

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

 © 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this
work in other works

http://dx.doi.org/10.1109/HPCSim.2015.7237035

http://hdl.handle.net/10251/65733

IEEE

Bermudez Garzon, DF.; Gómez Requena, C.; López Rodríguez, PJ.; Gómez Requena, ME.
(2015). Speeding-up the fault-tolerance analysis of interconnection networks. International
Conference on High Performance Computing & Simulation (HPCS 2015). IEEE.
doi:10.1109/HPCSim.2015.7237035.

Speeding-up the Fault-Tolerance Analysis of
Interconnection Networks

D. Bermúdez Garzón, C. Gómez, P. López and M. E. Gómez
Departamento de Informática de Sistemas y Computadores, DISCA

Universitat Politecnica de Valencia
Valencia, Spain

Email: dieberg1@posgrado.upv.es

Abstract—Analyzing the fault-tolerance of interconnection
networks implies checking the connectivity of each source-
destination pair. The size of the exploration space of such
operation skyrockets with the network size and with the number
of link faults. However, this problem is highly parallelizable
since the exploration of each path between a source–destination
pair is independent of the other paths. This paper presents
an approach to analyze the fault-tolerance degree of multistage
interconnection networks using GPUs in order to speed-up it.
This approach uses CUDA as parallel programming tool on a
GPU in order to take advantage of all available cores. Results
show that the execution time of the fault-tolerance exploration
can be significantly reduced.

Index Terms—Fat-Tree, MINs, fault-tolerance, CUDA.

I. INTRODUCTION

The analysis of fault-tolerance of highly-parallel machines
is a topic of increasing interest. As the system grows, not only
its processing capacity does, but also the probability of faults
in the system. This probability linearly grows with the number
of elements in the system. As the availability of these systems
is a concern, it is critical to keep the system working, even in
the presence of faults.

A key component of HPC systems from both the fault-
tolerance and performance points of view is the intercon-
nection network. It must provide efficient communication
among the computing elements to achieve the highest system
performance; but also, tolerating faults becomes a problem of
great importance since faults in the interconnection network
may isolate a large fraction of the machine, containing many
healthy processors that otherwise could still be used. The main
design parameter that impacts the fault-tolerance degree of an
interconnection network is the topology.

The fault-tolerance concern is recurrent when designing
a new topology as can be found in the literature [2]–[8],
[10], [12], [14]–[18], but few of these works perform a deep
fault-tolerance analysis to quantify the fault-tolerance level
achieved by the proposed topologies [9]. These results are
very useful when selecting the topology for a new machine.
The main problem when performing those analysis is the
required computational power. The exploration space size
highly increases with network size and with the number of
simulated faults.

To overcome this limitation, in this paper, we propose a
methodology that takes advantage of GPU processing capabil-
ities to implement highly parallel algorithms that allow the ex-
ploration of the whole space or, at least, a highly representative
subspace of the topology fault-tolerance. In order to complete
the exploration of the fault-tolerance of the topology, for each
combination of faults, the connectivity of every pair of nodes
in the system must be checked. The good news are that each
source–destination pair for a given combination of faults can
be checked independently of the rest, which provides a high
potential for parallelization. Also, each combination of faults
for a given number of faults can be checked independently. In
particular, we apply this methodology to the fat-tree topology
as an example, but it can be applied to any topology. The
fat-tree is one of the most widely used topologies in large
machines (see the Top500 list [1]) since it does not only
provide a good performance/cost ratio but also a good fault-
tolerance degree.

The rest of the paper is organized as follows. Section II
provides some background on the fat–trees. It also describes
the adaptive routing algorithm commonly–used in fat–trees.
Section III provides some background on parallel computing.
Section IV describes the problem of analyzing fault-tolerance
of interconnection networks. Section V presents the proposed
algorithm, and Section VI provides the results obtained with
the new proposal and finally in Section VII some conclusions
are drawn.

II. FAT–TREE TOPOLOGY

The fat-tree topology is based on a complete tree that gets
thicker near the root. The arity of the switches increases
as we go nearer to the root, which makes the physical
implementation unfeasible. For this reason, some alternative
implementations have been proposed in order to use switches
with fixed arity.

