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Abstract—String matching plays a key role in web content 
monitoring systems. Suffix matching algorithms have good time 
efficiency, and thus are widely used. These algorithms require 
that all patterns in a set have the same length. When the patterns 
cannot satisfy this requirement, the leftmost  characters, m 
being the length of the shortest pattern, are extracted to 
construct the data structure. We call such -character strings 
partial strings. However, a simple extraction from the left does 
not address the impact of partial string locations on search speed. 
We propose a novel method to extract the partial strings from 
each pattern which maximizes search speed. More specifically, 
with this method we can compute all the corresponding searching 
time cost by theoretical derivation, and choose the location which 
yields an approximately minimal search time. We evaluate our 
method on two rule sets: Snort and ClamAV. Experiments show 
that in most cases, our method achieves the fastest searching 
speed in all possible locations of partial string extraction, and is 
about 5%-20% faster than the alternative methods.  

Keywords: string matching; pattern matching; multiple string 
matching; SBOM algorithm; Wu Manber algorithm. 

I. INTRODUCTION 
The Internet allows rich user activities and produces an 

enormous volume of traffic owing to its high-degree 
connectivity and increasing scale. Because of its complexity 
and lack of central control, web content monitoring has 
inarguably become one of the most important techniques in 
detecting malicious attacks. String matching is a key 
component in such systems, which rely on the detection of 
certain patterns in web content that could potentially be 
harmful. There are many existing string matching algorithms, 
such as SBOM (Set Backward Oracle Matching)[3], Aho-
Corasick[4], Set Horspool[5], Wu-Manber[6], SOG[7], etc. 
These matching algorithms are classified into two categories: 
prefix matching and suffix matching. In general, suffix 
matching is faster and more effective in handling long patterns 
than prefix matching; thus, it is used more widely. 

Suffix matching algorithms require patterns of the same 
length, but this requirement is not satisfied all the time because 
of the randomness of rule sets. Most suffix matching 
algorithms adopt a very simple method to extract partial strings 
with the same length. Take the Wu-Manber algorithm as an 
example. This algorithm simply selects the leftmost m 

characters to construct the data structure (where m denotes the 
length of the shortest pattern). However, such a selection rule 
ignores the potential impact of partial strings on the searching 
time efficiency.  

In this paper, we consider the problem of finding the 
optimal location to extract partial strings from these patterns, in 
terms of efficient searching time. In the training process, the 
length of partial strings is determined by the shortest pattern’s 
length. Having located the best position for an equal partial 
string extraction, suffix matching algorithms can construct their 
basic data structure with these equal partial strings, by which 
searching texts can achieve the fastest speed. 

 

Figure 1.  Partial strings at different locations result in different searching 
speed: right/ left/ middle means partial strings are extracted from the right/ 

left/ middle m characters. (pattern number range: 3000-10000, pattern length 
range: 5-18) 

Before introducing our method, we first investigate the 
influence on searching time cost when using different strategies 
of partial string selection. With the Wu-Manber algorithm, we 
extract partial strings from three positions: the leftmost, the 
rightmost, and the middle of the pattern. Figure 1 shows the 
comparison of their corresponding searching speed. We can see 
that the speed of extracting partial strings from the leftmost  
characters is the fastest, while extracting from the rightmost  
is the slowest. Speed of extracting from the middle position lies 
between. The speed of the left extraction is about 50% faster 
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than that of the middle, and about 60% faster than that of the 
right. Such contrast demonstrates that extracting partial strings 
from different positions results in different searching time cost. 
Therefore, it is necessary to design an efficient partial-string 
extraction method to select proper partial strings of length . 
With these partial strings extracted from the appropriate 
positions, we expect to achieve the fastest searching speed. 

Our method is based on the principle that searching texts by 
the data structure constructed with the extracted partial strings 
should incur a minimal time cost. In the training process, we 
first extract all the partial strings from different positions in the 
pattern set. Second, we collect all the substrings within one 
certain partial string, and record the corresponding time cost of 
searching the training data text. These corresponding time costs 
are summed up to obtain the total time cost for the partial string. 
At this point, we compare the total time costs of all partial 
strings from different positions, and select the location with the 
minimum time cost. We can find the optimal locations of other 
patterns in the same way. Finally, we obtain the optimal partial 
strings set from the original pattern set. We choose the training 
texts similar with the actual texts to ensure that the extraction is 
effective. 

