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ABSTRACT 

The most time consuming part of an N-body simulation is computing the components of 

the accelerations of the particles. On most machines the slowest part of computing the 

acceleration is in evaluating r- 312, which is especially true on machines that do the 

square root in software. This note shows how to cut the time for this part of the calcula

tion by a foetor of 3 or more using standard Fortran. ~£ 1993 John Wiley & Sons, Inc. 

1 INTRODUCTION 

.\Iany phenomena in astrophysics and chemistr• 

are being simulated usin;r :'\ -l)()dy methods [ 1. 2:. 

The most time cow;umin;r pm1 of such simula

tions is computing the accelerations oil each parti

cle due to all the others. This is trut:' for the f'imple 

S 1 methods. tree- ba,.;ed methods [ :i]. or those us

in;r neighbor lists [ -l]. 
If the potential lwin;r u,.;t'd has an odd power of 

the particle separation in it. computing the or

tho;ronal componellls of tlw acceleration will in

HJlYe takin::r a "Y uare root. Although iiome ma

chineii do >'quare root in hardware. many do not. 

It is not unusual to find that half the run tinw of an 

:'\-body calculation i,.; ,.;pt>lll in the ;;;quare root 

sulmnttine. 

In our case. we want to eYaluate the accPlt>ra

tion on Pach particle in a systt:'lll of self-graYitating 

bodies. For example. the .r-comp01wnt of the ac-
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celeration for particle j under the ;rraYitational in

fluence of particle k is 

Gmk (.r1 - xk) 

,.:{ 

where i is the unit Yector in the x direction. G is the 

!!rm·itational constant. mk is the mass of particle k. 
and r is the separation between the particles. 

,. = v ':r, - .l'i.l + r_, i - .l"i. :1 + '=., - =.~, )1 . . . 

For efficiency. we usually code ,.:l aii ,.:1 W. 
The system ~quare root routine. not knowing 

how itii re~ult will be u;;;eJ. compute;;; the ,;quare 

root with a diYidt>-free 1'\t>wton iteration to com

pute the inverse of the square root followed by a 

multiplication by the input \·alue to get the final 

re>'ult. The compiler then multiplies by r 1 and di

Yides the re~ult into the numerator. Becau,;e lJOth 

diYisions and "quare roots are usually slow, this 

operation takt>s a lon!! time. 

Table 1 f-hows the time needed for some com

mon operations-an empty loop. a iiimple aiisign

mcnt. divi,;inn. "quare root. and .1.-:l/2. All times 

are in machine cycles per element measured on an 

IB.\1 RISC System/ 6000 .\I odd S-tO. BPcause 

RISC machines of this kind usually improYe per-
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Table 1. Time for Some Common Operations in 

Machine Cycles Per Element Run on an 18\1 

RS/6000-.540 

m Rolled Cnrolled* 

Empty 2 2 

assignment 4 4 

x-1 20 20 

Vx 56 56 
(xVxt1 ...,..., ...,..., 

* Cnrolled refers to loops unrollt·d eight ways. :\ote that 

loop unrolling has no effect. 

formance by pipelining arithmetic operations. un

rolling loops frequently speeds things up. Clearly. 

the operations measured do not benefit. 

It is possible to do considerably better than the 

direct computation. This note shows how to use 

standard Fortran to evaluate the acceleration in 

about one third the time taken bv the direct e,·alu

ation. 

2 ALGORITHM 

The onh· way we can beat the efficiency of the 

system routines is to use our extra knowledge of 

the problem. In this case, we will not compute 

W. Instead. we will compute r-:i directly from r 2
. 

The simplest approach is to approximate this 

function with a polynomial. Chebychev polynomi

als are frequently used because they minimize the 

maximum error of the approximation on some in

ten·al [ 5]. One difficulty is that the approximation 

is accurate only if the argument,; are limited to a 

relatively small range. \\"ith a range reduction the 

procedure for an input argument r 2 becomes 

1. Find a u such that a s ur2 < {3. where a and 

f3 are numbers of order unitY. 

2. Approximate (ur 2 t:m_ . 
3. Get the correct result bv multiplying the 

approximation by t = u:v2. 

Because I want to keep my algorithm entirely in 

Fortran, I decided to use two tables for u and t. 

