
Speeding up Pattern Matching by Optimal

Partial String Extraction
TAN Jianlong1, LIU Xia1,2, LIU Yanbing1,2,LIU Ping1

1Institute of Computing Technology, Chinese Academy of Sciences, Beijing, 100190
2Graduate School of Chinese Academy of Sciences, Beijing, 100049

e-mail:{tan,liuxia,liuping,liuyanbing}@software.ict.ac.cn

Abstract—String matching plays a key role in web content
monitoring systems. Suffix matching algorithms have good time
efficiency, and thus are widely used. These algorithms require
that all patterns in a set have the same length. When the patterns
cannot satisfy this requirement, the leftmost characters, m
being the length of the shortest pattern, are extracted to
construct the data structure. We call such -character strings
partial strings. However, a simple extraction from the left does
not address the impact of partial string locations on search speed.
We propose a novel method to extract the partial strings from
each pattern which maximizes search speed. More specifically,
with this method we can compute all the corresponding searching
time cost by theoretical derivation, and choose the location which
yields an approximately minimal search time. We evaluate our
method on two rule sets: Snort and ClamAV. Experiments show
that in most cases, our method achieves the fastest searching
speed in all possible locations of partial string extraction, and is
about 5%-20% faster than the alternative methods.

Keywords: string matching; pattern matching; multiple string
matching; SBOM algorithm; Wu Manber algorithm.

I. INTRODUCTION
The Internet allows rich user activities and produces an

enormous volume of traffic owing to its high-degree
connectivity and increasing scale. Because of its complexity
and lack of central control, web content monitoring has
inarguably become one of the most important techniques in
detecting malicious attacks. String matching is a key
component in such systems, which rely on the detection of
certain patterns in web content that could potentially be
harmful. There are many existing string matching algorithms,
such as SBOM (Set Backward Oracle Matching)[3], Aho-
Corasick[4], Set Horspool[5], Wu-Manber[6], SOG[7], etc.
These matching algorithms are classified into two categories:
prefix matching and suffix matching. In general, suffix
matching is faster and more effective in handling long patterns
than prefix matching; thus, it is used more widely.

Suffix matching algorithms require patterns of the same
length, but this requirement is not satisfied all the time because
of the randomness of rule sets. Most suffix matching
algorithms adopt a very simple method to extract partial strings
with the same length. Take the Wu-Manber algorithm as an
example. This algorithm simply selects the leftmost m

characters to construct the data structure (where m denotes the
length of the shortest pattern). However, such a selection rule
ignores the potential impact of partial strings on the searching
time efficiency.

In this paper, we consider the problem of finding the
optimal location to extract partial strings from these patterns, in
terms of efficient searching time. In the training process, the
length of partial strings is determined by the shortest pattern’s
length. Having located the best position for an equal partial
string extraction, suffix matching algorithms can construct their
basic data structure with these equal partial strings, by which
searching texts can achieve the fastest speed.

Figure 1. Partial strings at different locations result in different searching
speed: right/ left/ middle means partial strings are extracted from the right/

left/ middle m characters. (pattern number range: 3000-10000, pattern length
range: 5-18)

Before introducing our method, we first investigate the
influence on searching time cost when using different strategies
of partial string selection. With the Wu-Manber algorithm, we
extract partial strings from three positions: the leftmost, the
rightmost, and the middle of the pattern. Figure 1 shows the
comparison of their corresponding searching speed. We can see
that the speed of extracting partial strings from the leftmost
characters is the fastest, while extracting from the rightmost
is the slowest. Speed of extracting from the middle position lies
between. The speed of the left extraction is about 50% faster

The First International Workshop on Security in Computers, Networking and Communications

978-1-4244-9920-5/11/$26.00 ©2011 IEEE 1047

than that of the middle, and about 60% faster than that of the
right. Such contrast demonstrates that extracting partial strings
from different positions results in different searching time cost.
Therefore, it is necessary to design an efficient partial-string
extraction method to select proper partial strings of length .
With these partial strings extracted from the appropriate
positions, we expect to achieve the fastest searching speed.

Our method is based on the principle that searching texts by
the data structure constructed with the extracted partial strings
should incur a minimal time cost. In the training process, we
first extract all the partial strings from different positions in the
pattern set. Second, we collect all the substrings within one
certain partial string, and record the corresponding time cost of
searching the training data text. These corresponding time costs
are summed up to obtain the total time cost for the partial string.
At this point, we compare the total time costs of all partial
strings from different positions, and select the location with the
minimum time cost. We can find the optimal locations of other
patterns in the same way. Finally, we obtain the optimal partial
strings set from the original pattern set. We choose the training
texts similar with the actual texts to ensure that the extraction is
effective.