II. RELATED WORKS 
In order to better present our method, we first define some 

symbols: 

Table 1 Definitions of some symbols 
P={p1, 

p2,…pn} 
The original pattern set, where pattern 

may have different lengths 
qij The j-th partial string in the i-th pattern 
T A text to be searched 
m The shortest pattern’s length in P 
di When searching text with SBOM, the 

number of matched characters in a pattern 
within the i-th window of text. 

k When searching a text of length t by the 
factor oracle, the times of slipping 

windows 
li The length of the i-th pattern 
x qij’s offset from the beginning position of 

the i-th pattern 
z The length of sp,x

y,z 
y   The offset of si

j,k  from the beginning 
position in qij 

Ssub={sp,x
y,z} The substring set, with the substring 

defined by x,y,z,p 
Csub={cp,x

y,z} The occurrences of Ssub in R 
R The text  to be searched in the training 

process 

Q={q1i, q2j, 
q3k…qnh} 

The set of extracted partial strings of 
length m in P 

 SBOM[3] algorithm is adopted in our method to find the 
optimal partial string extraction location during the training 
process. It uses factor oracle as its data structure, which is 
based on weak factor recognition. [3] has defined this new 

automaton built on a pattern pi=c1c2…cm which acts like an 
oracle on the set of factors ci…cj. If a string is recognized by 
this automaton, it may be a factor of p; On the other hand, if a 
string is rejected, it is surely not a factor. 

Figure 2 shows how to search a text with the BOM 
algorithm. The factor oracle is constructed by one pattern pi. 
This algorithm adopts suffix matching in one window of size 
m, and when the matching is completed, we slide the window 
by a proper distance to start the next round of matching. Within 
one window, the factor oracle built by pi is used to search for 
all the factors of pi from the right to the left of the window in 
the text. At first, two pointers point at the rightmost of the 
pattern and the last position of the window in the text 
respectively. Then we match the two pointed characters. If the 
match is successful, both two pointers are decreased by one; 
otherwise, the matching in this window is over. The next 
window is shifted by m-di if a text t=titi+1…ti+di-1 is recognized 
by the oracle. If the pointers are shifted to the start of the whole 
window then the occurrences of pi are added by one. The 
worst-case complexity of BOM is . However, under a 
model of independence and equiprobability of characters, the 
BOM algorithm has an optimal average complexity of 

. 

 

Figure 2.  BOM searches for the factor of qij in the text and computes the 
next shift distance 

 SBOM is to find the occurrences of a pattern set instead of 
one pattern, and it is an effective suffix matching algorithm 
when handling long patterns. However, SBOM still requires a 
pattern set with elements of the same length (as with other 
suffix matching algorithms). This condition can seldom be 
satisfied in practice, and there has been no effective way to 
solve this problem. Hence we aim to design a method which 
will locate the optimal positions for partial strings extraction 
within a certain pattern set. In Section III, we will describe this 
method in details.   

 [8] proposed a novel alphabet sampling technique that 
chooses a subset of the alphabet and selects the corresponding 
subsequence of text. This method can speed up both online and 
indexed string matching because the searching is carried out on 
the subsequence. The candidate matches are then verified in the 
full text. [8] and our method share a commonality of speeding 
up the searching process by selecting representative subset. 

1048



However, [8] selects subset both from original pattern set and 
text, while our method only selects subset from pattern set. 
Furthermore, [8] can select the letters from noncontinuous 
positions, but ours just selects a section of partial string from 
some certain position in one pattern. Both these two methods 
can be applied in suffix matching algorithms. 

[9] optimizes matching algorithms by compressing DFAs, 
based on the observation that the names of states are actually 
meaningless in practice. This paper encodes states in such a 
way that all transitions to a specific state can be represented by 
a single prefix that defines a set of current states. Hence the 
problem of pattern matching is reduced to the well-studied 
problem of Longest Prefix Matching. But our paper aims to 
optimize matching by speeding up the searching process. 
Furthermore, [9] is applied to the automaton based algorithms, 
while our method is used in the suffix algorithms. 

III. OUR METHOD: OPTIMAL PARTIAL STRING 
EXTRACTION  

The basic idea behind our method is a minimum time cost 
in searching training texts by the factor oracle built by Q.   

