
Speeding Up Secret Computations
with Insecure Auxiliary Devices

Tsutomu MATSUMOTO
Koki KATO
Hideki IMAI

Division of Electrical and Computer Engineering
Y O K O H A M A NATIONAL UNIVERSITY

156 Tokiwadai, Hodogaya, Yokohama, 240 Japan

Abstract This paper deals with and gives some solutions to the problem of how a
small device such a s a smart card can efficiently execute secret computations using
computing power of auxiliary devices like (banking-, telephone-, . . .) terminals which
are not necessarily trusted. One of the solutions shows that the RSA signatures can
be practically generated by a smart card.

1. Introduction
Small devices such as smart cards or IC cards are easy to be carried and have the
ability to compute, memorize, and protect data. Such convenient ultimate personal
computers[’] have been useful tools for constructing various information systems and
now they are expected to be utilized in much wider applications. Unfortunately, smart
cards now available are not so powerful, still the jobs we want them to execute are
liable to hard for them. For example, many want to realize public key cryptographic
algorithms in smart cards. But these are not easy tasks for them. Even if future smart
cards would be more powerful, the gap would not be filled, because we would require
them more intelligence.

An easy and usual way to overcome this situation is the use of auxiliary computers
such as (network-, POS-, banking-, telephone-, facsimile-, . . .) terminals for supplying
the short-computing power of smart cards. In the following we use the terms ‘client’
and ‘server’. A client denotes the main device such as a smart card which has a secret
computation and can execute the computation by itself but takes long time because
of the lack of computing resources. A server denotes the auxiliary device which has
enough computing resources.

If a server is trustworthy and will not leak the secrets, the cZient can pass the
server the description of the secret computation and can ask the server to perform it
and to tell the result. As an example, in a public key signature scheme, a client sends

S. Goldwasser (Ed.): Advances in Cryptology - CRYPT0 ’88, LNCS 403, pp. 497-506, 1990
0 Spnnger-Verlag Berlin Heidelberg 1990

490

the message to be signed and the secret key to a server for generating a signature on
behalf of the client.

But servers are not always trustworthy. A terminal in a public telephone booth or
a POS terminal in a supermarket, etc., may be a server which may be equipped with
a wiretapping device or might be infected by some computer viruses. When the server
is insecure, the client has to protect its secret from the server during the interaction.

How a client can securely accelerate secret computations by using untrustworthy
servers ? This is the problem to be solved in this paper. We believe this problem will
be very important for our future’s daily life. In our prior paper [2], we have pointed
out the importance of the problem and presented some primal considerations. In the
following sections we demonstrate several protocols solving the problem for (1) matrix
computation, (2) modular equations, and (3) the RSA cryptosystem.

2. Related Works and Assumptions
There are some other researches [3][4][5][6][7][8] looking like ours.

Privacy Homomorphisms, proposed by Rivest-Adleman-Dertouzos [3] and recently
examined by Brickell-Yacobi [4] and by Ahituv-Lapid-Neumann [5], are cryptographic
functions preserving some operations. For example, when two data Q and b are stored
in a database in the form of ciphertexts f (u) , f (b) , if the enciphering function f is
homomorphic with respect to an operation o in the domain off and an operation 0 in
the codomain of f , then the ciphertext of the data Q o b can be obtained as f (u) 0 f (b)
without deciphering and re-enciphering.

Similar notion called the Direcfly Transformed Link E n c yp t ton has been proposed
by Matsumoto-Okada-Imai [6] in the field of network security. In each node of a
communication network with the link encryption, each ciphertext c comming from
an input link i is deciphered into a plaintext m = Di(c) and then, after a routing,
enciphered into another ciphertext d = Ej(rn) to be emitted into an output link j .
Here D; and E, are deciphering and enciphering algorithms associated with the input
link i and the output link j, respectively. The core idea of the directly transformed link
encryption is to use instead of D; and Ej an algorithm H,j which directly transforms
c into c’ so that the security of the plaintext in the node is enhanced. Cryptosystems
based on power functions are examples for those applicable to the directly transformed
link encryption.

Though the notions of privacy homomorphism and the directly transformed link
encryption are attractive, they don’t suffice for our porposes.

On the other hand, Feigenbaum [7] and Abadi-Feigenbaum-Kilian [8] studied the
problem of so-called C o r n p z l f i n g with Encrypted Dafa. Their problem is very similar
to ours. Since
their interest was focused on the theory, if we use our terminology, they assumed that
the client has probabilistic polynomial time computing power and that the server
has unlimited computing power and they derived interesting conclusion that hard
functions are also difficult to be securely encrypted. Their work is very interesting but
not sufficient to our practicaI problem.

