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Abstract This paper deals with and gives some solutions to the problem of how a 
small device such a s  a smart card can efficiently execute secret computations using 
computing power of auxiliary devices like (banking-, telephone-, . . .) terminals which 
are not necessarily trusted. One of the solutions shows that the RSA signatures can 
be practically generated by a smart card. 

1. Introduction 
Small devices such as smart cards or IC cards are easy to be carried and have the 
ability to compute, memorize, and protect data. Such convenient ultimate personal 
computers[’] have been useful tools for constructing various information systems and 
now they are expected to  be utilized in much wider applications. Unfortunately, smart 
cards now available are not so powerful, still the jobs we want them to execute are 
liable to hard for them. For example, many want to realize public key cryptographic 
algorithms in smart cards. But these are not easy tasks for them. Even if future smart 
cards would be more powerful, the gap would not be filled, because we would require 
them more intelligence. 

An easy and usual way to overcome this situation is the use of auxiliary computers 
such as (network-, POS-, banking-, telephone-, facsimile-, . . .) terminals for supplying 
the short-computing power of smart cards. In the following we use the terms ‘client’ 
and ‘server’. A client denotes the main device such as a smart card which has a secret 
computation and can execute the computation by itself but takes long time because 
of the lack of computing resources. A server denotes the auxiliary device which has 
enough computing resources. 

If a server is trustworthy and will not leak the secrets, the cZient can pass the 
server the description of the secret computation and can ask the server to perform it 
and to tell the result. As an example, in a public key signature scheme, a client sends 
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the message to be signed and the secret key to a server for generating a signature on 
behalf of the client. 

But servers are not always trustworthy. A terminal in a public telephone booth or 
a POS terminal in a supermarket, etc., may be a server which may be equipped with 
a wiretapping device or might be infected by some computer viruses. When the server 
is insecure, the client has to protect its secret from the server during the interaction. 

How a client can securely accelerate secret computations by using untrustworthy 
servers ? This is the problem to be solved in this paper. We believe this problem will 
be very important for our future’s daily life. In our prior paper [2], we have pointed 
out the importance of the problem and presented some primal considerations. In the 
following sections we demonstrate several protocols solving the problem for (1) matrix 
computation, (2) modular equations, and (3) the RSA cryptosystem. 

2. Related Works and Assumptions 
There are some other researches [3][4][5][6][7][8] looking like ours. 

Privacy Homomorphisms, proposed by Rivest-Adleman-Dertouzos [3] and recently 
examined by Brickell-Yacobi [4] and by Ahituv-Lapid-Neumann [5], are cryptographic 
functions preserving some operations. For example, when two data Q and b are stored 
in a database in the form of ciphertexts f (u ) ,  f ( b ) ,  if the enciphering function f is 
homomorphic with respect to an operation o in the domain off  and an operation 0 in 
the codomain of f ,  then the ciphertext of the data Q o b can be obtained as f ( u )  0 f ( b )  
without deciphering and re-enciphering. 

Similar notion called the Direcfly Transformed Link E n c  yp t ton  has been proposed 
by Matsumoto-Okada-Imai [6] in the field of network security. In each node of a 
communication network with the link encryption, each ciphertext c comming from 
an input link i is deciphered into a plaintext m = Di(c) and then, after a routing, 
enciphered into another ciphertext d = Ej(rn) to be emitted into an output link j .  
Here D; and E, are deciphering and enciphering algorithms associated with the input 
link i and the output link j, respectively. The core idea of the directly transformed link 
encryption is to use instead of D; and Ej an algorithm H,j which directly transforms 
c into c’ so that the security of the plaintext in the node is enhanced. Cryptosystems 
based on power functions are examples for those applicable to the directly transformed 
link encryption. 

Though the notions of privacy homomorphism and the directly transformed link 
encryption are attractive, they don’t suffice for our porposes. 

On the other hand, Feigenbaum [7] and Abadi-Feigenbaum-Kilian [8] studied the 
problem of so-called C o r n p z l f i n g  with Encrypted Dafa. Their problem is very similar 
to ours. Since 
their interest was focused on the theory, if we use our terminology, they assumed that 
the client has probabilistic polynomial time computing power and that the server 
has unlimited computing power and they derived interesting conclusion that hard 
functions are also difficult to be securely encrypted. Their work is very interesting but 
not sufficient to our practicaI problem. 

