
Speeding up N-body Calculations on Machines

without Hardware Square Root

ALAN H. KARP

/B/11 Scientific Center, Palo Alto, CA 94304

ABSTRACT

The most time consuming part of an N-body simulation is computing the components of

the accelerations of the particles. On most machines the slowest part of computing the

acceleration is in evaluating r- 312, which is especially true on machines that do the

square root in software. This note shows how to cut the time for this part of the calcula

tion by a foetor of 3 or more using standard Fortran. ~£ 1993 John Wiley & Sons, Inc.

1 INTRODUCTION

.\Iany phenomena in astrophysics and chemistr•

are being simulated usin;r :'\ -l)()dy methods [1. 2:.

The most time cow;umin;r pm1 of such simula

tions is computing the accelerations oil each parti

cle due to all the others. This is trut:' for the f'imple

S 1 methods. tree- ba,.;ed methods [:i]. or those us

in;r neighbor lists [-l].
If the potential lwin;r u,.;t'd has an odd power of

the particle separation in it. computing the or

tho;ronal componellls of tlw acceleration will in

HJlYe takin::r a "Y uare root. Although iiome ma

chineii do >'quare root in hardware. many do not.

It is not unusual to find that half the run tinw of an

:'\-body calculation i,.; ,.;pt>lll in the ;;;quare root

sulmnttine.

In our case. we want to eYaluate the accPlt>ra

tion on Pach particle in a systt:'lll of self-graYitating

bodies. For example. the .r-comp01wnt of the ac-

H•·•·ei\·ed Octolwr 1 <J!J:2

.\ct·•·ptt·d :'\oH"llllwr 1 '!'!1

.\lan 1-.:arp"s pn·,;<•JJ! addn·s,;: ll•·wlett-Packanl Lal" :n ·_ -:.
1 C,01 Paf.!<' \I ill Hoad. Palo .\Ito. C.\. 9·HO-t. karp@hpl.hp.<·ont

© l'J<J:l IJ\· John \\.ile\ & Soth. Inc.

St·i•·ntifi.- Prol!ranuninl!. \"ol. 1. pp. 1:3:3-1-tO 11 '!Y2:

U:C 10C,3-'J:2H/<J3/0:2013:l-03

celeration for particle j under the ;rraYitational in

fluence of particle k is

Gmk (.r1 - xk)

,.:{

where i is the unit Yector in the x direction. G is the

!!rm·itational constant. mk is the mass of particle k.
and r is the separation between the particles.

,. = v ':r, - .l'i.l + r_, i - .l"i. :1 + '=., - =.~,)1 . . .

For efficiency. we usually code ,.:l aii ,.:1 W.
The system ~quare root routine. not knowing

how itii re~ult will be u;;;eJ. compute;;; the ,;quare

root with a diYidt>-free 1'\t>wton iteration to com

pute the inverse of the square root followed by a

multiplication by the input \·alue to get the final

re>'ult. The compiler then multiplies by r 1 and di

Yides the re~ult into the numerator. Becau,;e lJOth

diYisions and "quare roots are usually slow, this

operation takt>s a lon!! time.

Table 1 f-hows the time needed for some com

mon operations-an empty loop. a iiimple aiisign

mcnt. divi,;inn. "quare root. and .1.-:l/2. All times

are in machine cycles per element measured on an

IB.\1 RISC System/ 6000 .\I odd S-tO. BPcause

RISC machines of this kind usually improYe per-

133

134 KARP

Table 1. Time for Some Common Operations in

Machine Cycles Per Element Run on an 18\1

RS/6000-.540

m Rolled Cnrolled*

Empty 2 2

assignment 4 4

x-1 20 20

Vx 56 56
(xVxt1 ...,..., ...,...,

* Cnrolled refers to loops unrollt·d eight ways. :\ote that

loop unrolling has no effect.

formance by pipelining arithmetic operations. un

rolling loops frequently speeds things up. Clearly.

the operations measured do not benefit.