II. RELATED WORKS
In order to better present our method, we first define some

symbols:

Table 1 Definitions of some symbols
P={p1,

p2,…pn}
The original pattern set, where pattern

may have different lengths
qij The j-th partial string in the i-th pattern
T A text to be searched
m The shortest pattern’s length in P
di When searching text with SBOM, the

number of matched characters in a pattern
within the i-th window of text.

k When searching a text of length t by the
factor oracle, the times of slipping

windows
li The length of the i-th pattern
x qij’s offset from the beginning position of

the i-th pattern
z The length of sp,x

y,z
y The offset of si

j,k from the beginning
position in qij

Ssub={sp,x
y,z} The substring set, with the substring

defined by x,y,z,p
Csub={cp,x

y,z} The occurrences of Ssub in R
R The text to be searched in the training

process

Q={q1i, q2j,
q3k…qnh}

The set of extracted partial strings of
length m in P

 SBOM[3] algorithm is adopted in our method to find the
optimal partial string extraction location during the training
process. It uses factor oracle as its data structure, which is
based on weak factor recognition. [3] has defined this new

automaton built on a pattern pi=c1c2…cm which acts like an
oracle on the set of factors ci…cj. If a string is recognized by
this automaton, it may be a factor of p; On the other hand, if a
string is rejected, it is surely not a factor.

Figure 2 shows how to search a text with the BOM
algorithm. The factor oracle is constructed by one pattern pi.
This algorithm adopts suffix matching in one window of size
m, and when the matching is completed, we slide the window
by a proper distance to start the next round of matching. Within
one window, the factor oracle built by pi is used to search for
all the factors of pi from the right to the left of the window in
the text. At first, two pointers point at the rightmost of the
pattern and the last position of the window in the text
respectively. Then we match the two pointed characters. If the
match is successful, both two pointers are decreased by one;
otherwise, the matching in this window is over. The next
window is shifted by m-di if a text t=titi+1…ti+di-1 is recognized
by the oracle. If the pointers are shifted to the start of the whole
window then the occurrences of pi are added by one. The
worst-case complexity of BOM is . However, under a
model of independence and equiprobability of characters, the
BOM algorithm has an optimal average complexity of

.

Figure 2. BOM searches for the factor of qij in the text and computes the
next shift distance

 SBOM is to find the occurrences of a pattern set instead of
one pattern, and it is an effective suffix matching algorithm
when handling long patterns. However, SBOM still requires a
pattern set with elements of the same length (as with other
suffix matching algorithms). This condition can seldom be
satisfied in practice, and there has been no effective way to
solve this problem. Hence we aim to design a method which
will locate the optimal positions for partial strings extraction
within a certain pattern set. In Section III, we will describe this
method in details.

 [8] proposed a novel alphabet sampling technique that
chooses a subset of the alphabet and selects the corresponding
subsequence of text. This method can speed up both online and
indexed string matching because the searching is carried out on
the subsequence. The candidate matches are then verified in the
full text. [8] and our method share a commonality of speeding
up the searching process by selecting representative subset.

1048

However, [8] selects subset both from original pattern set and
text, while our method only selects subset from pattern set.
Furthermore, [8] can select the letters from noncontinuous
positions, but ours just selects a section of partial string from
some certain position in one pattern. Both these two methods
can be applied in suffix matching algorithms.

[9] optimizes matching algorithms by compressing DFAs,
based on the observation that the names of states are actually
meaningless in practice. This paper encodes states in such a
way that all transitions to a specific state can be represented by
a single prefix that defines a set of current states. Hence the
problem of pattern matching is reduced to the well-studied
problem of Longest Prefix Matching. But our paper aims to
optimize matching by speeding up the searching process.
Furthermore, [9] is applied to the automaton based algorithms,
while our method is used in the suffix algorithms.

III. OUR METHOD: OPTIMAL PARTIAL STRING
EXTRACTION

The basic idea behind our method is a minimum time cost
in searching training texts by the factor oracle built by Q.

Figure 3. SBOM finds all the occurrences of the pattern set Q in text T.

A. Searching Text by The Factor Oracle Built by Pattern Set
Figure 3 illustrates the searching process by SBOM with a

certain pattern set.

In Figure 3, two pointers have moved d1 off the last
position in this window, which means there are only d1
characters that were successfully matched. The window is then
shifted after the failed search by the oracle. The two pointers
are set to the last position of the new window again. These two
pointers are decreased until the pointed characters fail to
match. These steps are iterated until the end of the text, with
the total number of times in which the window is slid being k.

Within the i-th window, the comparisons between the
corresponding two characters have been completed for di times.

So the total time cost is , and the equation

 holds for k. Formula 1 is the total time cost.

 (Formula 1)

 (Formula 2)

The average time cost on each letter is determined using
Formula 2. We could change the value of k to achieve the
minimum average time cost. Apparently, when k is equal to the
minimum value, the average time cost is also the minimal. k is
determined by Q. Therefore, we need to enumerate all possible
values of Q to find the minimum k.