However, their stance seems to be a little bit different from ours.

499

To make clear the differences, we summarize here our assumptions specifically:
Assumptions A computation originally owned by a client is a feasible one
with respect to an ordinary computer. In typical situations, it is probabilistic
polynomial time computable. However, when the size of the input is small and then
the computation is tractable by some ordinary computer, the computation might be
outside the probabilistic polynomial time. Servers adopted for the speed up are such
ordinary computers. That is, there are limitations to the computational complexity
with which the servers can cope. Servers might leak the data treated in interactions
with a client, but do not refuse the jobs given by the client nor send false answers to the
client. Each client is sufficient to protect its secret from resource bounded enemies.
But the computational complexity for that purpose used by the client should not
beyond the computational complexity for executing the secret computation by itself.

3. General Idea of Speed Up
Let a client want to obtain the value y = g(z) of a computable function g on input
z. Assume that there is an algorithm (circuit) C, to compute g which is practically
tractable by a server but not by the client.

Our general idea of speed up is as follows.

Protocol P ['I
(0) The client randomly decompose the algorithm C, into three algorithms (circuits)

I , M, F such that (i) the consecurive applications of I and M and F compute
the function g and (ii) the client can execute I and F in enough speed. For many
practical applications, it is worth while considering a simplar version such that
the client is restricted to select M from a predetermined set of algorithms.

(1) The client applies 1 to have u = I (z) , and sends [M , u] to the server.
(2) The server applies M to u and sends v = M (u) back to the client.
(3) The client obtains y by applying F to v as y = F (v) .

Efficiency and Security: Let Comm(a), Compc(P), and Cornps(7) denote the
time to transfer a between the client and the server, the time to execute algorithm
P in the client, and the time to execute algorithm y in the server, respectively. The
total time to execute steps (1),(2),(3) in the protocol P is

T(P) = Compc(I) + Comm([M, 4) + Comps(M) + Comm(v) + Compc(F).

Thus the speed up effect of P is Compc(C,)/T(P). Given upper bound Bc of the
computing time of the cl ient , the security of the protocol P is roughly measured by
the ambiguity

A(P) = #{[I, FIICompc(0 + Compc(F) 5 Bc} .

Variations: The protocol P can be generalized into two directions by decomposing
M further. One is to have a series of algorithms and adopt more interactions. The
other is to have a set of algorithms executable in parallel by independent servers .

500

4. Demonstrating the Speed Up Protocols
We show now some of the basic protocols to demonstrate our idea of enhancing smart
cards.

4.1 Speed Up via Coordinate Permutation
In usual computing environments, multiplying matrices is recognized as rather light
computation. On the other hand,
permuting rows and columns of matrices can be performed by only changing indices
of the components of matrices. We have verified through an experiment [a] that
this technique actually works well for programs in smart cards. The following three
examples are based on this fact. The coordinate permutation is a very useful tool for
constructing speed up protocols.

But it is not so easy for today's smart cards.

[a] Matrix Multiplications
Target: A client has two secret matrices A and 3 and wants to obtain the product
C = AB.
Assumption: The client can efficiently permute rows and columns of matrices. There
is a server which can multiply matrices Overwhelmingly faster than the client can.

Protocol MM
(0) The client randomly generates permutation matrices P , Q and R.
(1) The client permutes A and B along with [P,Q] and [Q-',R] to have A' =

(2) The server computes and sends back to the client C' = P ' 3 ' .
(3) The client obtains C by permuting C' along with [P-', R-'1 as C = P-lC'R-'.

PAQ, B' = Q-lBR, and sends [A', B'] to the server.

Remark: This protocol can be applied to the speed up of evaluating a tuple of
multivariate polynomials.

[b] Linear Equations
Target: A client has a secret non-singular matrix A and a secret matrix B and wants
to obtain the solution X of the equation A X = B.
Assumption: The ciient can efficiently permute rows and columns of matrices. There
is a server which can solve linear equations overwhelmingly faster than the client can.

Protocol LE
(0) The client randomly generates permutation matrices P , Q and R.
(1) The d i e n t permutes A and 3 along with [P,Q] and [P,R] to have A' =

(2) The server solves the equation A'X' = B' for X' and sends X' back to the client.
(3) The client obtains X by permuting X' along with [Q, R-'1 as X = QX'R-l .