 

Figure 3.  SBOM finds all the occurrences of the pattern set Q in text T. 

A. Searching Text by The Factor Oracle Built by Pattern Set 
Figure 3 illustrates the searching process by SBOM with a 

certain pattern set. 

In Figure 3, two pointers have moved d1 off the last 
position in this window, which means there are only d1 
characters that were successfully matched. The window is then 
shifted after the failed search by the oracle. The two pointers 
are set to the last position of the new window again. These two 
pointers are decreased until the pointed characters fail to 
match. These steps are iterated until the end of the text, with 
the total number of times in which the window is slid being k. 

Within the i-th window, the comparisons between the 
corresponding two characters have been completed for di times. 

So the total time cost is , and the equation  

 holds for k. Formula 1 is the total time cost. 

    (Formula 1) 

     (Formula 2) 

The average time cost on each letter is determined using 
Formula 2. We could change the value of k to achieve the 
minimum average time cost. Apparently, when k is equal to the 
minimum value, the average time cost is also the minimal. k is 
determined by Q. Therefore, we need to enumerate all possible 
values of Q to find the minimum k. 

However, the potential number of Q is exponential, because 
it could be obtained by any combination of different locations 
for partial strings of length m in each pattern. Every pattern pi 
has  partial strings, and the number of different 
combinations is . Hence it is impractical to 

enumerate them all. Thus a compromise solution is to design a 
method that could select Q with approximately minimum 
searching time cost. Section B will detail the method. 

 
Figure 4.  One example of substring si

j,k in qij 

 
Figure 5.    Looking for all the occurrences of sp,x

y,z in the training text R. 

B.  Our Extracting Location Method 
We have addressed the impossibility of enumerating all 

possible combinations of the various locations for partial 
strings of length m in P in Section A. However, if there is only 
one pattern in P, it is easy to find the best location in this 
pattern which yields the minimum time cost. Thus, we propose 
locating the proper partial string in each pattern, respectively. 
In this approach, Q is the union of all these partial strings. 
Although this method may not provide the best extraction, it 
could obtain approximately optimal one. Experiments show 
that the extraction can achieve good searching time efficiency. 

In our method, for one pattern, we focus on the time cost of 
searching all the substrings of each partial string in the training 
text. The time cost is computed as follows: All of the 
substrings in one partial string of length m are used to build an 
Aho-Corasick automaton. By searching the training data text 
on this automaton, their corresponding occurrences can be 
obtained. The time cost of each substring is computed 
according to the formula discussed in Section A. Then we can 
sum these time costs up to get the total time cost of this partial 
string. Similarly, we can compute other total time costs which 
correspond to other partial strings of length m in the same 
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pattern. After comparing these total time costs, we select the 
partial string which yields the minimum time cost. Other 
locations for partial strings are determined in the same way. 
Finally, Q consists of a union of the partial strings incurring the 
minimum time costs. 

Figure 4 shows an example of substring of length z in one 
certain partial string. After finding all occurrences of the 
substring denoted by ci

j,k,the time cost of si
j,k is: ci

j,k*z, which 
equals to ( , , , )*F x y m R z ( ci

j,k is determined by the value of 
function F(x, y, m, R) ). Thus we can obtain the formula of time 
cost: 

( , , , )*F x y m R z       (Formula 3) 

The values of x, y and z can be changed to obtain all of the 
substrings and their corresponding time cost. When these 
values are summed up, we finally obtain the total time cost of 
the whole partial string. Similarly, we can compute the total 
time costs of other partial strings. By comparing these time 
costs we can identify the best location for partial string 
extraction in one pattern. Proper locations for partial strings in 
other patterns are obtained in the same way. Finally, Q is the 
union of all partial strings extracted from P.  

In the training process, our location algorithm is presented 
as follows: 

Input: P(Original Pattern Set), R(Train Data) 
Output: Q(the set of extracted partial strings of length m in P) 
1. for each pattern pt in P 
2.     Ssub ← {sp,x

y,z }  
3.     Ac ← Build_AC(Ssub) 
4.     Csub={ cp,x

y,z  } ← Search_InAC(R) 
5.      for each partial string ppt in pt 
6.          minx ← 0;  mincost ← +∞ ; ps ← ξ  
7.          for x=0 to  x<|ppt|-m 

8.                   costx ← ,
,

0 1

m ym
ppt z
y x

y z

c
−

= =
∑∑  

9.                    if costx<mincost do 
10.                    mincost=costx;  Minx=x;   ps=ppt 
11.                    end of if                  
12.         end of for  
13.      end of for 
14.      Add ps to Q 
15. end of for 

 This pre-process does not cost much time, with its 
complexity O(|P|*(l-m)*m +|R| ). In the next section, we will 
present experiment results and analysis. 