However, the potential number of Q is exponential, because
it could be obtained by any combination of different locations
for partial strings of length m in each pattern. Every pattern pi
has partial strings, and the number of different
combinations is . Hence it is impractical to

enumerate them all. Thus a compromise solution is to design a
method that could select Q with approximately minimum
searching time cost. Section B will detail the method.

Figure 4. One example of substring si

j,k in qij

Figure 5. Looking for all the occurrences of sp,x

y,z in the training text R.

B. Our Extracting Location Method
We have addressed the impossibility of enumerating all

possible combinations of the various locations for partial
strings of length m in P in Section A. However, if there is only
one pattern in P, it is easy to find the best location in this
pattern which yields the minimum time cost. Thus, we propose
locating the proper partial string in each pattern, respectively.
In this approach, Q is the union of all these partial strings.
Although this method may not provide the best extraction, it
could obtain approximately optimal one. Experiments show
that the extraction can achieve good searching time efficiency.

In our method, for one pattern, we focus on the time cost of
searching all the substrings of each partial string in the training
text. The time cost is computed as follows: All of the
substrings in one partial string of length m are used to build an
Aho-Corasick automaton. By searching the training data text
on this automaton, their corresponding occurrences can be
obtained. The time cost of each substring is computed
according to the formula discussed in Section A. Then we can
sum these time costs up to get the total time cost of this partial
string. Similarly, we can compute other total time costs which
correspond to other partial strings of length m in the same

1049

pattern. After comparing these total time costs, we select the
partial string which yields the minimum time cost. Other
locations for partial strings are determined in the same way.
Finally, Q consists of a union of the partial strings incurring the
minimum time costs.

Figure 4 shows an example of substring of length z in one
certain partial string. After finding all occurrences of the
substring denoted by ci

j,k,the time cost of si
j,k is: ci

j,k*z, which
equals to (, , ,)*F x y m R z (ci

j,k is determined by the value of
function F(x, y, m, R)). Thus we can obtain the formula of time
cost:

(, , ,)*F x y m R z (Formula 3)

The values of x, y and z can be changed to obtain all of the
substrings and their corresponding time cost. When these
values are summed up, we finally obtain the total time cost of
the whole partial string. Similarly, we can compute the total
time costs of other partial strings. By comparing these time
costs we can identify the best location for partial string
extraction in one pattern. Proper locations for partial strings in
other patterns are obtained in the same way. Finally, Q is the
union of all partial strings extracted from P.

In the training process, our location algorithm is presented
as follows:

Input: P(Original Pattern Set), R(Train Data)
Output: Q(the set of extracted partial strings of length m in P)
1. for each pattern pt in P
2. Ssub ← {sp,x

y,z }
3. Ac ← Build_AC(Ssub)
4. Csub={ cp,x

y,z } ← Search_InAC(R)
5. for each partial string ppt in pt
6. minx ← 0; mincost ← +∞ ; ps ← ξ
7. for x=0 to x<|ppt|-m

8. costx ← ,
,

0 1

m ym
ppt z
y x

y z

c
−

= =
∑∑

9. if costx<mincost do
10. mincost=costx; Minx=x; ps=ppt
11. end of if
12. end of for
13. end of for
14. Add ps to Q
15. end of for

 This pre-process does not cost much time, with its
complexity O(|P|*(l-m)*m +|R|). In the next section, we will
present experiment results and analysis.

IV. EXPERIMENTS AND ANALYSIS
In the experiments, our training pattern datasets are

collected from both Snort[1], an intrusion detection system,
and ClamAV[2], an open source antivirus toolkit in Unix. All
experiments are carried out on a Window XP platform with a
2.93Hz dual core CPU and 2GB RAM.

In the following figures, right (left/middle) was extracted
from the rightmost (leftmost/middle) m characters. Mincost
represents the extraction as computed by our method.

A. Speed comparison on partial string extractions at
different positions.
In our first experiment, we compare different searching

speed of SBOM when partial strings are extracted from
different positions.

In Figure 6, we can see that extracting Q from P at the
position computed by our method yields the fastest searching
speed. The speed is about 20% faster than the second best
speed which is obtained by the right Q, and is about 30% faster
than the slowest one.

Figure 6. Speed comparison of partial string extraction at different positions.
(pattern set is from Snort, pattern number:4656, pattern length range: 5-18).

B. Speed comparison on partial strings extraction at
different positions with pattern set changing
In this experiment, we evaluate the variation of searching

speed as the scale of pattern set changes. In Figure 7, we can
see the speed at various locations for partial string extractions
decreases as the size of pattern set scales up. Moreover, our
algorithm consistently has the best searching speed as the
pattern set changes, which remains about 20% faster than the
next best speed. The speed of the other three partial string
extractions is on a similar level.