PAQ, 8' = PBR, and sends [A', B'] to the server.

501

Remark: A slightly modified version of this protocol can be applied to the linear
programming problem.

Evaluation: We have organized software experiments for Protocol MM and LE.
The conclusion is that these protocols are effective since, as described above, the
permutations can be done faster than the matrix multiplications and the amount of
communication between the client and the server is only three matrices. However, by
these protocols, the server might acquire some statistical information. Indeed, they
cannot protect values of the functions not affected by permutations. An example is the
determinant of C in Protocol MM. But we think there are many practical applications
to which these protocols are useful.

[c] Graph Isomorphisms
Target: A client has two secret graphs a and b of the same number of verteces and
edges with their adjacency matrices A and B , respectively, and wants to know whether
these graphs are isomorphic or not. And if they are isomorphic, the client also wants
to obtain the isomorphism, which is the permutation z of coordinates determined by
the permutation matrix X satisfying the equation AX = X B .
Assumption: The client can efficiently permute rows and columns of matrices. There
is a server which can quickly solve the graph isomorphism problem. But the server
may not quickly solve the graph nonisomorphism problem.

Protocol GI
(0) The client randomly generates permutations p and q, to which correspond

permutation matrices P , Q, respectively.
(1) The client permutes rows and columns of A and B along with p and q to have

A’ = PAP-l,
(2) The server tries to decide , in a period of time, whether the graphs with adjacency

matrices A‘ and B’ are isomorphic or not. If they are decided to be isomorphic,
the server computes the permutation z’ corresponding to the isomorphism and
sends 2’ to the client. Otherwise, the server sends ‘#’ to the client.

(3) If 5‘ is sent, the client obtains 5 by transforming z’ with p-’ and q as z = p-’z’p.
If ‘#’ is sent, the client decides that that Q and b are not isomorphic.

B’ = QBQ-’, and-sends [A’, B‘] to the server.

Remark: This protocol can be applied to the speed up of pattern recognition based
on the graph isomorphisms.

4.2 Modular Equations
Univariate polynomial equations over finite fields can be solved by polynomial time
algorithms. And as Rabin [lo] shows, there are efficient probabilistic algorithms for
them. Main jobs of these algorithms are to take the greatest common divisor of two
polynomials by applying the well known extended Euclidean algorithm. However,
these are not so easy tasks for ordinary smart cards.

502

Target: A client has secret integers k and ao, al, Q,.. . a,-l such that the modular
equation

a0 + u1z + u2z2 +. . . + U, -~Z" ' -~ + zm = 0 (mod k)

is solvable in 2, and wants t o obtain a solution z of this equation.
Assumption: The client can efficiently execute multiplication modk and division
modk. There is a server which can solve modular equations overwhelmingly faster
than the client can.

Protocol ME
(0) The client randomly selects an integer r such that gcd(r, k) = 1.
(1) The clientand computes [bo, b l , 62,. . . , bm- l] by

%=I, and c ;=rc ; -1modk, b,-;=c,a,-;modk for i = l , . . . , m

and sends [bo, 61, b z , . . . , b,-l, k] to the server.
(2) The server obtains a solution y of the equation

bo + bly + b2y2 + .. . + b,-ly"-' + ym z 0 (mod k)

and sends back y to the client.
(3) The client obtains z as z = yr-' mod k.

Remark This protocol can be generalized to fit any system of multivariate polynomial
equations over any commutative ring.

Evaluation: Protocol ME is very effective, because in the protocol the computation
the client has to do is only 2m multiplications modk and one division modk and the
amount of communication between the client and the server is only rn + 2 integers
while the server could investigate nothing on the secret of the client.

5. Speeding Up the RSA Transformations
Is it possible to securely implement the RSA cryptosystem["] with smart cards and
terminals ? We think the answer is yes. For the RSA public transformation, a speed
up protocol is described in [2]. For the RSA secret transformation, we show below two
of the developed protocols.

Target: A client has integers z, d, n and wants to obtain the integer y = zd mod n.
The integer d is the secret of the client, while the integers n and e such that ed 1
(mod A(n)) are made public. Here n is the product of two large secret primes p , q
(p # q) , and A(n) is the secret integer lcm(p - 1, q - 1).

For simplicity, the integer z may be known to the server. (It is an easy task to
modify the following protocols with slightly adding the complexity so that z is also
hidden from the server.)