The entries in u are simply the power of 2 such 

that 1 s ur2 < 2. The entries in tare u:l/2. The onlY 

problem is to figure out which table entries to use 

for a given input value. 

The range reduction I use is based on the IEEE 

double precision number format [ 6]. Each num

ber consists of 64 bits-1 sign bit. 11 exponent 

bits, and 52 fraction bib. In addition. tlwre i,.; an 

implicit 1 bit for normalized number,.;. 

If I know the ar;!unwnt is po,;itiw. as it mtl:-it lw 

for the function I am interested in. I can extract 

the exponent by shiftin_g the hi~Jh order :32 bit,:; of 

the floating-point number 20 bits to the ri~Jht. In 

Fortran, this procedure requires that I EQCI\"A

LEJ\"CE the double preci,o;ion number to an inte~JPr 

or pass a double preci,;;ion ar~Jument to a :;ulJrou

tine that uses it a,;; an integer. Shifting the inu·ger 

gives the index in the tables. Because therP are 

only 11 bits to represent the exponent. I know my 

tables need onh- 2.0-t8 entrie~. 

I could have coded mY table,; a,.; DATA state

ments in the prowam. but I decidt>tl to ask the 

user to make a single call to set them up a,.; i,.; 

frequently done with Fourier tran,;form routine,.;. 

The code to build the tables i,; contained in tlw 

program in the Appendix. 

l\"ow that I have scaled the input to a mode,;t 

range, I can do the approximation. The coeffi

cients of the fit are ea;;y to compute [S:. If I wriw 

the approximation of (ur2 )-:lt2 a,.; 

where x = 21:ur2 ) - 3. the coefficiPnts ck can be 

calculated from 

where the :tj are the zero,; of T\(.r;. x
1 

= cosf rr.j- · 

1/2 )IS]. The change of variable from ~ur 2 ; to .r i,;; 

needed because the Chebyche,· polynomial,; are 

orthogonal on the in ten al [ -1. 1:. If we choo,;p 

S P m. the approximation will be wry close to the 

minimax polynomial. 

It is important to use knowledgP of the hard

ware in writing the code. I made my runs on an 

IB~I RISC Svstem 6000 ~lode! 5-tO. RISC ma

chines nominally do all operations in one machine 

cycle, but in practice complicated operations are 

pipelined. On this machine, all floating-point ad

ditions and multiplications are treated as com

pound multiply/add operation,.; [?]. An i,;;olated 

operation takes two cycle,:;. but a ;;equence of op

erations produces one re,;;ult per cycle after a delay 

of two cycles. Thus, our goal is to produce com

pound operations that can be pipelined. 

Figure 1 shows part of a function that the user 

invokes to do the Chebychev fit. The input value is 



equivalence (r2,ir2) 

it= ishft(ir2,-20) 

X = r2 * u(it) 

X = 4.d0*x - 6.d0 

tOO = l.dO 

s = c (1) 

tOl O.SdO*x 

s = s + c ( 2)*t01 

t02 x*tOl - tOO 

s = s + c ( 3)*t02 

t03 x*t02 - tOl 

s = s + c( 4)*t03 

result= s*t(it) 

FIGCHE 1 CodP to naluate a four-term Clwbydle\· 

fit. The input i~ r2. The tables u. t. and c were 

calculatPd in the ~etup routine. 

r2. The statement EQUYALEXCE (r2, ir2) is 

needed because the shift function will only work 

on an integer argument.* Only four terms are 

,.;hown. but the exten:;ion to more is ob,·ious. 

After ;;;ome ;;et-up code to do the ranf!e reduc

tion and ;;;hift the arguments into the range of the 

Clwhyche\· polynomial;;. ull opemtions but the 

last are multiply/adds. Cnfortunately. the;;e oper

ation;; are dt>pendent on each other .. so we are not 

making optimal use of the arithmetic pipeline. For 

example. the multiply/add that updates s cannot 

be started until the preYious tis ready. Al,.;o. com

putaiion of the next t cannot be started until the 

pre,·inu;; one is done. HoweYer. we can 0\·erlap 

these two calculations so we expect euch order of 

approximation to take an additional 3 cycles. 

