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ABSTRACT

Motivation: Due to the recent advances in technology of mass

spectrometry, there has been an exponential increase in the amount

of data being generated in the past few years. Database searches

have not been able to keep with this data explosion. Thus, speeding

up the data searches becomes increasingly important in mass-

spectrometry-based applications. Traditional database search

methods use one-against-all comparisons of a query spectrum

against a very large number of peptides generated from in silico

digestion of protein sequences in a database, to filter potential

candidates from this database followed by a detailed scoring and

ranking of those filtered candidates.

Results: In this article, we show that we can avoid the one-against-all

comparisons. The basic idea is to design a set of hash functions to

pre-process peptides in the database such that for each query

spectrum we can use the hash functions to find only a small subset of

peptide sequences that are most likely to match the spectrum. The

construction of each hash function is based on a random spectrum

and the hash value of a peptide is the normalized shared peak counts

score (cosine) between the random spectrum and the hypothetical

spectrum of the peptide. To implement this idea, we first embed each

peptide into a unit vector in a high-dimensional metric space. The

random spectrum is represented by a random vector, and we use

random vectors to construct a set of hash functions called locality

sensitive hashing (LSH) for preprocessing. We demonstrate that our

mapping is accurate. We show that our method can filter out495.65%

of the spectra without missing any correct sequences, or gain 111

times speedup by filtering out 99.64% of spectra while missing at

most 0.19% (2 out of 1014) of the correct sequences. In addition, we

show that our method can be effectively used for other mass spectra

mining applications such as finding clusters of spectra efficiently and

accurately.

Contact: tingchen@usc.edu

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

Tandem mass spectrometry is now the most widely used

high throughput techniques to analyze proteins and peptides

(Yates et al., 1995; Mann and Jensen, 2003; Pandey and Mann,

2003; Aebersold and Mann, 2003). Due to the recent

technological advances, the current generation of mass spectro-

meters can generate thousands to hundreds of thousands of

spectra in a single run within an hour. The sheer amount of

spectra that can be generated from small amounts of biological

samples over a day is staggering and is increasing at an

exponential rate with mass spectrometers being often operated

in parallel, around the clock. Therefore, faster and accurate

data analysis algorithms become increasingly important.
The most reliable and widely used method for mass spectro-

metry data analysis is the database search. Popular database

search programs include SEQUEST (Eng et al., 1994) and

MASCOT (Perkins et al., 1999). One generic way to perform

database search is to pre-process a protein database by

digesting each protein into smaller peptides in silico and

indexing these peptides by mass. Then, for a query spectrum

with the precursor ion mass m, the indexing allows these

programs to extract, or filter, a set of peptides Sm that contains

all the peptides whose masses are within a certain range � of m:

½m��,mþ��. All these extracted peptides are then compared

against the query spectrum using some scoring functions

such as the cross-correlations used in SEQUEST and the

probabilistic model used in MASCOT, and the peptides with

the best scores are reported and ranked. We call this type

of searching methods as the one-against-all. The primary

bottleneck is the first step of extracting a candidate set to be

scored.

Such one-against-all searching methods take linear time in

terms of the size of Sm, noted by jSmj, which is proportional

to the number of peptide sequences having a small precursor

mass difference (usually 1–2Da). For a standard search in

MSDB (described in Section 3), a large protein database, jSmj is

roughly between 100 and 200K. In other types of searches such

as PTM searches, jSmj is much larger, and the search is much

slower. Standard searches for one run of 100K spectra requires

at least 100K� 100K ¼ 10 billion comparisons which may

take hours to days on a single computer. To meet this kind of

challenges, we propose a new method to avoid one-against-all

comparisons by reducing the size of Sm through filtering out

most of the unrelated peptides.
Our basic idea is to design a set of hash functions to

pre-process peptides in the database so that for each*To whom correspondence should be addressed.
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query spectrum we can use these hash functions to search
for peptides that are most likely to match the spectrum.

Consider a random spectrum and the hash function is the

normalized dot product (cosine) between the random spectrum
and the hypothetical spectrum of the peptide. Now any query

spectrum which is similar to a hypothetical spectrum will

have similar scores when compared against the random
spectrum. Thus, a pre-filtering strategy would only consider

hypothetical spectra that have similar scores.
To implement the above idea, we need to first embed each

spectrum as well as the virtual spectra from peptides as unit

vectors in a high dimensional metric space, as shown in
Figure 1. The random spectrum is represented by a random

vector, and we use random vectors to construct a set of hash

functions called locality sensitive hashing (LSH), defined later,
for preprocessing. The normalized cross-correlation score

between two spectra can be approximated by the distance
between two vectors or embedded points. Thus database search

is equivalent to performing approximate near neighbor (ANN)

searches in the embedded high-dimensional space. Using LSH,
one can perform ANN searches in sub-linear time (Figure 2).