In particular, the k–ary n–tree [13] is a parametric family of
regular multistage topologies. The number of stages is n and k
is the arity or the number of links of a switch that connects to
the previous or to the next stage (i.e., the switch degree is 2k).
A k–ary n–tree is able to connect N = kn processing nodes
using nkn−1 switches. Each processing node is represented as
a n–tuple {0, 1, ..., k − 1}n, and each switch is defined as a
pair 〈s, o〉, where s is the stage where the switch is located at,

s ∈ {0..n− 1}, and o is a (n− 1)-tuple {0, 1, ..., k − 1}n−1
which identifies the switch inside the stage.

Two switches 〈s, on−2, ..., o1, o0〉 and 〈s′, o′n−2, ... , o′1, o
′
0〉

are connected by an edge if s′ = s + 1 and oi = o′i for all
i 6= s. On the other hand, there is an edge between the switch
〈0, on−2, ..., o1, o0〉 and the processing node pn−1, ..., p1, p0 if
oi = pi+1 for all i ∈ {n − 2, ..., 1, 0}. This edge is labeled
with p0. In what follows, we will assume that descending links
are labeled from 0 to k − 1, and ascending links from k to
2k − 1. Figure 1 shows a k–ary n–tree example. The upward
links are shown in blue (dotted lines) and the downward links
are shown in red color (dashed lines).

0

1

2

3

4

5

6

7

Switch Id

0

1

2

3

4

5

6

7

8

9

10

11

8

<0, 00> <1, 00> <2, 00>

<0, 01> <1, 01> <2, 01>

<0, 10> <1, 10> <2, 10>

<0, 11> <1, 11> <2, 11>

000

001

010

011

100

101

101

111

Fig. 1: A 2-ary 3-tree interconnection network.

A. Adaptive Routing in Fat–trees

In k–ary n–trees, minimal routing from a source to a desti-
nation can be accomplished by sending packets upwards to one
of the nearest common ancestors of the source and destination
nodes and then, from there, downwards to destination. When
crossing stages in the upwards direction, several paths are
possible, thus providing adaptive routing. In fact, each switch
can select any of its k up output ports. Once one of the
nearest common ancestor has been reached, the packet is
turned around and sent downwards to its destination as just
a single path is available. The stage up to which the packet
must be forwarded is obtained by comparing the source and
destination components beginning from the most significant
one. The first pair of components that differs indicates the
last stage to forward up the packet. Once in that stage, the
descending path is deterministic. At each stage, the descending
link to choose is indicated by the component corresponding
to that stage in the destination n–tuple.

Given that the routing algorithm is adaptive, in the upwards
subpath, at each switch, the k input ports can forward packets
through either any of the up k output ports, if the packet
continues in its upwards subpath, or any of its down output
ports if the packet starts its downwards subpath. On the other
hand, in the downwards subpath, there are k down input ports
that can only request k down output ports, since once a packet

has started its downwards subpath, the packet must continue
going downwards. Figures 2a and 2b show the output ports that
can be requested in the upwards and downwards directions,
respectively, in the switches of a 4–ary n–tree.

0

1

2

3

4

5

6

7

(a) Requested ports in the
upwards direction by port
0.

0

1

2

3

4

5

6

7

(b) Requested ports in the
downwards direction by
port 4.

Fig. 2: Ports that can be requested in a 4–ary n–tree using
adaptive routing.

Figure 3 depicts an example of a packet that is sent
from processing node 0 to processing node 7. As can be
seen, in the upward phase, the packet can take any output
port thus providing a high number of possible paths (dotted
lines), meanwhile at the downward phase the packet only has
one possible path that depends on the chosen path at the
upwards phase (dashed lines). The number of paths tends to
exponentially increase as the network size increases.

0

1

2

3

4

5

6

7

Switch Id

0

1

2

3

8

9

10

11

8

<0, 00> <1, 00> <2, 00>

<0, 01> <1, 01> <2, 01>

<0, 10> <1, 10> <2, 10>

<0, 11> <1, 11> <2, 11>

000

001

010

011

100

101

101

111

4

7

5

6

Fig. 3: Adaptive Routing.