It is possible to do considerably better than the

direct computation. This note shows how to use

standard Fortran to evaluate the acceleration in

about one third the time taken bv the direct e,·alu

ation.

2 ALGORITHM

The onh· way we can beat the efficiency of the

system routines is to use our extra knowledge of

the problem. In this case, we will not compute

W. Instead. we will compute r-:i directly from r 2
.

The simplest approach is to approximate this

function with a polynomial. Chebychev polynomi

als are frequently used because they minimize the

maximum error of the approximation on some in

ten·al [5]. One difficulty is that the approximation

is accurate only if the argument,; are limited to a

relatively small range. \\"ith a range reduction the

procedure for an input argument r 2 becomes

1. Find a u such that a s ur2 < {3. where a and

f3 are numbers of order unitY.

2. Approximate (ur 2 t:m_ .
3. Get the correct result bv multiplying the

approximation by t = u:v2.

Because I want to keep my algorithm entirely in

Fortran, I decided to use two tables for u and t.

The entries in u are simply the power of 2 such

that 1 s ur2 < 2. The entries in tare u:l/2. The onlY

problem is to figure out which table entries to use

for a given input value.

The range reduction I use is based on the IEEE

double precision number format [6]. Each num

ber consists of 64 bits-1 sign bit. 11 exponent

bits, and 52 fraction bib. In addition. tlwre i,.; an

implicit 1 bit for normalized number,.;.

If I know the ar;!unwnt is po,;itiw. as it mtl:-it lw

for the function I am interested in. I can extract

the exponent by shiftin_g the hi~Jh order :32 bit,:; of

the floating-point number 20 bits to the ri~Jht. In

Fortran, this procedure requires that I EQCI\"A

LEJ\"CE the double preci,o;ion number to an inte~JPr

or pass a double preci,;;ion ar~Jument to a :;ulJrou

tine that uses it a,;; an integer. Shifting the inu·ger

gives the index in the tables. Because therP are

only 11 bits to represent the exponent. I know my

tables need onh- 2.0-t8 entrie~.

I could have coded mY table,; a,.; DATA state

ments in the prowam. but I decidt>tl to ask the

user to make a single call to set them up a,.; i,.;

frequently done with Fourier tran,;form routine,.;.

The code to build the tables i,; contained in tlw

program in the Appendix.

l\"ow that I have scaled the input to a mode,;t

range, I can do the approximation. The coeffi

cients of the fit are ea;;y to compute [S:. If I wriw

the approximation of (ur2)-:lt2 a,.;

where x = 21:ur2) - 3. the coefficiPnts ck can be

calculated from

where the :tj are the zero,; of T\(.r;. x
1

= cosf rr.j- ·

1/2)IS]. The change of variable from ~ur 2 ; to .r i,;;

needed because the Chebyche,· polynomial,; are

orthogonal on the in ten al [-1. 1:. If we choo,;p

S P m. the approximation will be wry close to the

minimax polynomial.

It is important to use knowledgP of the hard

ware in writing the code. I made my runs on an

IB~I RISC Svstem 6000 ~lode! 5-tO. RISC ma

chines nominally do all operations in one machine

cycle, but in practice complicated operations are

pipelined. On this machine, all floating-point ad

ditions and multiplications are treated as com

pound multiply/add operation,.; [?]. An i,;;olated

operation takes two cycle,:;. but a ;;equence of op

erations produces one re,;;ult per cycle after a delay

of two cycles. Thus, our goal is to produce com

pound operations that can be pipelined.

Figure 1 shows part of a function that the user

invokes to do the Chebychev fit. The input value is

equivalence (r2,ir2)

it= ishft(ir2,-20)

X = r2 * u(it)

X = 4.d0*x - 6.d0

tOO = l.dO

s = c (1)

tOl O.SdO*x

s = s + c (2)*t01

t02 x*tOl - tOO

s = s + c (3)*t02

t03 x*t02 - tOl

s = s + c(4)*t03

result= s*t(it)

FIGCHE 1 CodP to naluate a four-term Clwbydle\·

fit. The input i~ r2. The tables u. t. and c were

calculatPd in the ~etup routine.

r2. The statement EQUYALEXCE (r2, ir2) is

needed because the shift function will only work

on an integer argument.* Only four terms are

,.;hown. but the exten:;ion to more is ob,·ious.