The key reason why we need a measure, such as the Euclidean
distance, that obeys the triangle inequality to speedup similarity

search is as follows. With triangle inequality, if we embed three

spectra S1, S2, S3, in a metric space and we know the distance
from S1 to S2 and from S2 to S3, we can bound the distance

from S1 to S3. Such guarantees are not possible if the triangle

inequality is not valid, such as in the case of cosine similarities
(Tabb et al., 2003) or cross correlations (Tabb et al., 1998).

Thus, we can avoid doing pair-wise computations to find

similarities.
Our idea of mapping or embedding spectra to a high-

dimensional point is both simple, general and novel. We can use
our scheme either to search for similar hypothetical spectra

generated from sequences, as in database search, or to find

similar spectra within experimental databases. This is also the
first known application of LSH-based computation of ANN

search algorithms in the area of tandem mass spectrometry

data analysis. Very recently, Ramakrishnan et al. (2006) have
constructed database filters using fuzzy and tandem cosine

distances and multiple vantage point trees. We believe that

our embedding into Euclidean spaces without considering the
precursor ion mass of the spectra has potential, and will

lead to various applications including comparing spectra and

their PTM variants; very preliminary results to support
the PTM case are included in the supplementary material.

Besides, we have shown that our mapping may be used for

other mining tasks such as clustering. Also we use much less
dimensions.

2 METHODS

In this article, we present a general framework that could be used for

speeding up database searching of tandem mass spectra as well as

other spectral mining tasks. Our main contributions are the following:

(i) We accurately map, or embed spectra into a high-dimensional

Euclidean space, called the metric space. (ii) We demonstrate that

the distance between two high-dimensional points corresponding

to two mapped spectra is similar to 1� cc where cc is the well-known

correlation coefficient between two spectra (Tabb et al., 1998, 2003).

(iii) We use LSH (Datar et al., 2004) to filter out or directly extract near

neighbors or peptides whose hypothetical spectra are highly correlated

with the query spectrum to avoid the one-against-all comparisons.

(iv) We also show how this framework could be used for other mining

tasks such as clustering of spectra.

Fig. 1. Overall idea of our method. Spectra are mapped into high-

dimensional points and so are hypothetical spectra generated from

peptide sequences. To speedup database search, the one-against-all

comparisons are avoided by filtering out the most correlated candidates

by finding all the near neighbors from the mapped query spectra within

a specified radius.

Fig. 2. Basic idea of LSH and near neighbor searches using LSH.
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To perform a database search for a query spectrum, we first embed

the spectra into a metric space and then obtain other points

corresponding to peptide sequences that lie within a threshold radius

from the mapped query point. This is known as a coarse grain filter

construction. This filtering can be achieved by using ANN search

algorithms. Now, fast algorithms with performance guarantees for near

neighbor searches are only possible for metric spaces such as Euclidean,

Hamming and Manhattan. This is why we map spectra into unit vectors

or points in a high-dimensional space.

2.1 Embedding spectra

2.1.1 Preprocessing spectra The Achilles heel of tandem mass

spectra analysis is the amount of noise in the mass spectra. In fact, most

peaks (around 80%) cannot be explained and are called ‘noise’ peaks.

‘Signal ’ peaks (such as b and y ions) are much more important for

similarity measures. As a first step, we remove noise peaks enriching the

signal-to-noise ratio.

We first find the intensity distributions of signal and noise peaks

using a set of annotated spectra fðs, pÞg from Keller et al. (2002), where

s is the spectrum and p is the corresponding peptide. The data set is

described in more detail in Section 3. We divide the mass range, for

example ½1, 2000� dalton in most experiments, into 10 sections. For each

section i and for each peak t, we consider its normalized relative

intensity rank rank(t): the highest peak has rank 0 and the lowest 1.