B. Fault-Tolerance in Fat-Trees

In interconnection networks, fault-tolerance is usually im-
plemented by using a routing mechanism that provides several

alternative paths to communicate every source–destination
pair. To reach this goal, some proposals add links and switches
to the base network.

However, in the case of fat–trees, as stated above, adaptive
routing already provides several disjoint paths to send informa-
tion from each processing node to the corresponding destina-
tion. This flexibility might not be only used for performance-
improvement purposes but also for fault-tolerance. In partic-
ular, the number of alternative paths between each source–
destination pair increases with the network arity (k, related to
switch degree) and the number of stages n. Depending on the
destination, there are a maximum of k(n−1) different paths.

III. PARALLEL COMPUTING

Parallel computing is a form of computation in which many
calculations are carried out simultaneously to solve problems
that require either large processing time or handling large
amounts of data in the shortest possible time. The parallel
processing philosophy is to divide the problem into simple
tasks and solve them concurrently. However, we must keep in
mind that not all problems can be parallelized.

Among the most common forms of parallelizing an applica-
tion are MPI, OpenMP and, using a GPU. The main drawback
of MPI and OpenMP is that the number of parallel tasks is
limited by the number of processing elements, which is in the
order of tens for most used installations. On the other hand,
GPUs offer a large processing capacity in a single unit of
hardware at a very low cost. For this reason, most parallel
applications are being ported to GPUs, as their use represents
economic savings in several aspects (acquisition, maintenance,
power consumption, etc.) while providing high performance.

A. CUDA

The first GPUs were designed as graphics accelerators.
From there their architecture evolved from a specific single-
core with a fixed-function hardware pipeline made solely
for graphics, to a set of highly parallel and programmable
cores for more general purpose computation. Starting in the
late 1990s, the hardware became increasingly programmable,
culminating in NVIDIA’s first GPU in 1999. From 2001 to
2005 the evolution of CPUs and GPUs was similar. Since
2006, GPU performance increased significantly. In 2009, the
peak floating–point calculation throughput ratio between CPUs
and GPUs was about 10 to 1, which means GPUs reached 1
teraflop and CPUs only 100 gigaflops [11].

The idea of using GPUs for intense numeric computing
motivated the design of CUDA (Compute Unified Device
Architecture), a programming model for execution of an
application to take advantage of GPUs [11].

The architecture of CUDA (Figure 4) is organized in
modules called Streaming Multi–processors (SMs). Two SMs
form a block (however, the number of SMs in a building
block can vary from one generation of GPUs to another)
each one with an independent parallel cache, and a Global
Memory. The SMs are composed of Streaming Processors
(SPs) that share a control logic and an instruction cache. The

total number of SPs depends on the GPUs model. The SPs
can execute multiple threads per application (even thousands
of threads). Meanwhile, CPUs only support 2 or 4 threads per
core, according to the current trends.

Parallel Data
Cache

Texture

Parallel Data
Cache

Texture

Parallel Data
Cache

Texture

Parallel Data
Cache

Texture

Load/Store Load/Store Load/Store

Global Memory

Thread Execution Manager

Host

Input Assembler

Fig. 4: Architecture of a CUDA–capable GPU.

Parallel programming in CUDA is explicit and fine grain,
i.e., it is necessary to design how the task will be divided to be
executed in parallel and how the communication between tasks
can be performed. This architecture is composed by several
elements, and to understand a CUDA code, it is necessary
to know some basic concepts about it, such as: host, device,
function qualifier, kernel, global memory, constant memory,
block and, grid.

• Host and device are used to refer to the hardware. Host
is used for the CPU side of the system and device for its
GPU counterpart.

• The function qualifiers are used to indicate where the
function will be executed and its type of access. The used
qualifiers are host , device , and global . The
first one refers to the function that is callable and executed
only in the CPU, while the second one will run on a GPU
and not on the host. Besides, this function will be callable
only from other device functions or from global
functions. The latter means that the function serves as the
point of entry into a kernel which executes in parallel on
a GPU device.