After ;;;ome ;;et-up code to do the ranf!e reduc

tion and ;;;hift the arguments into the range of the

Clwhyche\· polynomial;;. ull opemtions but the

last are multiply/adds. Cnfortunately. the;;e oper

ation;; are dt>pendent on each other .. so we are not

making optimal use of the arithmetic pipeline. For

example. the multiply/add that updates s cannot

be started until the preYious tis ready. Al,.;o. com

putaiion of the next t cannot be started until the

pre,·inu;; one is done. HoweYer. we can 0\·erlap

these two calculations so we expect euch order of

approximation to take an additional 3 cycles.

Table :2 summarize,; the timing and accuracy

re,..ults. The rt>latiYP errors are mea,.,ured u,.;ing the

direct calculation as the ('OJTect ,-alue. These er

rors are identical to the bounds computed by

,.;umming the ab;;olute \·alues of the dropped coef

ficients r;) 1-
The times are gi,·en in machine cycles per ele

ment. In each case I measured the elapsed time

with a clock accurate to a few nanoseconds. The

times reponed are the smallest of :20 runs of

10.000 random inputs .. -\!though there are some

anomalies. most of the time it takes 3 cvcles to add

one more order to the approximation. The anom

alies are caused by running out of registers and

the performance of the memory when loading the

coefficit>nts.

One way to improye the overlap is to do more

* "Strun~ tYpin~ is nice. but it ,;hnuldn't be im·inciblt•,''

:\. L. Karp. priYate communication. 1985.

SPEEDI~G LP ~-BODY CALCLLATIO~S 135

than one evaluation on each pass through the

loop, that is, unroll the loop. I experimentally de

termined that unrolling the loop eight ways gave

me as much speed-up as I was going to get. The

last column in Table 2 shows that adding one

more term to the approximation costs less when

the loop is unrolled. ahout 2 cycles per term.

Is it worth using this approximation? It depends

on the accuracy needed. The time stepping

scheme will have some tmncation error. Clearly,

there is no point making the function evaluation

more than an order of magnitude more accurate

than this mlue.

Table 2 ,.;]wws that single prectswn (about 8

digit) accuracy ~·it h around 10 terms can be ob

tained at a cost of 28 cycles. a third the cost of the

direct computation. If more accuracy is needed.

almost 16-digit accuracy can be obtained if 20

terms are used, but the speed-up over the direct

calculation is ;;mall.

:\.nother approach is to use :\ewton';; method.

It is based on finding the roots of some function, in

this case

f(y)
1

·J
y-

The iteration is then

where n is the iteration index.

l\ewton' s method is quadratically com·ergent

when applied to a conYex function such as the one

in which we are interested [8]. This means that

each iteration doubles the number of correct bits

Table 2. Summary of .\leasurements of Accuracy

and Time for the Chebyche\' Approximation

m Enor Rolled Cnrollerl*

0 7.:2 X 10-1 8 6

2 3.1 X 10-2 15 13

4 1.1 X 10-:l 21 17

6 .'3.8 X 1()-1 28 21

8 1.3 X 1()-IJ 33 25

10 4.2 X 1()-H 37 28
12 1.3 X 10-4 -t:.! 33

14 4.2 X 10-11 59 38
16 1.3 X 10-12 60 43
18 4.1 X 10-H 50 48
20 3.2 X 10- 1:; 53 50

* Unrolled refers to loops unrolled eight ways. Times are in

machine cycles per element.