We divide the peaks into two sets Si and Ni, where Si contains only

signal peaks and Ni contains only noise peaks. We do this by comparing

t with the following ions: b, b�H2O, b�NH3, y, y�H2O, y�NH3 in

the hypothetical spectra. We calculate the probability that a peak t in

section i is a signal peak by the following formula,

Prðt ¼ signal Þ ¼
Pr½rankðtÞ jSi�

Pr½rankðtÞ jNi�
:

From Figure 3 we can conclude that the SNR is very poor at the ends

of the spectra, i.e. at low-mass and high-mass regions. This statistical

observation reinforces the mass spectrometry folklore that the middle

region is the most suitable for finding signal peaks. We perform an

approximate method based on the above figure. Instead of scoring each

peak, we note that choosing 5 peaks per 100Da window ensures us the

maximum number of signal peaks and the minimum number of noise

peaks. Thus, this is our approach.

2.1.2 Mapping and distances In this section, we describe our

mapping or embedding of spectra to points in a high-dimensional space.

We first clean spectra as mentioned in the previous subsection.

We assume a common mass range for all spectra. Then we divide the

entire mass range of spectra (from 0 to some maximum range)

into discrete intervals of 2Da. For each interval of 2Da, a bit is set

to 1 if the cleaned spectrum contains a peak in that interval, else we set

that bit to 0. Thus, for each spectrum, we obtain a bit string where each

bit represents the presence of peaks in the corresponding mass range as

shown in Figure 1. This method embeds each spectrum to a vertex of

an n-dimensional cube. Our feature vectors are then defined to be

unit vectors in the direction of the corresponding vertices of the

n-dimensional cube. This implies that our mapping transforms a

spectrum to a point on the surface of an n-dimensional sphere.

We now define the spectral distance or distance between spectra x, y,

as the Euclidean distance of the mapped points. Without loss of

generality, we represent the mapped points and their corresponding

spectra by the same notation. Thus, the distance between two spectra

x, y is jjx� yjj or D(x, y). Now, if the angle between the embedding

of the two similar spectra x, y is �, the spectral similarity is given by

cosðx, yÞ as in cosine similarity while the cosine distance is given by

1� cosðx, yÞ.

In mass spectrometry, literature variants of the cosine similarity

has been used extensively (Tabb et al., 2003). For two very

similar spectra, ideally cos � should be close to 1, and the distance

1� cos � should ideally be very small. Since x, y are nearby unit vectors

in the mapped space, their Euclidean distance will also be small.

Thus, for small angles, 1� cos � � Dðx, yÞ, where D is the Euclidean

distance. However, in reality, this may not be true due to noise in the

spectra. But a clear separation of the angles between similar spectra and

those between dissimilar ones should exist. Instead of calculating

the 1� cos �, we calculate D(x, y). This is because for any two vectors x,

y, making an angle �, jjx� yjj2 ¼ 2ð1� cos �Þ. Thus, using Euclidean

distances upon embedding has the same effect, in terms of similarity

calculations, as calculating the cosine distances.

Fig. 3. Signal and noise distributions of peak intensities in different regions of spectra (from the training set). The bolder red lines indicate

the distribution for signal while the thinner blue line is for that of the noise. The x-axis is the rank intensity and each of the subgraphs

is a pdf for a region.
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2.2 Fast near neighbor search

The basic query primitive we use is the following:

Primitive 1: Given a spectrum x and a set of spectra S, we want to

find all the spectra Sr that are similar to x, i.e. spectrum y 2 Sr, iff

Dðx, yÞ5rq, where D is the Euclidean distance and the rq is a query

radius.

Note that the set S can be a set of hypothetical spectra from the

in silico digestion of protein sequence, as in database search. Or it can

be a set of experimental spectra too. A very simple approach would be

to do a linear scan on the database and output every spectrum y such

that Dðx, yÞ5rq. This takes O(n) time. However, if S becomes very large

and so do the number of queries, say O(n), then we have a Oðn2Þ

algorithm. Thus, we are willing to trade off accuracy for search

speedup. Several sub-linear near neighbor methods exist but we

leverage LSH (Datar et al., 2004) since, unlike others, it promises

bounded performance guarantees and has been used in different

scenarios and has shown to much faster than metric trees based

approaches. We briefly present the idea below.

2.2.1 Locality sensitive hashing The basic idea behind random

projections is a class of hash functions that are locality sensitive, i.e. if

two points ð p, qÞ are close they will have small jp� qj and they will hash

to the same value with high probability. If they are far they should

collide with small probability.

