model-
selection; cross-validation; univariate feature-screening

I. INTRODUCTION

Sparsity- and structure-inducing priors are used to perform

jointly the prediction of a target variable and region segmenta-

tion in multivariate analysis settings. Specifically, it has been

shown that one can employ priors like Total Variation (TV) [1],

TV-L1 [2], [3], TV-ElasticNet [4], and GraphNet [5] (aka S-

Lasso [6] outside the neuroimaging community) to regularize

regression and classification problems in brain imaging. The

results are brain maps which are both sparse (i.e regression

coefficients are zero everywhere, except at predictive voxels)

and structured (blobby). The superiority of such methods over

methods without structured priors like the Lasso, ANOVA,

Ridge, SVM, etc. for yielding more interpretable maps and

improved prediction scores is now well established (see for

example [2], [3]). These priors are fast becoming popular

for brain decoding and segmentation. Indeed, they leverage

a feature-selection function (since they limit the number of

active voxels), and also a structuring function (since they

penalize local differences in the values of the brain map). Also,

such priors produce state-of-the-art methods for automatic

extraction of functional brain atlases [7].

However, these rich multivariate models lead to difficult

optimization and model-selection problems which render them

impractical on brain data. In this paper, we provide heuristic

techniques for speeding-up the application of GraphNet[6], [5]

(a)

(b)

(c)

Fig. 1. Univariate feature-screening for the GraphNet problem (2) on different
datasets. This figure shows spatial maps of XT

j y, thresholded so that only vox-

els j with (from left to rightmost column) |XT
j y| ≥ p10%(|XT y|), |XT

j y| ≥

p20%(|XT y|), |XT
j y| ≥ p50%(|XT y|), and |XT

j y| ≥ p100%(|XT y|)
(full-brain) respectively, survive. The green contours enclose the elite voxels
which are selected by the screening procedure at the respective threshold
levels. (a): Mixed Gambles dataset [8]. Remarkably, the geometry of the
regions obtained here for the 10th and 20th screening-percentiles match pretty
well the results obtained in [3] with their TV-L1 penalty. (b): Face vs House
contrast of the visual recognition dataset [9]. Weights maps obtained for the
GraphNet model (2) with these different screening-percentiles are shown in
Figure 3. (c): OASIS dataset [10] with VBM. See Figure 2 for weights maps
and age predictions obtained using these different screening-percentiles.

on neuro-imaging data. The first heuristic termed univariate

feature-screening, provides a principled way to a priori detect

and eliminate voxels which are the most irrelevant to the

learning task, thus reducing the size of the underlying opti-

mization problem (2). The second heuristic, early-stopping,

detects when the model has “statistically” converged so that

pushing further the numerical optimization leads to no gain in

prediction / classification performance, so that the process can

be halted safely, without sacrificing predictive performance.

The GraphNet [5] (aka S-Lasso [6]): We denote by

y ∈ R
n the targets to be predicted (age, sex, IQ, etc.); the

design matrix X ∈ R
n×p are the brain images related to the

presentation of different stimuli, or other brain acquisition (e.g



gray-matter concentration maps from anatomy, etc.). p is the

number of voxels and n the number of samples (images). In

brain imaging, p ≫ n; typically, p ∼ 103 − 106 (in full-brain

analysis), while n ∼ 10 − 103 (n being limited by the cost

of acquisition, etc.). Let Ω ⊂ R
3 be the 3D image domain

representing the region occupied by the brain –or ROI (region

of interest) thereof– under study, discretized regularly on a

finite grid. The coefficients w define a spatial map in R
p. The

spatial gradient of w at a voxel j ∈ Ω reads:

∇w(j) := [∇xw(j),∇yw(j),∇zw(j)] ∈ R
3, (1)

where ∇u is the finite-difference operator along the u-axis.

Thus ∇ defines a 3p-by-p linear operator, with adjoint = −div.

GraphNet then corresponds to the following problem:

Find (w, b) ∈ R
p+1 minimizing L(y,Xw, b) + αJ(w) (2)

where:

• w is the weights map of regressor coefficients, and b is

the intercept; (ŵ, b̂) denotes a solution to problem (2).

• L(y,Xw, b) is the loss term, and measures how well

the coefficients (w, b) explain the data (X, y). Typically,

L(y,Xw, b) is Mean Square Error (MSE) in regression

problems, and logistic loss in classification problems. For

details, refer to subsection II.C of [1], for example.

• J(w) := ρ‖w‖ℓ1 +
1− ρ

2
‖∇w‖22 is the regularization.