136 KARP

equivalence (r2,ir2)

it = ishft(ir2,-20)

x = r2 * u(it)
x3 = O.SdO*x*x*x

s dO

s s*(1.5d0-x3*s*s)

s s*(l.Sd0-x3*s*s)

s = s*(l.Sd0-x3*s*s)

s s*(l.Sd0-x3*s*s)

result= s*t(it)

FIGURE 2 Cmle for four _'\ewton iteration,;. The ar
rays u and t were calculated in the setup routilw.

in the result. ,,.e only need to get a reasonably

accurate first guess. If we use the same range re

duction as before, a reasonable first guess would

be the function e,·aluated near the midpoint of the

range. In fact. I chose to use a zero'th order

Chebychev fit for the first guess.

Figure 2 shows the key part of the function in

voked by the user. ~-e see that this code will not

use the hardware a;; effecti\·eh· a;; tht> Chebwht>v

code. Each Kewton iteration l;as a multipliC'~tion.
a multiply/add. and a final multiplication for a

total of 6 cvdes.

Table 3 shows the comergence and time for

rolled and unrolled loop,.. If the loop iii not uu

rolled. Kewton\;; method takes 6 cycles per itera

tion as predicted: it takes only abow :3 if the loop

is unrolled. Single preci;;ion accuracy is achie~·ed

in about 29 cycles per element and double prt>ci

sion in 3-i cycles per element.

Is it worth using i\ewton's mellwd~ Yes it j;;

unlesii you need the ln,o;r ft>w bit,; eom-•ct. \.fithout

doing arithmetic in a higher prt>cision the loss of a

few bits of aecuran i:'i ine,·itnble. Howen'r. the

simplicity of the cod;, und ib ::;pet>d art> in it,; favor.

Table 3. Summary of Measurements of Accuracy

and Time for the Newton Method

n Error Rolled l'nrolled*

1 5.2 X 10- 1 17 1-t

2 3.3 X 1 o- 1 23 16

3 1.-f X 10- 1 :30 20
-t ;).0 X 10-2 :36 2-t
v 1.3 X 1o-:l -t2 2()
6 2.':' X 10-" -18 2()

7 1.1 X to-tt .'H :32

8 -t.3 X to-t~> 60 :3-t

* Cnrolled refer~ to loopo; unrolled eight wa~·s. Tin"'' art' in

machine cvc!Ps per dement.

We can do considerably better by makinr: two

changes to the Kewton 's method code. First of alL

note the small improvement in the first fe\\· it era

tions. A better first guess would reduct' the num

ber of Kewton itf'rations dramatically. I chose a

six-term Chebychev fit that results in single preci

sion accuracv with one i\ewton iteration and dou

ble precision with two.

There is another trick that can be used if onh·

six terms are toLe used in the polynomial approx

imation-computt> the coefficients of the power,;;

of x. This approach i,; not recomnwnded in fr1:'11-

eral because of the potential round-off error,;

when the coefficients are combined. Here there i,;

no need to worrY bt>cause tht> :\ewton iteration will

tolerate such errors. The monomial coeflieienb

are

do = kn - (':l + ('~

dt = Ct - :3c:> +

d2 = 2c:! - 3c~

d:! = ·k:l - 20c·,

d .. = 8c ..

d:; = 16c:;

If we use Horner',; rult> to evaluate the approxima~

tion.

s = do+ :r(d1 + :r(d:J. + .r(d, + .r(d4 + ::rd:;)i:)

the polynomial e\·aluation is all multiply/add;;.

The key part of the code j;; shown in FigurP :3.

Table 'i Sl!IIUntlrizes the performance re~ult~.

\\·e see that we gr·t ,;inglt' prf"l'ision accuracy in

only 19 cydes ami double preeiiiion in 2:3 cycle<".

Because thi;; algorithm outperform,; the dirPt't

entluation b,· a factor of xwarh- 'i. un :'\-l,o•h· eodP
' . .

equivalence (r2,ir2)

it= ishft(ir2,-20)

x = r2 * u(it)
XX = 2.d0*x - 3.dQ

x3 = O.SdO*x*x*x

s = dO+xx*(dl+xx*(d2+xx*d3)))

s = s*(l.Sd0-x3*s*s)

result = s*t{it)

FIGURE 3 Code for the hybrid nwthod. A third onl<'r

Cheby~hev fit and mw _'\ewton iteration ar" ,;llllW!\. Tlw

coefficient;; d and the arrays u and t were ealculawd i11

the setup routine.