• A kernel is a function executed on the GPU as an array
of threads in parallel. All threads execute the same code
and can take different paths. The kernel always is marked
as global .

• The Global Memory is tipically implemented in DRAM.
It is analogous to RAM in a computer and can be accessed
by both GPU and CPU. It is accessible by all threads
of any kernel and its datalife time is from allocation to
deallocation by host code. The latency of this memory
is between 400 and 800 cycles. Currently, we can found

some GPUs with up to 6GB of memory.
• The Constant Memory is used for data that will not

change over the course of a kernel execution, and supports
short-latency, high bandwidth, read-only access by the
device when all threads simultaneously access the same
location.

• A block is a set of threads. The block size or maximum
number of threads per block depends on the GPU model.

• A grid is a collection of blocks. A grid can be one, two, or
tri-dimensional. As the block size, the grid size is limited
by the GPU implementation.

IV. THE PROBLEM

The fault-tolerance analysis is based on taking a network
and introduce a fault or a set of faults in the interconnection
links and test the connectivity of the system, checking that
each processing node has, at least, one route to all destinations
(except itself). Once finished this checking, the faults are
moved to other links and the checking process is repeated
again. If, for example, we have a network with 32 unidirec-
tional links and we are testing a single fault, the process will
take place 32 times. In Table I, we can see how increasing
the number of faulty links, in a small 2–ary 3–tree network
using a fat–tree with adaptive routing, leads to an exponential
increase in the number of combinations to evaluate.

Number of faults Combinations
to evaluate of faults

1 32
2 496
3 4960
4 35960
5 201376
10 64512240
15 565722720
16 601080390

TABLE I: Number of combinations of faults for a 2–ary 3–tree
network, considering up to 16 faults.

If, for a given number of faults, for all the possible combina-
tions of this number of faults, the topology is able to provide at
least a path for every source–destination pair, then the topology
tolerates that number of faults. If some of the combinations
are tolerated and others are not, then that number of faults is
not tolerated, but in this case, we can obtain the percentage
of combinations that are tolerated, that is, those that have at
least a healthy path for each source-destination pair.

This type of analysis has a major drawback: the processing
time. Two reasons impact the execution time: 1) as the number
of faults to evaluate increases, so does the number of combi-
nations that must be evaluated, and 2) as the network size
increases, so does the number of network links. In addition,
some network topologies use bidirectional links by design,
as the fat–trees. In these cases, it is necessary to consider
these links as unidirectional to perform a deeper analysis, so
every switch with an arity of k, has 2k input ports and 2k
output ports (see Figure 1). Thus, if an up link fails, it does
not affect the corresponding downlink. So when considering

unidirectional links, the number of links (and locations for
faults) to evaluate will double.

Those who have addressed this issue have developed tools
working on a single CPU, obtaining a low execution perfor-
mance. As we mentioned before, the major drawback of this
analysis is the high execution time, because evaluating a single
combination of faults is a process that may be too long, since
the complexity of the algorithm is in order of:

N ∗ (N − 1) ∗Max Nr Paths ∗Nr Combinations

Where the N is the number of processing nodes in the
network. In a k–ary n–tree network, the number of nodes is
equal to kn. Therefore, the term N ∗ (N − 1) indicates that
all the routes between all nodes must be evaluated.

The maximum number of paths (Max Nr Paths) that
exist in a network, depends on the topology that is being
evaluated. For the case of a fat–tree with adaptive routing,
this value is given by the expression:

Max Nr Paths = N ∗
N−1∑
i=k

kblogk ic

Finally, the number of combinations (Nr Combinations)
that can be obtained for a given number of faults is given
by the formula:

Nr Combinations =
Network Links!

fte!(Network Links− fte)!

The variable Network Links is the number of links that exist
in the network for a fat–tree with adaptive routing, and can
be calculated using the formula:

Network Links =
kn

k
∗ (n− 1) ∗ k ∗ 2

The variable fte is the number of faults to be evaluated when
performing the network analysis.