DEFINITION 1: A family fH ¼ h : S ! Ug is called locality-sensitive,

if for any point q, the function

pðtÞ ¼ PrH½hðqÞ ¼ hðvÞ : jq� vj ¼ t�

is strictly decreasing in t. That is, the probability of collision of points q

and v is decreasing with the distance between them.

Hash function: Consider a random vector a of n dimensions. For any

two n-dimensional vectors p, q that we obtain upon embedding two

spectra, the distance between their projections ða�p� a�qÞ is distributed

as jp� qjsX where X is an s-stable distribution. The above can be shown

to be locality preserving. For example, in Figure 1, we see two groups of

similar points. For each group and a random line l, we project the

points onto this random line. Then we chop the real line into equal

width segments of appropriate size W and assign the hash values to

vectors based on which segment they project onto.

Searching: Now, if we are given a query spectrum, to find similar

spectra (both hypothetical as well as real), we need to embed this query

spectrum into a query point. Then we project the embedded query point

onto each of the lines. That is, we use tuples of LSH functions to

generate the exact bins where the point hashes. Then, we search for near

neighbors only among all the points that fall or collide into the same

bin. Thus this avoids searching the entire database. We use several lines

to increase the collision probability of similar spectra.

More details of the hash functions and the parameters used are

presented in the supplementary document. The key to the successful

application of LSH in our case is to use the correct query radius r.

We show in the next section how this can be chosen. If we give too high

a radius, it might yield a large data set and if the radius is too low,

it might not yield any neighbor. If an appropriate query radius is

chosen, finding replicates or tight clusters is a simple application of our

method.

2.3 Speedup database search

Given a query spectrum x, and a mass spectra database MSDB

(described in Section 3), the problem is to find out which peptide

p 2 MSDB corresponds to x.

Database search is a well-explored topic, see Wan and Chen (2005)

for example. Most tools index MSDB by the peptide mass. Then,

for a spectrum x, the precursor mass mx is found. Then all the

spectra Smx
¼ y j y 2 MSDB such that jmy �mxj5� are compared

with x, where � is some pre-defined mass tolerance. Each

comparison operation between the query spectrum and the

candidate spectrum takes a while depending on the scoring function

used. We reduce the size of Smx
by filtering the unrelated spectra,

speeding up the search. We ensure that we do not filter out the true

peptide for a given spectrum while we discard most of the unrelated

peptide.

We generate the hypothetical spectrum from each peptide sequence in

the database, and then embed those hypothetical spectra in the

Euclidean space, as mentioned. Then for filtering, we choose an

appropriate threshold radius r and query the LSH algorithm to yield all

the candidates within a ball of radius r. The ratio of the total number of

peptides within a mass tolerance divided by the number of candidates

returned is our speedup.

3 EXPERIMENTAL RESULTS

In this section, we describe the empirical evaluation of our

embedding and its application to similarity searching using

LSH. Unless otherwise stated, we use the following data set

from Keller et al. (2002) in which two mixtures, A and B, were

obtained by mixing 18 purified proteins together, each having

different properties, relative molar amounts and modifications.

They performed 22 runs of LC/MSMS on the samples, with 14,

8 runs performed on mixture A, B, respectively. The resultant

spectra obtained were analyzed by SEQUEST, and the peptide

assignments were then manually scrutinized to determine

whether they were correct. The final data set, on curation,

contains 125, 1649, 1010 charge þ1, þ2, þ3 spectra,

respectively. In this study, we only consider charge þ2 spectra.

In the supplementary we provide further validations based

on two other data sets [HUPO plasma proteome (Adkins et al.,

2002) and an ecoli data set from OPD (Marcotte opd

(open proteomics database)) annotated by Bern and Goldberg

(2005)].
For database search filters, we use a non-redundant protein

sequence database called MSDB, which is maintained by the

Imperial College, London. The release (20042301) has 1 454 651

protein sequences (around 550M amino acids) from multiple

organisms. Peptide sequences were generated by in silico

digestion by trypsin, with all possible missed cleavages as

long as the mass of the resultant peptide was 53500Da.

The final list of peptides with a precursor ion mass till 3500Da

were grouped into different files by their precursor ion mass,

a different file for 10Da. Our database contains 87.4 million

peptide sequences.
Note that our techniques are unsupervised except for the

selection of query radii. For database search filtering,

we started with the 1649 interpreted charge þ2 spectra from

the above data set. Then we chose all the spectra whose

sequences were inside our MSDB database and ended with

a K or R. Overall, we used 1014 spectra. We ran those spectra

again through MASCOT with a 2Da tolerance and 1 missed

cleavage to verify the peptide annotations only.