Table 4. Summary of Measurements of Accuracy

and Time for the Hybrid Method*

fl Error Holled Cnrolled

0 7.2 X 10-l 9 7
1 1.6 X 10-l 10 10

2 3.1 X 10-2 12 11

3 6.0 X 10-:l 13 12
-i 1.1 X 10-3 16 1:3

5 2.1 X 1Q--t 17 H
:\1 6.6 X 10-R 23 19
:\2 6.6 X 10-l:i :30 2:3

--~---

* The fir~t six rows are the order of the CIH'byehe\' fit: the

la~t two arc the :'>ewton iterations. Cnrolled refert; to loops

unrollt•d <'igln ways. Times are in machine cycles per element.

using this approach should run considerably

faster.

The referee pointed out one more trick that re

duces the times in Table -+ by one cycle per ele

ment. The Chebychev polynomials are evaluated

on the interval -1 :s: x < 1 while we have done a

range reduction to 1 :5 ur2 < 2. The variable xx is

used to do the required change of ,·ariables. Ex

amination of the code shows that XX can be sub

stituted into the polynomial approximation for s.

the terms can be arranged, and the new coeffi

cients precomputed. These new coefficients. call

them gt; are related to the dt; by

go= do- :3r/1 + 9d:1- 27d, + 81d4 - 2-t3d:;

gl = 2d1- 12d2 + 5-td,- 216d4 + 810d:;

gJ = -td2- :36d~ + 216d4- 1080J:;

g:~ = 8d, - 96d4 + 720d.;

g; = 32d:;

Table 5. Coeffidents of the :\linimax Fit*

k c d

0 0. 60800:.~:36 O.S-t·H17-+1 7. 0.'5-+:):2-i 70

1 - () .:309;) 1280 -0.272:27;)6-i H.85088557

2 (). 0661 :3:3-t 7 0.11188678 H. 708:.~2:31 0

:3 -0.01:3:21:311 -0.(H:32i:377 -7.8370::G)5

i 0.0023-+752 0.0:20:38017 2.1 '709-+376

5 -O.OO<H80-t:~ -0.00-:'6869:3 -0.2-+39817-i

* Three limn~ are l·!i,·en: care the coefficients of the orthog

onal poly!H>Illialh: dare the codficit•nt' of the monomials on

[- L 1:: g are the codliriems of the monmnials on [1. :r.

SPEEDI:\G CP 1\:-BODY CALCCLATIONS 137

We now e\aluate the polynomial

s = go + (ur2)(g1

+ (ur2)(g2 + (ur2)(g:i + (ur2)(g'* + (ur2)gs)))).

The complete subroutine, including the set-up

code, is shown in the Appendix; the coefficients

are shown in Table 5.

3 CONCLUSIONS

How can I beat the performance of a highly tuned

system routine with Fortran code? Simple-!

cheat.

I <'heat in a number of \\'3\'S. First of alL I f'valu

ate the function directly rather than in pieces.

Second, I cheat by not getting the last few bits

right. Finally, I cheat by not doing any error

checking. (I could take the absolute value of the

input at the cost of one additional cycle.) How

ever, the output value is accurate for any floating

point input. Yery large input values produce

denormalized results: \·ery small inpUt values pro

duce floating point infinity as they should.

If your machine supports the IEEE double ex

tended format [6], a format with at least 64: bits in

the fraction that is usually resen·ed for data kept

in the registers. you can get the last few hits right

using a simple trick. Compute the array t in ex

tended precision. but store it as two double preci

sion numbers. t (1, i) and t (2, i). Then the fi

nal scaling becomes s * (t (1, i) + t (2, i)) . I
could not check the accurac\· because the RISC

System/6000 does not support the double ex

tended format. but the change added only 1 cycle

per result to the time of the unrolled loop.