Table :2 summarize,; the timing and accuracy 

re,..ults. The rt>latiYP errors are mea,.,ured u,.;ing the 

direct calculation as the ('OJTect ,-alue. These er

rors are identical to the bounds computed by 

,.;umming the ab;;olute \·alues of the dropped coef

ficients r;) 1-
The times are gi,·en in machine cycles per ele

ment. In each case I measured the elapsed time 

with a clock accurate to a few nanoseconds. The 

times reponed are the smallest of :20 runs of 

10.000 random inputs .. -\!though there are some 

anomalies. most of the time it takes 3 cvcles to add 

one more order to the approximation. The anom

alies are caused by running out of registers and 

the performance of the memory when loading the 

coefficit>nts. 

One way to improye the overlap is to do more 

* "Strun~ tYpin~ is nice. but it ,;hnuldn't be im·inciblt•,'' 

:\. L. Karp. priYate communication. 1985. 
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than one evaluation on each pass through the 

loop, that is, unroll the loop. I experimentally de

termined that unrolling the loop eight ways gave 

me as much speed-up as I was going to get. The 

last column in Table 2 shows that adding one 

more term to the approximation costs less when 

the loop is unrolled. ahout 2 cycles per term. 

Is it worth using this approximation? It depends 

on the accuracy needed. The time stepping 

scheme will have some tmncation error. Clearly, 

there is no point making the function evaluation 

more than an order of magnitude more accurate 

than this mlue. 

Table 2 ,.;]wws that single prectswn (about 8 

digit) accuracy ~·it h around 10 terms can be ob

tained at a cost of 28 cycles. a third the cost of the 

direct computation. If more accuracy is needed. 

almost 16-digit accuracy can be obtained if 20 

terms are used, but the speed-up over the direct 

calculation is ;;mall. 

:\.nother approach is to use :\ewton';; method. 

It is based on finding the roots of some function, in 

this case 

f(y) 
1 

·J 
y-

The iteration is then 

where n is the iteration index. 

l\ewton' s method is quadratically com·ergent 

when applied to a conYex function such as the one 

in which we are interested [8]. This means that 

each iteration doubles the number of correct bits 

Table 2. Summary of .\leasurements of Accuracy 

and Time for the Chebyche\' Approximation 

m Enor Rolled Cnrollerl* 

0 7.:2 X 10-1 8 6 

2 3.1 X 10-2 15 13 

4 1.1 X 10-:l 21 17 

6 .'3.8 X 1()-1 28 21 

8 1.3 X 1()-IJ 33 25 

10 4.2 X 1()-H 37 28 
12 1.3 X 10-4 -t:.! 33 

14 4.2 X 10-11 59 38 
16 1.3 X 10-12 60 43 
18 4.1 X 10-H 50 48 
20 3.2 X 10- 1:; 53 50 

* Unrolled refers to loops unrolled eight ways. Times are in 

machine cycles per element. 
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equivalence (r2,ir2) 

it = ishft(ir2,-20) 

x = r2 * u(it) 
x3 = O.SdO*x*x*x 

s dO 

s s*(1.5d0-x3*s*s) 

s s*(l.Sd0-x3*s*s) 

s = s*(l.Sd0-x3*s*s) 

s s*(l.Sd0-x3*s*s) 

result= s*t(it) 

FIGURE 2 Cmle for four _'\ewton iteration,;. The ar
rays u and t were calculated in the setup routilw. 

in the result. ,,.e only need to get a reasonably 

accurate first guess. If we use the same range re

duction as before, a reasonable first guess would 

be the function e,·aluated near the midpoint of the 

range. In fact. I chose to use a zero'th order 

Chebychev fit for the first guess. 

Figure 2 shows the key part of the function in

voked by the user. ~-e see that this code will not 

use the hardware a;; effecti\·eh· a;; tht> Chebwht>v 

code. Each Kewton iteration l;as a multipliC'~tion. 
a multiply/add. and a final multiplication for a 

total of 6 cvdes. 

Table 3 shows the comergence and time for 

rolled and unrolled loop,.. If the loop iii not uu

rolled. Kewton\;; method takes 6 cycles per itera

tion as predicted: it takes only abow :3 if the loop 

is unrolled. Single preci;;ion accuracy is achie~·ed 

in about 29 cycles per element and double prt>ci

sion in 3-i cycles per element. 