The high complexity of the algorithm makes infeasible the
analysis of large networks on a CPU. Although statistically
is not necessary to evaluate all the faults, it is very important
to analyze a representative sample. However, in medium and
large-sized networks performing this analysis on a single
CPU is not feasible, because the processing time for a single
combination of faults will be prohibitive. Such applications
may be parallelized in large machines, such as a cluster, but
the number of cores is much lower than that available in a
single GPU. Alternatively, multiple GPUs or even an hybrid
(CPU-GPU) version could be used.

V. THE ALGORITHM

Following the philosophy of parallelization, we have divided
our problem into smaller parts, so that each thread on the GPU
is responsible of analyzing a part of it.

As stated before, the fault-tolerance analysis is based on
testing thousands of combinations of faults in the network
links, and in turn, for each combination of faults, the co-
nnectivity among all processing nodes of the network must
be checked.

From our point of view, we could tackle this analysis in two
different ways: 1) evaluate several combinations of faults in
the GPU at the same time or 2) to use the GPU evaluating
only one fault combination at a time.

In the former, we could copy several network instances
to the GPU and assign each one of them to a GPU thread
(one fault combination per thread). However, although each
combination of faults to evaluate is independent of the rest, it
is not appropriate to assign long processes to each thread since
the processing time for a single analysis can take considerable
time. Furthermore, with this approach, we have to keep in
mind two important aspects: 1) different fault combinations
can take different processing time, given that the fault location
affects the number of paths to evaluate. So, if we assign a
combination of faults to each thread we would find a barrier,
and would have to wait for the last thread to continue the
analysis. 2) as the network size increases, the number of
instances that fit in the GPU is lower, due to limitation of
memory in the device.

In the latter case, to speed up the application execution, we
assign only a fault combination to the GPU, i.e. copying only
a network instance to the GPU, so that each thread will check
the connectivity between a source-destination pair. Thus, as the
network grows so does the level of parallelization, allowing
us to obtain better execution times on the GPU.

This is the approach followed in this paper. The Algorithm 1
shows the general steps that allows us to perform the required
analysis.

input : Network and interconnection topology.
output: Fault-tolerance stats.

Determinate the grid size, according to the network
size and GPU capability;

for i← 0 to Nr Combinations− 1 do
⇒ Generate a single combination of faults;
⇒ Apply the combination of faults to the
network;
⇒ Copy the network and auxiliar elements to
device;
⇒ Launch Kernel;
⇒ Copy results from device to host;
⇒ Collect processed data;
⇒ Free memory;
⇒ Remove faults from network;

end
Algorithm 1: Algorithm for analyzing fault-tolerance.

At the GPU side, to avoid overloading the kernel with un-
necessary loops or using arrays to store the source-destination
pair to evaluate, these values are calculated using the thread
identifier, as is shown in Algorithm 2. For the best perfor-
mance, it would be interesting to copy the network to the
constant memory of device, but since the size (in bytes) of the
network is generally higher than the constant memory space

(16KB-64KB in most cases), we are forced to use the global
memory.

input : Network with faults.
output: Fault-tolerance stats.

Calculate the thread identifier (tid);

//Compute the origin–destination pair to evaluate;
orig = tid / (N-1);
dest = (tid + orig + 1) mod (N-1);

if (orig == dest)
| dest=N-1;
end

stats[tid]=EvaluatePaths(orig, dest);
Algorithm 2: Kernel code.

The EvaluatePaths function checks if there is an available
path between the given source–destination pair. A given com-
bination of faults is tolerated if the result of this function is
true for all source–destination pairs. An in-depth description
of this function is out of the scope of this paper.

VI. EVALUATION

In this section, we will evaluate the fault-tolerance of a fat
tree with adaptive routing to analyze the performance of the
tool running on a GPU, comparing the results with the same
tool running on the CPU.

A. Simulation Enviroment

To obtain the results of this section, we have developed two
versions of the fault-tolerance analyzer, one for each type of
hardware. The CPU version runs on a Intel Xeon E5530, while
the GPU version runs on a Nvidia Tesla C1060 card.

Tables II and III show the most relevant specifications of
the used CPU and GPU, respectively, to carry out the present
work.