Is it worth the effort and worry to use this new

approach? If your calculation is typical and

spends 3/-t of its time eyaJuating the acceleration,

speeding up this one line of code by a factor of :3
will cut your total run time in halL

ACKNOWLEDGMENTS

1 would like to thank Yin•k Sarkar for helping me un

der::>tand the HS/6000 in,;truetion sdteduling, Rad

Olson and Bill Swope for trying to convince mel could

not heat the sy,..;tem functions (I love a challenge). and

the referee for seYeral good iJeas.

138 KARP

APPENDIX 1

Sample Code

This Appendix contains the complete version of
the code as measured. For the sake of space, I
changed the loop unrolling from eight -way to two
way. Some points are worthy of note.

If working with single precision data, change
the shift to ishft (X, 23) because IEEE single
precision only uses 8 bits for the characteristic.

Also, the center for the arrays t and u should be at
127.

Some svstems do not allow continuation of exe
cution foilowing an overflow. Becau;;e r-:li'J. will

underflow and overflow at the Loundarie:o; of the
floating-point arithmetic. adjust loop limit;; on
these machines. However. make sure that theta
ble is filled properly. Cnderflow should produce a
true zero and overflow should produce l1oatinl!
point infinity.

c Approximate r**(-3/2) using Newton with Chebychev first guess
c
c Initialize arrays by calling with n
c

0 on first call

c

subroutine r32i (a, r2, ir2, n
implicit double precision (a-h, o-z)
parameter (ncheb ~ 200)
save gO, g1, g2, g3, g4, g5, c, t, u

c Calling sequence
c
c a
c r2
c ir2
c n
c

c

=
=
::::;:

:::::

output array
input array
input array to be used as an integer
length of input and output arrays

dimension a(n), r2(n), ir2(2,n)

c Local variables
c

c f

c z =
c c

c d

c g

c t
c u
c

c

temporary array needed to compute c
temporary array needed to compute c
coefficients of Chebychev approximation
coefficients of monomial fit on -1 < x < 1
coefficients of monomial fit on 1 < x < 2
table of (2**kl**(-3/2) for -1024 < k < 1024
table of 1/2**k for -1024 < k < 1024

dimension t(0:2046),u(0:2046),c(O:ncheb-l),f(ncheb) ,z(ncheb)

c Function shifted from 1 to 2 to -1 to 1
c

func(r) = (l.SdO + O.SdO*r)**(-1.5)
c
c If not first call, then compute function
c

if (n .gt. 0) then
c
c Approximate results loop unrolled 2 ways
c A greater degree of loop unrolling will probably perform better

c

c

c

c

do i = 1, n, 2

it= ishft(ir2(1, i),-20)

X= r2 (i) * U(it)

X3 = 0.5d0*X*X*X

SPEEDJ\G LP \-BODY C\LCLL\TIO\S 139

s gO+ x*(gl + x*(g2 + x*(g3 + x*(g4 + x*g5 J)))

s = s*(1.5dO-x3*s*s)
s = s*(1.5dO-x3*s*sl Use for double precision

a(i) = s*t(it)

it= ishft(ir2(1,i+1),-20)

x = r2(i+l) * u(itl

x3 = 0.5dO*x*x*x
s gO+ x*(g1 + x*(g2 + x*(g3 + x* (g4 + x*g5 J)))

s = s*(1.5d0-x3*s*sl
s = s*(1.5dO-x3*s*s) Use for double precision

a(i+1l = s*t(it)

enddo

c Finish up unrolled loop

c

c

c

do j = i, n

it= ishft(ir2(l,j),-20)

x = r2(j) * u(it)

x3 = O.SdO*x*x*x
s gO+ X*(g1 + x*(g2 + X*(g3 + X*(g4 + X*g5) I))

s = s*(1.5d0-x3*s*s)
s = s*(1.5dO-x3*s*s) Use for double precision

a (j) s*t (it)

enddo

else

c If the first call, build table of results for powers of 2

c

c

xi = 1. dO

t(1023) = l.dO

U(l023) =l.dO

do i = 1, 1023

xi= 0.5dO*xi

t (1023+i l xi *sqrt (xi)

t(1023-i) 1.d0/t(1023+i)

u(1023+il =xi

U(l023-i) l.dO/xi

end do

c Precompute zeros of Chebychev polynomials and function

c

c

pi= 4.d0

do k = 1,
z (k)