α ≥ 0 controls the amount of regularization, and the

parameter ρ ∈ [0, 1], also known as the ℓ1-ratio, is

the trade-off between the sparsity-inducing penalty ℓ1
(Lasso) and spatial-structure-promoting ℓ2 term ‖∇w‖22.

II. METHODS

(a) A note on implementation of the solver: Problem (2)

is a nonsmooth convex-optimization problem. One notes that

in the penalty term J(w), the ‖∇w‖22 sub-term is smooth (i.e

differentiable) with Lipschitz gradient, whilst the ℓ1 –though

nonsmooth– is proximable1 by means of the soft-thesholding

operator [11]. Thus problem (2) is amenable to the FISTA

(Fast Iterative Shrinkage-Thresholding Algorithm) [12], with

a provable O(1/
√
ǫ) convergence rate. Our implementation

of FISTA uses technical recommendations (line-searching,

parametrization, etc.) which were provided in [13], in the

context of TV-L1 [2], [3]. The model parameters α and ρ
in (2) are set by internal cross-validation.

(b) Univariate feature-screening: In machine-learning,

feature-screening aims at detecting and eliminating irrelevant

(non-predictive) features thus reducing the size of the underly-

ing optimization problem (here problem (2)). The general idea

is to compute for each value of the regularization parameter,

a relevance measure for each feature, which is then compared

with a threshold (produced by the screening procedure itself).

Features which fall short of this threshold are detected as

irrelevant and eliminated. For the Lasso and similary models

(including Group Lasso), exact2 screening techniques include

1That is, there is a closed-form analytic expression for its proximal operator.
2i.e, techniques which don’t mistakenly discard active predictive features.

those developed in [14], [15], [16], [17]. Inexact screening

techniques (e.g [18]) have also been proposed in the literature.

Our proposed heuristic screening technique is inspired by

the Marginal screening technique developed in Algorithm 1 of

[15], and operates as follows. The data (X, y) are standardized

so that y has unit variance and zero mean, likewise each row

of the design matrix X . To ensure obtention of a smooth

mask, a Gaussian-smoothed version of X is used in the

screening procedure (but not in the actual model fit). For each

voxel j (voxels are the features here) the absolute dot-product

|XT
j y| of y with the jth column of X is computed. For a

given screening-percentile sp ∈ [0, 100] , the spth percentile

value of the vector |XT y| := (|XT
1 y|, ..., |XT

p y|), denoted

psp(|XT y|), is computed. The case sp = 100 corresponds

to full-brain analysis. 25 means we keep the quarter of the

brain made of voxels with the highest |XT
j y| values. And

so on. A brain-mask is then formed, keeping only those

voxels j for which |XT
j y| ≥ psp(|XT y|). Next, this brain-

mask is morphologically eroded and then dilated, to obtain a

more structured mask. Figure 1 shows results of applying this

screening heuristic to various datasets, prior to model fitting.

(c) Early-stopping: In each train sub-sample (for example

a fold, in the case of K-fold cross-validation) of the internal

cross-validation loop for setting the parameters of the Graph-

Net model (2), a pass is done on the 2-dimensional parameter

grid, and each parameter pair (α, ρ) is scored according to its

prediction / classification performance. For a fixed parameter

pair (α, ρ), an instance of problem (2) is solved iteratively us-

ing FISTA [12]. At each iteration, the prediction / classification

performance of the current (not yet optimal) solution ŵk in

(2) is computed. If in a time-window of 5 iterations this score

has not increased above an a priori fixed threshold, called the

early-stopping tolerance (es tol), then the optimization process

is halted for the currrent model parameter pair (α, ρ) under

inspection. This heuristic is motivated by the intuition that,

for a particular problem, sub-optimal solutions ŵk can give the

same score as an optimal solution ŵ (i.e statistical convergence

may happen before numerical convergence). By default we set

this early-stopping tolerance to −10−4 for classification and

−10−2 for regression problems. A value of +∞ (in fact, any

value above 10, say) corresponds to no early-stopping at all

(i.e, solve problem (2) until numerical convergence).

III. EXPERIMENTS ON MRI DATA

We experimented our early-stopping and (separately)

feature-screening heuristics on different MRI datasets.

N.B.: All experiments were run using a single core of a laptop.