However, their stance seems to be a little bit different from ours. 
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To make clear the differences, we summarize here our assumptions specifically: 
Assumptions A computation originally owned by a client is a feasible one 
with respect to  an ordinary computer. In typical situations, it is probabilistic 
polynomial time computable. However, when the size of the input is small and then 
the computation is tractable by some ordinary computer, the computation might be 
outside the probabilistic polynomial time. Servers  adopted for the speed up are such 
ordinary computers. That  is, there are limitations to the computational complexity 
with which the servers  can cope. Servers  might leak the data treated in interactions 
with a client,  but do not refuse the jobs given by the client nor send false answers to the 
client. Each client is sufficient to protect its secret from resource bounded enemies. 
But the computational complexity for that purpose used by the client should not 
beyond the computational complexity for executing the secret computation by itself. 

3. General Idea of Speed Up 
Let a client want to obtain the value y = g(z) of a computable function g on input 
z. Assume that there is an algorithm (circuit) C, to compute g which is practically 
tractable by a server  but  not by the client. 

Our general idea of speed up is as follows. 

Protocol P ['I 
(0) The client randomly decompose the algorithm C, into three algorithms (circuits) 

I ,  M, F such that  (i) the consecurive applications of I and M and F compute 
the function g and (ii) the client can execute I and F in enough speed. For many 
practical applications, it is worth while considering a simplar version such that 
the client is restricted to  select M from a predetermined set of algorithms. 

(1) The client applies 1 to  have u = I ( z ) ,  and sends [ M ,  u] to the server.  
(2) The server applies M to u and sends v = M ( u )  back to the client. 
(3) The client obtains y by applying F to v as y = F ( v ) .  

Efficiency and Security: Let Comm(a), Compc(P), and Cornps(7) denote the 
time to transfer a between the client and the server,  the time to execute algorithm 
P in the client,  and the time to  execute algorithm y in the server,  respectively. The 
total time to execute steps (1),(2),(3) in the protocol P is 

T(P) = Compc(I)  + Comm([M, 4) + Comps(M)  + Comm(v) + Compc(F).  

Thus the speed up effect of P is Compc(C,)/T(P). Given upper bound Bc of the 
computing time of the cl ient ,  the security of the protocol P is roughly measured by 
the ambiguity 

A(P)  = #{[I, FIICompc(0 + Compc(F) 5 Bc} .  

Variations: The protocol P can be generalized into two directions by decomposing 
M further. One is to  have a series of algorithms and adopt more interactions. The 
other is to have a set of algorithms executable in parallel by independent servers .  
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4. Demonstrating the Speed Up Protocols 
We show now some of the basic protocols to demonstrate our idea of enhancing smart 
cards. 

4.1 Speed Up via Coordinate Permutation 
In usual computing environments, multiplying matrices is recognized as rather light 
computation. On the other hand, 
permuting rows and columns of matrices can be performed by only changing indices 
of the components of matrices. We have verified through an experiment [a] that 
this technique actually works well for programs in smart cards. The following three 
examples are based on this fact. The coordinate permutation is a very useful tool for 
constructing speed up protocols. 

But it is not so easy for today's smart cards. 

[a] Matrix Multiplications 
Target: A client has two secret matrices A and 3 and wants to obtain the product 
C = AB. 
Assumption: The  client can efficiently permute rows and columns of matrices. There 
is a server which can multiply matrices Overwhelmingly faster than the client can. 

Protocol MM 
(0) The client randomly generates permutation matrices P ,  Q and R. 
(1) The  client permutes A and B along with [P,Q] and [Q-',R] to  have A' = 

(2) The server computes and sends back to the client C' = P ' 3 ' .  
(3) The client obtains C by permuting C' along with [P-', R-'1 as C = P-lC'R-'. 

PAQ, B' = Q-lBR,  and sends [A', B'] to the server. 

Remark: This protocol can be applied to the speed up of evaluating a tuple of 
multivariate polynomials. 

[b] Linear Equations 
Target: A client has a secret non-singular matrix A and a secret matrix B and wants 
to obtain the solution X of the equation A X  = B. 
Assumption: The ciient can efficiently permute rows and columns of matrices. There 
is a server which can solve linear equations overwhelmingly faster than the client can. 

Protocol LE 
(0) The client randomly generates permutation matrices P ,  Q and R. 
(1) The d i e n t  permutes A and 3 along with [P,Q] and [P,R] to have A' = 

(2) The server solves the equation A'X'  = B' for X' and sends X'  back to  the client. 
(3) The client obtains X by permuting X' along with [Q, R-'1 as X = QX'R-l .  

PAQ, 8' = PBR,  and sends [A', B'] to the server. 
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Remark: A slightly modified version of this protocol can be applied to the linear 
programming problem. 

Evaluation: We have organized software experiments for Protocol MM and LE. 
The conclusion is that these protocols are effective since, as described above, the 
permutations can be done faster than the matrix multiplications and the amount of 
communication between the client and the server is only three matrices. However, by 
these protocols, the server might acquire some statistical information. Indeed, they 
cannot protect values of the functions not affected by permutations. An example is the 
determinant of C in Protocol MM. But we think there are many practical applications 
to which these protocols are useful. 