* atan

ncheb

pi * (k
COS(Z(k))

1. dO)

O.SdO l I ncheb

zero

f (k)

enddo

= func(zero)

140 KARP

c Get coefficients of Chebychev fit
c

c

factor 2.dO/ncheb
do j = 0, ncheb-1

sum= o.do
do k = 1, ncheb

arg z(k) * j
sum= sum+ f(k)*cos(arg)

enddo
c(j) = factor*sum

end do

c Get coefficients of powers of x on -1 < x < 1
c

do =
dl =
d2
d3

d4 =
d5

0.5dO*c{0) c(2) + c(4)

c (1)

2.0dO*c(2)

4.0dO*c{3)

8.0dO*c(4)

3.dO*c(3) + 5.dO*c(5)

8.dO*c(4)

20.30*c(5)

= 16.0d0*C(5)
c

c Get coefficients of powers of x on 1 < x < 2

c

gO=d0-3.0dO*dl+ 9.0dO*d2-27.0dO*d3+ 81.0dO*d4- 243.0dO*d5

g1= 2.0dO*d1-12.0dO*d2+54.0dO*d3-216.0dO*d4+ 810.0dO*d5

g2= 4.0dO*d2-36.0dO*d3+216.0dO*d4-1080.0dO*d5

g3::c 8. OdO*d3- 96. OdO*d4+ 720. OdO*d5

g4= 16.0dO*d4- 240.0dO*d5

g5= 32.0dO*d5
end if

c

end

REFERENCES

[1] R. \C Hocknev and J. \'C E.a,:;twood. Computer

Simulation [·si~[!: Particles. :\ew York: :\lcGraw

Hi!L 1981.

[2: J. A. Sellwod. Annual Ren'eu·s of Astronum.\· and

Astrophysics. \'Ol. 2.5. Palo Alto. CA: Annual Re

views, Inc., 1987, pp. 151-186.

p; J. Barnes and P. flur. '·A hierarchieal O::\lo!!:\.1

force-calculation algorithm ... Suture. vol. :32-t. pp.

H6-+t9. 1986.

[-t] :\1. P. Allen and D. J. Tilde;;ley. Computer Simula

tion of Liquids. Oxford. l'K: Oxford Lniwrsitv

Pre,;s. 198?.

[5] \'\'.H. Press. B. P. Flamwry. S. :\. Teukolsh. and

W. T. Yetterlin:r . .\'wnericul Recipes. :\t'w York:

Cambridf!<> l'niwrsity Pre,;~. 1()86. pp. 1-+7-1.')1.

[6] American :\ational Standards ln~titutt•. lne. IEEE

Standard for Binary Floating-Poim .-\rithmeti<'.

Technical Report A:\SI/IEEE Std "?.)-t-19~;).

IEEE. :3-t5East-t7tiJ Sm.·et. :\t'wYork. :\Y 1001:.

1985.

[7] B. Olsson. R. :\lontoyt>. P. \larkswin. and :\1.

:\~:-~·uen Phu, R/SC S,1·stcml 6000 Floating-point

Cnil. lB.\ I. :\Y: RISC Systt·m/6000 Teehnolo~:-~·-

1990, pp. :H--+2.

[8] J. .\1. Ortega, .\'wnerical A.twz\·sis. :\ew York: .-\ca

demic Pres;;. 1972. pp. 1.'5;')-1 ;)8.

Submit your manuscripts at

http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable

Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