Is it worth using i\ewton's mellwd~ Yes it j;; 

unlesii you need the ln,o;r ft>w bit,; eom-•ct. \.fithout 

doing arithmetic in a higher prt>cision the loss of a 

few bits of aecuran i:'i ine,·itnble. Howen'r. the 

simplicity of the cod;, und ib ::;pet>d art> in it,; favor. 

Table 3. Summary of Measurements of Accuracy 

and Time for the Newton Method 

n Error Rolled l'nrolled* 

1 5.2 X 10- 1 17 1-t 

2 3.3 X 1 o- 1 23 16 

3 1.-f X 10- 1 :30 20 
-t ;).0 X 10-2 :36 2-t 
v 1.3 X 1o-:l -t2 2() 
6 2.':' X 10-" -18 2() 

7 1.1 X to-tt .'H :32 

8 -t.3 X to-t~> 60 :3-t 

* Cnrolled refer~ to loopo; unrolled eight wa~·s. Tin"'' art' in 

machine cvc!Ps per dement. 

We can do considerably better by makinr: two 

changes to the Kewton 's method code. First of alL 

note the small improvement in the first fe\\· it era

tions. A better first guess would reduct' the num

ber of Kewton itf'rations dramatically. I chose a 

six-term Chebychev fit that results in single preci

sion accuracv with one i\ewton iteration and dou

ble precision with two. 

There is another trick that can be used if onh· 

six terms are toLe used in the polynomial approx

imation-computt> the coefficients of the power,;; 

of x. This approach i,; not recomnwnded in fr1:'11-

eral because of the potential round-off error,; 

when the coefficients are combined. Here there i,; 

no need to worrY bt>cause tht> :\ewton iteration will 

tolerate such errors. The monomial coeflieienb 

are 

do = kn - (':l + ('~ 

dt = Ct - :3c:> + 

d2 = 2c:! - 3c~ 

d:! = ·k:l - 20c·, 

d .. = 8c .. 

d:; = 16c:; 

If we use Horner',; rult> to evaluate the approxima~ 

tion. 

s = do+ :r(d1 + :r(d:J. + .r(d, + .r(d4 + ::rd:;)i:) 

the polynomial e\·aluation is all multiply/add;;. 

The key part of the code j;; shown in FigurP :3. 

Table 'i Sl!IIUntlrizes the performance re~ult~. 

\\·e see that we gr·t ,;inglt' prf"l'ision accuracy in 

only 19 cydes ami double preeiiiion in 2:3 cycle<". 

Because thi;; algorithm outperform,; the dirPt't 

entluation b,· a factor of xwarh- 'i. un :'\-l,o•h· eodP 
' . . 

equivalence (r2,ir2) 

it= ishft(ir2,-20) 

x = r2 * u(it) 
XX = 2.d0*x - 3.dQ 

x3 = O.SdO*x*x*x 

s = dO+xx*(dl+xx*(d2+xx*d3))) 

s = s*(l.Sd0-x3*s*s) 

result = s*t{it) 

FIGURE 3 Code for the hybrid nwthod. A third onl<'r 

Cheby~hev fit and mw _'\ewton iteration ar" ,;llllW!\. Tlw 

coefficient;; d and the arrays u and t were ealculawd i11 

the setup routine. 



Table 4. Summary of Measurements of Accuracy 

and Time for the Hybrid Method* 

fl Error Holled Cnrolled 

0 7.2 X 10-l 9 7 
1 1.6 X 10-l 10 10 

2 3.1 X 10-2 12 11 

3 6.0 X 10-:l 13 12 
-i 1.1 X 10-3 16 1:3 

5 2.1 X 1Q--t 17 H 
:\1 6.6 X 10-R 23 19 
:\2 6.6 X 10-l:i :30 2:3 

--~---

* The fir~t six rows are the order of the CIH'byehe\' fit: the 

la~t two arc the :'>ewton iterations. Cnrolled refert; to loops 

unrollt•d <'igln ways. Times are in machine cycles per element. 

using this approach should run considerably 

faster. 