503

5.1 Secret Powering 1
Assumption: There is a
server which‘ is equipped with a device which can implement the RSA secret
transformation overwhelmingly faster than the naked d i e d can.

The client can execute several multiplications modn.

Protocol RSA- S 1
(0) The client randomly generates an integer vector D = [d l , dz, . . . , d . ~] and a binary

vector F = [f ~ , f2,.. . , f ~] such that

d f idl + fzdz + .. . + f ~ d w (mod X(n))

and 1 5 d; < n and Weighd(F) = zEl f; 5 L , where M and L are some integers.
(1) The client sends n, D, and 5 to the server.
(2) The server computes and sends back to the client 2 = [T I , z z , .. . , z ~] such that

z; = zd* mod n.

(3) The client obtains y by computing y = y M as follows:

yo = 1, y; = y ; - l t , mod n if f; = 1; yi = yi-l if f; = 0, (i = 1 , 2 , . . . ,M).

Variation: We have a more general protocol if we exclude ‘binary’ from the condition
to F .

Complexity: Since the step (0) can be precomputed, for each z it is sufficient for the
client to do at most L - 1 multiplications mod n. The amount of communication is
2(M + 1) integers of size a t most log n bits.
Security: If the RSA cryptosystem is secure, the protocol could be‘broken only by
searching true d via the exhaustion of

possibilities.

Remark: If e is hidden from the server, Protocol RSA-S1 is applicable also to the
case where A(n) can be readily computed from n. Secret powering over a finite field is
an example.

Though such property are not preserved, we can have a more efficient protocol by
utilizing the Chinese Remainder Theorem:

5.2 Secret Powering 2
Assumption: The client can execute several multiplications modp and modq. The
client has computed integers wp and w q such that

wg = q(q-l mod p) , wq = p (p - l mod q) .

504

There is a server which is equipped with a device which can implement the RSA secret
transformation overwhelmingly faster than the naked client can.

Protocol RSA-S2
(0) The client randomly generates an integer vector D = [dl, d2,. . . , d ~] and two

binary vectors F = [fl, f 2 , . . . , f ~] and G = b1,g2,. . . , g ~] such that

d G g,dl+ g2d2 +. . . + gMdM (mod q - 1)

and 1 2 d; < n and W e i g h t (F) + Weight(G) = xEl fi + Cj”,,gj 5 L, where
M and L are some integers.

(1) The client sends n, D, and z to the server.
(2) The server computes and sends back to the client 2 = [z l , z 2 , . . . , ZM] such that

*. , - - %di mod n.

(3) The client obtains y by computing y as follows:

yPo = 1, ypi = yp,i-lzi mod p if fi = 1; yp; = yp,i-l if fi = 0,

yqi = yq.i-1 if 9; = 0, yqo = 1, ypi = yq,j-lzi mod p if gi = 1;

for i = 1 , 2 , . . . , M .
Variation: We have a more general protocol if we exclude ‘binary’ from the condition
to F and G.

Complexity: Since the step (0) can be precomputed, for each z the amount of
commputation the client has to do is equivalent to at most 3L/2 multiplications
mod p or mod q. The amount of communication is 2(iW + 1) integers of size a t most
log n bits.
Security: If the MA cryptosystem is secure, the protocol could be broken only by
searching true d via the exhaustion of

possibilities.
Examples: Using a i8086 (5 M H . z) (30 msec / 256-bit modular multiplication) or Z-
80 (6 M N z) (300 rnsec / 256-bit modular multiplication) as a smart card with a single
64-Kbps (non-contact type) or 9600-bps serial link and the RSA hardwares (chips) [13]
with speed 32-Kbps or 4800-bps, Protocol RSA-S2 can be accomplished about 4 to 30

505

S e r i a l L i n k
6 4 K b p s

+
R S A hardware

3 2 K b p s

S e r i a l L i n k
9 6 0 0 b p s

+

times faster than the case where the microprocessor does the whole computation with
the method due to Quisquater-Couvreur [12] (see Table A).

i 8 0 8 6 (5 M H z) 2 8 0 (6 M H z)

L = 2 0 , M = 5 0 L = 1 2 , M = 1 4 2

1 . 7 s e c 7. 7 s e c

< 1 3 . 5 t i m e s f a s t e r > < 3 0 times f a s t e r >

L = 3 2 , M = 3 7 L = 1 8 , L = 5 8

5. 5 s e c 1 4 . 4 s e c

6. Conclusion

I R S A hardware 1
4800b p s !

m e t h o d [121 1 c o n v e n t i o n a 1

With several demonstrating examples, we have presented an important research
problem of how to supply short-computing power of smart cards. The described
protocols are all very simple but can be actually utilized in a system consists of smart
cards and auxiliary computers. Other protocols and problems to be developed are
described in [9].