[c] Graph Isomorphisms 
Target: A client has two secret graphs a and b of the same number of verteces and 
edges with their adjacency matrices A and B ,  respectively, and wants to know whether 
these graphs are isomorphic or not. And if they are isomorphic, the client also wants 
to obtain the isomorphism, which is the permutation z of coordinates determined by 
the permutation matrix X satisfying the equation AX = X B .  
Assumption: The client can efficiently permute rows and columns of matrices. There 
is a server which can quickly solve the graph isomorphism problem. But the server 
may not quickly solve the graph nonisomorphism problem. 

Protocol GI 
(0) The client randomly generates permutations p and q, to which correspond 

permutation matrices P ,  Q, respectively. 
(1) The client permutes rows and columns of A and B along with p and q to have 

A’ = PAP-l, 
(2) The server tries to decide , in a period of time, whether the graphs with adjacency 

matrices A‘ and B’ are isomorphic or not. If they are decided to be isomorphic, 
the server computes the permutation z’ corresponding to the isomorphism and 
sends 2’ to the client. Otherwise, the server sends ‘#’ to the client. 

(3) If 5‘ is sent, the client obtains 5 by transforming z’ with p-’ and q as z = p-’z’p. 
If ‘#’ is sent, the client decides that that Q and b are not isomorphic. 

B’ = QBQ-’, and-sends [A’, B‘] to the server. 

Remark: This protocol can be applied to the speed up of pattern recognition based 
on the graph isomorphisms. 

4.2 Modular Equations 
Univariate polynomial equations over finite fields can be solved by polynomial time 
algorithms. And as Rabin [lo] shows, there are efficient probabilistic algorithms for 
them. Main jobs of these algorithms are to take the greatest common divisor of two 
polynomials by applying the well known extended Euclidean algorithm. However, 
these are not so easy tasks for ordinary smart cards. 
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Target: A client has secret integers k and ao, al,  Q,.. . a,-l such that the modular 
equation 

a0 + u1z + u2z2 +.  . .  + U, -~Z" ' -~  + zm = 0 (mod k) 

is solvable in 2, and wants t o  obtain a solution z of this equation. 
Assumption: The client can efficiently execute multiplication modk and division 
modk. There is a server which can solve modular equations overwhelmingly faster 
than the client can. 

Protocol ME 
(0) The client randomly selects an integer r such that gcd(r, k) = 1. 
(1) The clientand computes [bo, b l ,  62,. . . , bm- l ]  by 

%=I, and c ;=rc ; -1modk,  b,-;=c,a,-;modk for i = l ,  . . .  , m  

and sends [bo, 61, b z ,  . . . , b,-l, k] to the server. 
(2)  The server obtains a solution y of the equation 

bo + bly + b2y2 + .. . + b,-ly"-' + ym z 0 (mod k) 

and sends back y to the client. 
(3) The client obtains z as z = yr-' mod k. 

Remark This protocol can be generalized to fit any system of multivariate polynomial 
equations over any commutative ring. 

Evaluation: Protocol ME is very effective, because in the protocol the computation 
the client has to do  is only 2m multiplications modk and one division modk and the 
amount of communication between the client and the server is only rn + 2 integers 
while the server could investigate nothing on the secret of the client. 

5. Speeding Up the RSA Transformations 
Is it possible to  securely implement the RSA cryptosystem["] with smart cards and 
terminals ? We think the answer is yes. For the RSA public transformation, a speed 
up protocol is described in [2]. For the RSA secret transformation, we show below two 
of the developed protocols. 

Target: A client has integers z, d, n and wants to obtain the integer y = zd mod n. 
The integer d is the secret of the client, while the integers n and e such that  ed 1 
(mod A(n)) are made public. Here n is the product of two large secret primes p ,  q 
( p  # q ) ,  and A(n) is the secret integer lcm(p - 1, q - 1). 

For simplicity, the integer z may be known to the server. (It is an easy task  to 
modify the following protocols with slightly adding the complexity so that z is also 
hidden from the server.) 
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5.1 Secret Powering 1 
Assumption: There is a 
server which‘ is equipped with a device which can implement the RSA secret 
transformation overwhelmingly faster than the naked d i e d  can. 

The client can execute several multiplications modn. 

Protocol RSA- S 1 
(0) The client randomly generates an integer vector D = [ d l ,  dz, . . . , d . ~ ]  and a binary 

vector F = [ f ~ ,  f2,.. . , f ~ ]  such that 

d f idl  + fzdz + ..  . + f ~ d w  (mod X(n)) 

and 1 5 d; < n and Weighd(F)  = zEl f; 5 L ,  where M and L are some integers. 
(1) The client sends n, D, and 5 to  the server. 
(2) The server computes and sends back to the client 2 = [ T I ,  z z ,  .. . , z ~ ]  such that 

z; = zd* mod n. 