Metric embeddings and fast near neighbor search
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3.1 Empirical evaluation of the embedding

In this section, we carefully analyze our spectral mapping

and different distance metrics (between spectra). We cleaned

the spectra by picking the most likely to be the signal peaks.
Then we constructed the binary bit vector as discussed earlier.

In our implementation, we chose the maximum mass

for binning to be 1500, 1800 or 2000Da. This gave us 750,

900 and 1000, dimensions, respectively, for our mapping.
However, since we choose on an average of 5 peaks per 100Da,

the space is very sparse. Generating the feature vector took

linear time. In particular, for 1649 spectra, it took a total of

6.932 s including file IO.
For the above set of spectra, we know that there are

115 odd clusters with 16 spectra per cluster on an average.
Upon embedding the spectra as described above, we calculate

the pairwise distances between spectra within the same

cluster after embedding the spectra as described above

and we term this the similar set, SS. We then choose
a representative from each cluster at random and

calculate the distances and we call this set the dissimilar

set, DS. Then we plot the frequency distribution of DS and

SS as they both have similar number of pairwise distances in
Figure 4 for three metrics: Hamming, 1-cosine and Euclidean.

Its very clear that Hamming is unsuitable as a metric

as it has low discriminability. As expected, 1-cosine

and Euclidean looks almost similar with low overlaps between
the sets DS and SS. More evidence is presented in the

supplementary section.
Now, we consider the database of tryptic peptides, MSDB.

For each peptide, we generate its hypothetical spectrum and

then construct the feature vector as above. For each

real spectrum, we calculate the distance with the correct
hypothetical spectra and we call this set of scores to be

the similar set, SS. Then we choose, from the database,

100 random peptides within 2Da from precursor ion mass of

the given spectrum. We then add the set of scores to the
dissimilar set, DS. We then plot the probability distribution of

SS and DS in Figure 5. Again, we can see the clear separation

between the two sets of distances (with 51% overlap).

This indicates that the efficacy of Euclidean distance in our
embedded space is a good metric to design filters for database

search; note the sharp impulse at 1.414 corresponding to

distances between real spectra and completely dissimilar
peptides within a mass tolerance of 2Da.

3.2 Speeding up database search

To test the efficacy of our framework on speeding up

database search, we define speedup by the ratio of total
number of candidate peptides with a mass tolerance of 2Da

within a database and the total number of peptides

whose hypothetical spectra have a distance of at most �

with the query spectrum and have the same mass tolerance
of 2Da. The parameter � allows to trade-off accuracy for

speedup.
In Figure 6a we plot the speedup on a logarithmic scale

against the miss percentage. This gives us the speedup

(or quality of filtering) versus accuracy trade off of using our

framework for two different mappings. For a 2 Da range,

the number of peptides are around 100–200K. For around

a 100K peptide set and 750 dimension mapping, LSH

takes 0.21 s on an average to answer queries. As we see from

Figure 6a, we can get an average speedup of 111 if we allow

0.29% misses.
When the number of dimensions of our mapping were

increased to 1000 (i.e. when we considered 2000Da as the

maximum mass), the results were significantly better.

For example, for just one spectrum missed, or 0.09% misses,

we get a speedup of 111 and for 0.19% misses, the speedup

was 281.06. The total number of peptides considered within

a 2Da range was 114 380 on an average. For the above 111

speedup, the frequency distribution of nearest neighbors

is shown in Figure 6b. Note that for the same speedup,

the error rates are much smaller when 900 or 1000 dimensions

were used. In the 900-dimension case, we have no error even

at a speedup of 23.66. Using higher dimensions, we will need

more space but will get much lower error rates. This is

a tradeoff.

The quality of the results obtained may be reasonable for

many applications. In fact, we found that some of our errors were

Fig. 4. Distribution of scores with real spectra using different metrics

(Hamming, 1-cosine, Euclidean). The dotted curves plot the inter-

cluster distances while the solid lines represent the intra-cluster

distribution.

Fig. 5. Distribution of distance between real and hypothetical spectra

using different metric. The dotted curves represent the distance between

real spectra and distances to hypothetical spectra from 100 different

peptides of similar precursor masses. The sequences are from MSDB.