IV.  EXPERIMENTS AND ANALYSIS 
In the experiments, our training pattern datasets are 

collected from both Snort[1], an intrusion detection system, 
and ClamAV[2], an open source antivirus toolkit in Unix. All 
experiments are carried out on a Window XP platform with a 
2.93Hz dual core CPU and 2GB RAM. 

In the following figures, right (left/middle) was extracted 
from the rightmost (leftmost/middle) m characters. Mincost 
represents the extraction as computed by our method. 

A. Speed comparison on partial string extractions at 
different positions. 
In our first experiment, we compare different searching 

speed of SBOM when partial strings are extracted from 
different positions.  

In Figure 6, we can see that extracting Q from P at the 
position computed by our method yields the fastest searching 
speed. The speed is about 20% faster than the second best 
speed which is obtained by the right Q, and is about 30% faster 
than the slowest one. 

 

Figure 6.  Speed comparison of partial string extraction at different positions. 
(pattern set  is from Snort, pattern number:4656, pattern length range: 5-18). 

B. Speed comparison on partial strings extraction at 
different positions with pattern set changing 
In this experiment, we evaluate the variation of searching 

speed as the scale of pattern set changes. In Figure 7, we can 
see the speed at various locations for partial string extractions 
decreases as the size of pattern set scales up. Moreover, our 
algorithm consistently has the best searching speed as the 
pattern set changes, which remains about 20% faster than the 
next best speed. The speed of the other three partial string 
extractions is on a similar level. 

To illustrate the universality of our algorithm, we choose 
another pattern set from ClamAV. As demonstrated in Figure 
8, we can also conclude that the searching speed of the 
extracted partial strings obtained by our algorithm is faster than 
any others. The other three speeds remain comparable. 

Figure 9 illustrates the length of the shortest pattern’s 
impact on the searching speed. As the shortest length increases, 
the searching speed is also increasing. It indicates that the 
length of the shortest pattern is an important factor in 
degrading the performance of searching. When the shortest 
length of patterns are larger than 12, the searching speed of our 
method drops. The reason is that when the shortest length is 
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large enough, these partial strings are so effective that they are 
almost the same in the searching speed. 

Our algorithm allows the proper partial strings extraction 
from a pattern set, with random pattern lengths meeting most 
suffix matching algorithms' requirements. Each of the 
experiments discussed here shows that choosing the partial 
strings extracted by our method can achieve better searching 
speed than those by other methods. Moreover, the advantage of 
our method is more obvious on the Snort pattern set. When the 
scale of pattern set increases, our method can achieve more 
graceful degradation. 

 

Figure 7.  Speed comparisons of partial string extractions at different 
positions with pattern sets changing. Pattern sets are from Snort. (pattern 

number range: 1000-3500, pattern length range: 5-18). 

 

Figure 8.  Speed comparison on partial string extractions at different 
positions with pattern sets of various scales. The pattern sets are selected from 

ClamAV (pattern number range: 1000-3500, pattern length range:4-16). 

V. CONCLUSION AND FUTURE WORK 
In this paper, we propose a novel method to extract optimal 

partial strings based on achieving the fastest searching speed. 

According to the theoretical derivation in Formula 2, we need 
to enumerate all possible positions of partial strings in original 
pattern sets to see which yields the fastest searching speed. The 
impracticality of this approach, however, leads us to look for 
another method to find the approximate location. Experiments 
show that our method can reach better searching speed in all 
the locations of partial string extractions in most cases, and is 
about 5%-20% faster than the closest one on the Snort and 
ClamAV data set. 

 

Figure 9.  Speed comparison on partial string extractions at different 
positions with various lengths of the shortest pattern (pattern number:4656, 

the length of the longest pattern: 18). 

We plan to survey this critical point in more depth in future 
work. We hope to find a way to avoid the combinatorial 
explosion, so that we can locate the exact optimal extraction.  
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