(3) The client obtains y by computing y = y M  as follows: 

yo = 1, y; = y ; - l t ,  mod n if f; = 1; yi = yi-l if f; = 0, (i = 1 , 2 ,  . .  . ,M). 

Variation: We have a more general protocol if we exclude ‘binary’ from the condition 
to F .  

Complexity: Since the step (0) can be precomputed, for each z it is sufficient for the 
client to do at most L - 1 multiplications mod n. The amount of communication is 
2(M + 1) integers of size a t  most log n bits. 
Security: If the RSA cryptosystem is secure, the protocol could be‘broken only by 
searching true d via the exhaustion of 

possibilities. 

Remark: If e is hidden from the server, Protocol RSA-S1 is applicable also to the 
case where A(n) can be readily computed from n. Secret powering over a finite field is 
an example. 

Though such property are not preserved, we can have a more efficient protocol by 
utilizing the Chinese Remainder Theorem: 

5.2 Secret Powering 2 
Assumption: The client can execute several multiplications modp and modq. The 
client has computed integers wp and w q  such that 

wg = q(q-l  mod p ) ,  wq = p ( p - l  mod q) .  
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There is a server which is equipped with a device which can implement the RSA secret 
transformation overwhelmingly faster than the naked client can. 

Protocol RSA-S2 
(0) The client randomly generates an integer vector D = [dl, d2,. . . , d ~ ]  and two 

binary vectors F = [fl, f 2 , .  . . , f ~ ]  and G = b1,g2,. . . , g ~ ]  such that 

d G g,dl+  g2d2 +. . . + gMdM (mod q - 1) 

and 1 2 d; < n and W e i g h t ( F )  + Weight(G) = xEl fi + Cj”,,gj 5 L, where 
M and L are some integers. 

(1) The client sends n, D, and z to the server. 
(2) The server computes and sends back to the client 2 = [z l ,  z 2 , .  . . , ZM] such that 

*. , - - %di mod n. 

(3) The client obtains y by computing y as follows: 

yPo = 1, ypi = yp,i-lzi mod p if fi = 1; yp; = yp,i-l if fi = 0, 

yqi = yq.i-1 if 9; = 0, yqo = 1, ypi = yq,j-lzi mod p if gi = 1; 

for i = 1 , 2 , .  . . , M .  
Variation: We have a more general protocol if we exclude ‘binary’ from the condition 
to F and G. 

Complexity: Since the step (0) can be precomputed, for each z the amount of 
commputation the client has to  do is equivalent to at most 3L/2 multiplications 
mod p or mod q. The amount of communication is 2(iW + 1) integers of size a t  most 
log n bits. 
Security: If the MA cryptosystem is secure, the protocol could be broken only by 
searching true d via the exhaustion of 

possibilities. 
Examples: Using a i8086 ( 5 M H . z )  (30 msec / 256-bit modular multiplication) or Z- 
80 ( 6 M N z )  (300 rnsec / 256-bit modular multiplication) as a smart card with a single 
64-Kbps (non-contact type) or 9600-bps serial link and the RSA hardwares (chips) [13] 
with speed 32-Kbps or 4800-bps, Protocol RSA-S2 can be accomplished about 4 to 30 
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S e r i a l  L i n k  
6 4 K b p s  

+ 
R S A  hardware 

3 2 K b p s  

S e r i a l  L i n k  
9 6 0 0 b  p s 

+ 

times faster than the case where the microprocessor does the whole computation with 
the method due to Quisquater-Couvreur [12] (see Table A). 

i 8 0 8 6  ( 5 M H z )  2 8 0  ( 6 M H z )  

L = 2 0 ,  M = 5 0  L = 1 2 ,  M = 1 4 2  

1 .  7 s e c  7. 7 s e c  

< 1 3 . 5  t i m e s  f a s t e r >  < 3 0  times f a s t e r >  

L = 3 2 ,  M = 3 7  L = 1 8 ,  L = 5 8  

5. 5 s e c  1 4 .  4 s e c  

6. Conclusion 

I R S A  hardware 1 
4800b p s ! 

m e t h o d  [121  1 c o n v e n t  i o n a  1 

With several demonstrating examples, we have presented an important research 
problem of how to supply short-computing power of smart cards. The described 
protocols are all very simple but can be actually utilized in a system consists of smart 
cards and auxiliary computers. Other protocols and problems to be developed are 
described in [9]. 

< 4 . 2  t i m e s  f a s t e r >  < 1 6  times f a s t e r >  

2 3  s e c  2 3 0  s e c  
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