To illustrate the universality of our algorithm, we choose
another pattern set from ClamAV. As demonstrated in Figure
8, we can also conclude that the searching speed of the
extracted partial strings obtained by our algorithm is faster than
any others. The other three speeds remain comparable.

Figure 9 illustrates the length of the shortest pattern’s
impact on the searching speed. As the shortest length increases,
the searching speed is also increasing. It indicates that the
length of the shortest pattern is an important factor in
degrading the performance of searching. When the shortest
length of patterns are larger than 12, the searching speed of our
method drops. The reason is that when the shortest length is

1050

large enough, these partial strings are so effective that they are
almost the same in the searching speed.

Our algorithm allows the proper partial strings extraction
from a pattern set, with random pattern lengths meeting most
suffix matching algorithms' requirements. Each of the
experiments discussed here shows that choosing the partial
strings extracted by our method can achieve better searching
speed than those by other methods. Moreover, the advantage of
our method is more obvious on the Snort pattern set. When the
scale of pattern set increases, our method can achieve more
graceful degradation.

Figure 7. Speed comparisons of partial string extractions at different
positions with pattern sets changing. Pattern sets are from Snort. (pattern

number range: 1000-3500, pattern length range: 5-18).

Figure 8. Speed comparison on partial string extractions at different
positions with pattern sets of various scales. The pattern sets are selected from

ClamAV (pattern number range: 1000-3500, pattern length range:4-16).

V. CONCLUSION AND FUTURE WORK
In this paper, we propose a novel method to extract optimal

partial strings based on achieving the fastest searching speed.

According to the theoretical derivation in Formula 2, we need
to enumerate all possible positions of partial strings in original
pattern sets to see which yields the fastest searching speed. The
impracticality of this approach, however, leads us to look for
another method to find the approximate location. Experiments
show that our method can reach better searching speed in all
the locations of partial string extractions in most cases, and is
about 5%-20% faster than the closest one on the Snort and
ClamAV data set.

Figure 9. Speed comparison on partial string extractions at different
positions with various lengths of the shortest pattern (pattern number:4656,

the length of the longest pattern: 18).

We plan to survey this critical point in more depth in future
work. We hope to find a way to avoid the combinatorial
explosion, so that we can locate the exact optimal extraction.

ACKNOWLEDGMENT
This work is supported by the National Basic Research

Program of China (973 Program) under grant No.
2007CB311100, the National High Technology Research and
Development Program of China (863 Program) under grant
No. 2009AA01Z436, and the National Natural Science
Foundation of China under grant No. 61070026.

REFERENCES
[1] Snort Rule. http://www.snort.org/snort-rules
[2] ClamAV Rule. http://www.clamav.net/lang/en/download/cvd/
[3] C. Allauzen, M. Crochemore and M. Raffinot, “Efficient Experimental

String Matching by Weak Factor Recognition”, in Proc. 12th Annu.
Symp. on Combinatorial Pattern Matching, Jerusalem, July 1–4, 2001,
pp. 51-72.

[4] A. Aho and M. Corasick, Bell Laboratories. “Efficient String
Matching:An Aid to Bibliographic Search”, in Communications of the
ACM, vol. 8, 1975, pp. 333-340.

[5] G. Navarro and M. Raffinot, Flexible Pattern Matching in Strings:
Practical on-line search algorithms for texts and biological sequence.
Cambridge: Cambridge University Press, 2002.

[6] S. Wu and U. Manber, “A fast algorithm for multi-pattern searching”,
Dept. of Computer Science, University of Arizona, Tucson, AZ, TR-94-
17, 1994.

1051

[7] L. Salmela, J. Tarhio and J. Kytojoki, “Multi-Pattern String Matching
with q-Grams”, in Proc. 14th Annu. Symp. on Combinatorial Pattern
Matching, Michoacan , June 25–27, 2003, pp. 211-224.

[8] F. Claude, G. Navarro, H. Peltola, L. Salmela and J. Tarhio, “Speeding
Up Pattern Matching by Text Sampling”, in Proc. 15th Intl. Symp. on
String Processing and Information Retrieval , Melbourne, November
10-12, 2008, pp. 87-98.

[9] A. Bremler-Barr, D. Hay and Y. Koral, “CompactDFA: Generic State
Machine Compression for Scalable Pattern Matching”, in Proc. 29th
IEEE INFOCOM, San Diego, March 14-19, 2010, pp. 1-9.

[10] C. Allauzen and M. Raffinot, “Factor oracle of a set of words”, Institute
Gaspart-Monge, University de Marne-la-vallee, TR-99-11,1999.

[11] X. Wang, “The Design and Analysis of Computer Algorithms”, Beijing:
Publishing House of Electronic Industry, 2001

1052