< 4 . 2 t i m e s f a s t e r > < 1 6 times f a s t e r >

2 3 s e c 2 3 0 s e c

Acknowledgment
The authors wish to thank Susumu Inomata for fruitful discussions and Kenji Koyama
for providing RefIl31. They also thank many who take interests in this work and
anonymous refrees for their sugessions to improve this paper. Part of this work was
supported by the Ministry of Education, Science and Culture under Grant-in-Aid for
Encouragement of Young Scientists #62750283 and #63750316.

T a b l e A . E x a m p l e s o f P r o t o c o l R S A - S 2
[P rocess ing t i m e f o r a 5 1 2 - b i t message b l o c k]

506

References
[I] Svigals,J., Smart Cards: The Ultimate Personal Computer, Macmillan, 1985.
[2] Matsumoto,T., Kato,K. and Imai,H., “Smart cards can compute secret heavy

functions with powerful terminals,” (written in Japanese with an English abstract)
Proc. of Idh Symposium on Information Theory and lis Applications, Enoshima-
Island, Japan, pp.17-22, Nov.19-21, 1987.

[3] Rivest,R., Adleman,L. and Dertouzos,M., “On databanks and privacy homo-
morphisms,” Foundations o f Secure Computationl Demill0,R.A. e t al., editors,
Academic Press, pp.168-177, 1978.

[4] Brickel1,E.F. and Yacobi,Y., “On privacy homomorphisms,” Advances in
Cryptology - EUROCRYPT’87, Chaum,D. and Price,W.L. editors, Springer-
Verlag, pp.117-125, 1988.

[5] Ahituv,N., Lapid,Y. and Neumann,S., “Processing encrypted data,” Communica-
tions of the ACM, Vo1.30, No.9, pp.777-780, Sep. 1987.

[6] Matsumoto,T., Okada,T. and Imai,H., “Directly transformed link encryption,”
(in Japanese) Dans. of IECE Japan, Vol.J65-D, No.11, pp.1443-1450, Nov. 1982.

171 Feigenbaum,J., “Encrypting problem instances, or, . . ., Can you take advantage of
someone without having to trust him ? ” Advances in Cyptology - CRYPTO’85,
Williams,H.C. editor, Springer-Verlag, pp.477-488, 1986.

[8] Abadi,M., Feigenbaum,J. and Kilian,J., “On hiding information from an oracle,”
to appear in Journal of Computer and System Sciences. An extended abstract
appeared in Proc. o f l g t h Symposium on Theory of Compuiafion, pp.195-203,
May, 1987.

[9] Matsumoto,T. and Imai,H., “How to use servers without releasing privacy -
Making IC cards more powerful - ,” (in Japanese) IEICE Technical Report
(ISEC), vo1.88, No.33, pp.53-59, May 1988.

(lo] Rabin,M.O., “Probabilistic algorithms in finite fields,” SIAM J. Comput., Vo1.9,
No.2, pp.273-280, May 1980.

[ll] Rivest,R., Shamir,A. and Adleman,L., “A method of obtaining digital signatures
and public key cryptosystems,” Comm. of ACM, V01.21, No.2, pp.120-126, Feb.
1978.

[12] Quisquater,J.J. and Couvreuer,C., “Fast decipherment algorithm for RSA public-
key cryptosystem,” Electron. Lett. Vo1.18, No.21, pp.905-907, Oct. 1982.

[13] Koyama,K., Table l.(Developments of hardwares for the RSA cryptosystem), in
“Information Security for Communications,” (in Japanese) to appear in Journal
of the Instiiufe of Television Engineers o f Jupan, Dec. 1988.

	Introduction
	Related Works and Assumptions
	General Idea of Speed Up
	Demonstrating the Speed Up Protocols
	Speed Up via Coordinate Permutation
	Matrix Multiplications
	Linear Equations
	Graph Isomorphisms

	Modular Equations

	Speeding Up the RSA Transformations
	Secret Powering 1
	Secret Powering 2

	Conclusion
	Acknowledgment
	References