The other curve shows the distribution of distances between spectra and

the hypothetical spectra from the true peptides.
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due to low-quality spectra in our test data set. For three spectra,

even MASCOT failed to match the annotations of the spectra.

3.3 Similarity searching using LSH

In this section, we additionally quantify the accuracy of our

framework for similarity searching and clustering using our

embeddings. Note that our filtering idea is essentially similarity
searching amidst a database of in silico-generated hypothetical

spectra. Any metric that is a good database search filter should

naturally be suitable as for similarity searching of real spectra.
We first indexed the 1014 spectra using our embedding

followed by LSH. For each of the 1014 spectra, we queried

LSH with a radius r. We varied r. We plot the number of

missed spectra that were actually present in the cluster
of the query spectrum in Figure 7a and the number of

false positives in Figure 7b. As we increased the radius,

the number of misses decreased. This is expected as the

radius of the query ball increases the number of possible data

points that can be considered. As expected, the number of

false positives also increased as r increased. We miss an average

of one spectrum within each cluster while admitting only

one false spectrum.
At r ¼ 1:0�1:1 the false positives are not high. In many

situations, it might be fine to miss out some bad-quality spectra

(distances to bad-quality spectra are usually higher).

Also, consider situations where we would like to coarsely

partition the data set (e.g. for clustering). Then, we can afford

to have a few false positives but we cannot miss any true

positives. In such cases we increase the radius to at most 1.25 as

the likelihood of an intra-cluster distance being41.25 is low;

from Figure 4.

4 DISCUSSION

The results in the previous section look promising. The clear

separation between the dissimilar set (DS) and similar set (SS)

Fig. 6. (a) Filtering of spectra for DBASE search. The upper curve represents the speedups when 1000 dimensions were used for LSH while the lower

curve represents the 750 dimension case. The middle curve represents the 900 dimension case. (b) Filter efficacy: the number of nearest neighbors or

spectra filtered by approach in the case when the speedup was 111 and the misses were 0.19% with 1000 dimensions.

Fig. 7. Performance of similarity searching. (a) The average number of spectra that are present in the cluster containing the query

spectrum but are missed by LSH. (b) The average number of spectra that are not present in the cluster containing the query spectrum but are

reported by LSH.
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curves while comparing metrics was interesting. In the
supplementary section, we show similar results for two other
real world data sets. Also, since we first transform the spectra
into binary bit strings, we avoided the huge variations of

intensity among different experimental spectra. The signal-
to-noise ratio pilot study also underscored the fact that we need
to segment the mass range. Note that another reason why we

obtained clear separations between the DS and SS with our
mapping is that we avoided using precursor ion mass as
a feature, since such masses are prone to instrument errors.

For LSH, the performance is quite satisfying. However,
there are two implementation issues. Our current indexing takes
place in the main memory. This means we need lots of memory

to index millions of mass spectra. Even though this is possible
with the current 64 bit machines, we need to design disk-based
LSH schemes. We are working on a large scale implementation
of our framework based on such techniques. Another issue

is the choice of the number of bins and the mass coverage.
Increasing the number of bins leads us to the curse of
dimensionality which would slow down LSH and reduce the

filtering speedup.

5 CONCLUSIONS AND FUTURE WORK

In this article, we showed that our method of mapping spectra

into high-dimensional points along with the use of fast
ANN-searches-based filtering provides a good framework for
speeding up database search for mass spectra. In particular,

we have demonstrated that Euclidean distances between
embedded spectra are highly correlated with the well-known
cosine similarity while enabling us to use approximate fast
near neighbor search techniques for constructing coarse grain,

fast filters. We demonstrated that we can get two to three
orders of magnitude speedups for database using these filters.
Using this framework, we also showed how we can do

similarity searches and find tight clusters or replicates.
This work is the first step in the direction of an integrated

framework for large-scale filtering and mining of tandem mass

spectra using simple techniques from embeddings, vector spaces
and computational geometry. Several directions are being
investigated at this point. The main areas of investigation

are (i) better embeddings that offer better resolution and faster
blind filtering for PTM spectra, (ii) faster external database

searching algorithms that use embeddings, (iii) large-scale

clustering of mass spectrometry data and (iv) integrating data

from different sources using our embeddings. This first involves

analyzing spectra across different data sets from the same

instrument, followed by the much more challenging problem

of studying spectra from different instruments.
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