The referee pointed out one more trick that re

duces the times in Table -+ by one cycle per ele

ment. The Chebychev polynomials are evaluated 

on the interval -1 :s: x < 1 while we have done a 

range reduction to 1 :5 ur2 < 2. The variable xx is 

used to do the required change of ,·ariables. Ex

amination of the code shows that XX can be sub

stituted into the polynomial approximation for s. 

the terms can be arranged, and the new coeffi

cients precomputed. These new coefficients. call 

them gt; are related to the dt; by 

go= do- :3r/1 + 9d:1- 27d, + 81d4 - 2-t3d:; 

gl = 2d1- 12d2 + 5-td,- 216d4 + 810d:; 

gJ = -td2- :36d~ + 216d4- 1080J:; 

g:~ = 8d, - 96d4 + 720d.; 

g; = 32d:; 

Table 5. Coeffidents of the :\linimax Fit* 

k c d 

0 0. 60800:.~:36 O.S-t·H17-+1 7. 0.'5-+:):2-i 70 

1 - () .:309;) 1280 -0.272:27;)6-i H.85088557 

2 (). 0661 :3:3-t 7 0.11188678 H. 708:.~2:31 0 

:3 -0.01:3:21:311 -0.(H:32i:377 -7.8370::G)5 

i 0.0023-+752 0.0:20:38017 2.1 '709-+376 

5 -O.OO<H80-t:~ -0.00-:'6869:3 -0.2-+39817-i 

* Three limn~ are l·!i,·en: care the coefficients of the orthog

onal poly!H>Illialh: dare the codficit•nt' of the monomials on 

[- L 1:: g are the codliriems of the monmnials on [ 1. :r. 
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We now e\aluate the polynomial 

s = go + (ur2)(g1 

+ (ur2)(g2 + (ur2)(g:i + (ur2)(g'* + (ur2)gs)))). 

The complete subroutine, including the set-up 

code, is shown in the Appendix; the coefficients 

are shown in Table 5. 

3 CONCLUSIONS 

How can I beat the performance of a highly tuned 

system routine with Fortran code? Simple-! 

cheat. 

I <'heat in a number of \\'3\'S. First of alL I f'valu

ate the function directly rather than in pieces. 

Second, I cheat by not getting the last few bits 

right. Finally, I cheat by not doing any error 

checking. (I could take the absolute value of the 

input at the cost of one additional cycle.) How

ever, the output value is accurate for any floating

point input. Yery large input values produce 

denormalized results: \·ery small inpUt values pro

duce floating point infinity as they should. 

If your machine supports the IEEE double ex

tended format [6], a format with at least 64: bits in 

the fraction that is usually resen·ed for data kept 

in the registers. you can get the last few hits right 

using a simple trick. Compute the array t in ex

tended precision. but store it as two double preci

sion numbers. t ( 1, i) and t (2, i). Then the fi

nal scaling becomes s * ( t ( 1, i) + t ( 2, i) ) . I 
could not check the accurac\· because the RISC 

System/6000 does not support the double ex

tended format. but the change added only 1 cycle 

per result to the time of the unrolled loop. 

Is it worth the effort and worry to use this new 

approach? If your calculation is typical and 

spends 3/-t of its time eyaJuating the acceleration, 

speeding up this one line of code by a factor of :3 
will cut your total run time in halL 
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APPENDIX 1 

Sample Code 

This Appendix contains the complete version of 
the code as measured. For the sake of space, I 
changed the loop unrolling from eight -way to two
way. Some points are worthy of note. 

If working with single precision data, change 
the shift to ishft (X, 23) because IEEE single 
precision only uses 8 bits for the characteristic. 

Also, the center for the arrays t and u should be at 
127. 

Some svstems do not allow continuation of exe
cution foilowing an overflow. Becau;;e r-:li'J. will 

underflow and overflow at the Loundarie:o; of the 
floating-point arithmetic. adjust loop limit;; on 
these machines. However. make sure that theta
ble is filled properly. Cnderflow should produce a 
true zero and overflow should produce l1oatinl! 
point infinity. 

c Approximate r**(-3/2) using Newton with Chebychev first guess 
c 
c Initialize arrays by calling with n 
c 

0 on first call 

c 

subroutine r32i ( a, r2, ir2, n 
implicit double precision ( a-h, o-z) 
parameter ( ncheb ~ 200 ) 
save gO, g1, g2, g3, g4, g5, c, t, u 

c Calling sequence 
c 
c a 
c r2 
c ir2 
c n 
c 

c 

= 
= 
::::;: 