(a) Regression setting: OASIS dataset [10]: The Open Access

Series of Imaging Studies (OASIS) dataset consists of

a cross-sectional collection of 416 subjects aged 18 to

96. For each subject, 3 or 4 individual T1-weighted MRI

scans obtained in single scan sessions are included. A

natural regression problem for this dataset is to predict

the age of subject from their anatomical data. To this end,

we segmented the gray-matter from the anatomy of each



Fig. 2. Predicting age from gray-matter concentration maps from the OASIS dataset [10]. Top: Weights maps (solutions to problem (2)). Bottom-left: Mean
Square Error (MSE) in age prediction, for different subjects of the validation set, for varying levels of the early-stopping toleranace (“es tol” for short),
with the screening-percentile (sp) held constant at 100 (full-brain). Bottom-right: MSE in age prediction, for varying levels of the screening-percentile (sp).
Running times: Increasing est tol (from −10−4 to 10): 100.2m, 171.4m, 188.8m, 289.6m. For increasing sp (10 to 100): 44.2m, 81.3m, 186.5m, 341.3m

subject (obtained from the T1 images), and used the gray-

matter maps as features for predicting age. We split the

416 subjects into two equallly sized and age-balanced

groups: a train set and a validation set. The GraphNet

model [6], [5] was fitted on the train set, with parameters

(α and ρ in (2)) set internally via 8-fold cross-validation.

The results for this experiment are shown in Figure 2.

(b) Classification setting: Visual recognition dataset [9]: Our

second dataset [9], is a popular block-design fMRI dataset

from a study on face and object representation in human

ventral temporal cortex. It consists of 6 subjects with

12 runs per subject. In each run, the subjects passively

viewed images of eight object categories, grouped in 24-

second blocks separated by intermittent rest periods. This

experiment is a classification task: predicting the object

category y. We use a One-versus-Rest (OvR) strategy. The

design matrix X is made of time-series from the full-

brain mask of p = 23 707 voxels over n = 216 TRs, of

a single subject (subj1). We divided the 12 runs into 6

runs for training and 6 other runs for validation. Leave-

one-label-out cross-validation was used for selecting the

model parameters (α, ρ). The results are depicted in

Figure 3.

IV. RESULTS

We now summarize and comment the results of the exper-

iments (refer to section III). Figure 2 shows the effects of

early-stopping heuristic and feature-screening heuristic on age

prediction scores on the OASIS dataset [10] (416 subjects).

We see that in the internal cross-validation, stopping the

optimization procedure for fixed (α, ρ) pair of regularization

parameters, when test score increases by about −10−2 is a

good heuristic, and does just as good as running the optimiza-

tion until numerical convergence. Also (and independently),

one gets similar prediction scores using as little as a fifth of

the brain volume (sp = 20), compared to using the full-brain

(sp = 100). Figure 3 reports similar results for classification

on the visual recognition dataset [9]. Overall, we see from

Figures 3 and 2 that we can achieve upto 10-fold speedup

with the proposed heuristics, with very little loss in accuracy.

V. CONCLUSION AND FUTURE WORK

In this manuscript, we have presented heuristics that provide

speedups for optimizing GraphNet [6], [5] in the difficult

context of brain data. These heuristics are a win-win strat-

egy, as they add speed without sacrificing the quality of

the predictions / classifications. In practice, we do a 20%

univariate feature-screening by default, which ensures a 5-

fold speedup over full-brain analysis, and independently of an

approximately 2-fold speedup obtained by the early-stopping

heuristic, leading to an overall 10-fold speedup. Our results

have been verified empirically on different MRI datasets,

namely [10] and [9]. Our heuristics should be applicable to

other hard-to-optimize models like TV-L1 [2], [3], etc.



(a)

(b)

Fig. 3. Visual recognition dataset [9]. (a): Weights maps for the Face vs House contrast, for different the early-stopping and univariate feature-screening
thresholds. One can see that the supports of these maps for different values of the thresholds are quite similar to cases involving no heuristic at all (the case
where est = 10 and the where case sp = 100%). (b), top-left: Prediction scores as a function of the early-stopping tolerance (est), for different task contrasts.
It can be seen that contiguous bars are of almost same height, indicating that early stopping does not harm the accuracy of the predictions. (b), top-right:
Prediction scores as a function of the screening-percentile (sp), for different task contrasts. We can see that contiguous groups of bars are roughly flat at the
top, with a sligh increase from lower to high screening-percentile values. The case “chair vs scramped” is an exception, where a slightly reverse tendency
if observed. A possible explanation is that 20th percentile feature-screening already selects the right voxels (quasi-exact support recovery), and so including
more voxels in the model can only hurt its performance. (b), bottom-row: Running times in minutes for the different thresholds of the heuristics. In particular,
we see that using only the 20% most relevant voxels achieves a speedup of up 5, while ensuring as much accuracy as in full-brain analysis (sp = 100).

Due to time constraints, only 2 datasets [10], [9] were con-

sidered in the benchmarks. A natural extention of the empirical

results presented here would be to run the experiments on more

datasets (for example the OpemfMRI datasets [19]).
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