::::: 

output array 
input array 
input array to be used as an integer 
length of input and output arrays 

dimension a(n), r2(n), ir2(2,n) 

c Local variables 
c 

c f 

c z = 
c c 

c d 

c g 

c t 
c u 
c 

c 

temporary array needed to compute c 
temporary array needed to compute c 
coefficients of Chebychev approximation 
coefficients of monomial fit on -1 < x < 1 
coefficients of monomial fit on 1 < x < 2 
table of (2**kl**(-3/2) for -1024 < k < 1024 
table of 1/2**k for -1024 < k < 1024 

dimension t(0:2046),u(0:2046),c(O:ncheb-l),f(ncheb) ,z(ncheb) 

c Function shifted from 1 to 2 to -1 to 1 
c 

func(r) = (l.SdO + O.SdO*r)**(-1.5) 
c 
c If not first call, then compute function 
c 

if (n .gt. 0) then 
c 
c Approximate results loop unrolled 2 ways 
c A greater degree of loop unrolling will probably perform better 



c 

c 

c 

c 

do i = 1, n, 2 

it= ishft(ir2(1, i ),-20) 

X= r2 (i) * U(it) 

X3 = 0.5d0*X*X*X 
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s gO+ x*(gl + x*(g2 + x*(g3 + x*(g4 + x*g5 J ))) 

s = s*(1.5dO-x3*s*s) 
s = s*(1.5dO-x3*s*sl Use for double precision 

a(i) = s*t(it) 

it= ishft(ir2(1,i+1),-20) 

x = r2(i+l) * u(itl 

x3 = 0.5dO*x*x*x 
s gO+ x*(g1 + x*(g2 + x*(g3 + x* (g4 + x*g5 J ))) 

s = s*(1.5d0-x3*s*sl 
s = s*(1.5dO-x3*s*s) Use for double precision 

a(i+1l = s*t(it) 

enddo 

c Finish up unrolled loop 

c 

c 

c 

do j = i, n 

it= ishft(ir2(l,j),-20) 

x = r2(j) * u(it) 

x3 = O.SdO*x*x*x 
s gO+ X*(g1 + x*(g2 + X*(g3 + X*(g4 + X*g5) I)) 

s = s*(1.5d0-x3*s*s) 
s = s*(1.5dO-x3*s*s) Use for double precision 

a (j) s*t (it) 

enddo 

else 

c If the first call, build table of results for powers of 2 

c 

c 

xi = 1. dO 

t(1023) = l.dO 

U(l023) =l.dO 

do i = 1, 1023 

xi= 0.5dO*xi 

t (1023+i l xi *sqrt (xi) 

t(1023-i) 1.d0/t(1023+i) 

u(1023+il =xi 

U(l023-i) l.dO/xi 

end do 

c Precompute zeros of Chebychev polynomials and function 

c 

c 

pi= 4.d0 

do k = 1, 
z (k) 

* atan 

ncheb 

pi * ( k 
COS(Z(k)) 

1. dO ) 

O.SdO l I ncheb 

zero 

f (k) 

enddo 

= func(zero) 
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c Get coefficients of Chebychev fit 
c 

c 

factor 2.dO/ncheb 
do j = 0, ncheb-1 

sum= o.do 
do k = 1, ncheb 

arg z(k) * j 
sum= sum+ f(k)*cos(arg) 

enddo 
c(j) = factor*sum 

end do 

c Get coefficients of powers of x on -1 < x < 1 
c 

do = 
dl = 
d2 
d3 

d4 = 
d5 

0.5dO*c{0) c(2) + c(4) 

c (1) 

2.0dO*c(2) 

4.0dO*c{3) 

8.0dO*c(4) 

3.dO*c(3) + 5.dO*c(5) 

8.dO*c(4) 

20.30*c(5) 

= 16.0d0*C(5) 
c 

c Get coefficients of powers of x on 1 < x < 2 

c 

gO=d0-3.0dO*dl+ 9.0dO*d2-27.0dO*d3+ 81.0dO*d4- 243.0dO*d5 

g1= 2.0dO*d1-12.0dO*d2+54.0dO*d3-216.0dO*d4+ 810.0dO*d5 

g2= 4.0dO*d2-36.0dO*d3+216.0dO*d4-1080.0dO*d5 

g3::c 8. OdO*d3- 96. OdO*d4+ 720. OdO*d5 

g4= 16.0dO*d4- 240.0dO*d5 

g5= 32.0dO*d5 
end if 

c 

end 
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