Model name Intel R©Xeon R©
CPU E5530 @ 2.40GHz
Cache size 8 MB
CPU cores 4

TABLE II: CPU specifications.

Model name Tesla C1060
Compute capability 1.3
Clock rate 1.296GHz
Total global memory 4GB
Total constant memory 64KB
Multiprocessor count 30
Shared memory per block 16KB
Register per block 16384
Max threads per block 512
Max thread dimensions [512 512 64]
Max grid dimensions [65535 65535 1]

TABLE III: GPU specifications.

The topology has been analyzed for different network sizes,
such as a 4–ary 3–tree, a 8–ary 3–tree and, 16–ary 3–tree.
To prevent that the processing time on the CPU becomes
very high, we bounded the number of tested combinations
to 100000 when the combinations of faults were higher to
this value. In both versions of the tool, for timing analysis
purposes, we only have considered the function that analyzes
the fault-tolerance; the fault combinations generator is not
taken into account because it does not represent a processing
overhead compared to the execution of the function/kernel that
perform the fault-tolerance analysis.

B. Evaluation Results

As stated above, we will show the results for both CPU
and GPU processing time. To better observe the differences
between the two approaches, the execution time in the figures
have been represented in logarithmic scale.

In Figure 5, we can see the processing time for a 4–ary 3–
tree, the smallest network analized, using both versions of the
tool. As can be seen, both execution times are very similar.
This is because, since the network size is very small (64
processing nodes), the number of network links is also small.
For this reason, the level of exploited parallelism in the GPU
is low, getting a performance close to the CPU.

CPU GPU

T
im

e
 (

m
s

)
-

[
L

o
g

 S
c

a
le

]

100

1.000

10.000

100.000

Number of faults
100806040200

Fig. 5: Execution time of the tools for a 4–ary 3–tree.

For a 8–ary 3–tree network, as it can be seen in Figure 6,
the differences in processing time between both versions of the
analyzer are larger because the number of source–destination
pairs that must be evaluated is higher, so the potential of the
GPU can be better exploited. For this network size the GPU–
based tool has performed the analysis 23X faster than the CPU.
In other words, while the GPU performs the analysis in 3.8
minutes, for 100 faults, the CPU does the same work in 1.5
hours.

As expected, by analyzing larger networks we can see that
the processing time increases significantly. Figure 7 shows
results for a 16–ary 3–tree. In this case, evaluating 5 faults
takes 67.8 hours in the CPU while its counterpart in the GPU,
performs the analysis in only 2.3 hours. The speedup of the
process was more than 27X.

CPU GPU

T
im

e
 (

m
s

)
-

[
L

o
g

 S
c

a
le

]

10.000

100.000

1.000.000

Number of faults
100806040200

Fig. 6: Execution time of the tools for a 8–ary 3–tree.

As we can see, the CPU–based tool can not be used in prac-
tice for medium to large networks. Table IV shows the number
of network links and the maximum number of paths that must
be evaluated for the fat–tree topology (with adaptive routing)
using different network sizes and 100000 combinations of
faults. As it can be seen, this number exponentially grows
with the network size and also the CPU execution time. The
GPU–based tool effectively enables analyzing these network
sizes in a reasonably execution time.

As an example of usage of the developed tool, following
we show some of the obtained results for fault-tolerance. In
Figure 8 we can see the number of source–destination pairs
that are able to communicate for different number of faults
and two network sizes. In both cases, we have evaluated up
to 256 faults in the network. As we can see, although the
exhibited networks have the same number of processing nodes,
the number of network links is higher for the 2–ary 6–tree
network; therefore, for the same number of faults, its impact
is lower. The number of paths is greater and, in turn, better
exploited by the adaptivity of the routing algorithm. Another
important result is shown in Figure 9. Here we can see the
percentage of non tolerated fault combinations, i.e., of the
100000 tested combinations, it shows what percentage of them
fails to establish a path between all origin-destination pairs. In
this case, for the 4–ary 3–tree network, the number of tolerated
faults is higher than for the another network, i.e. this network
supports more faults. This is because the arity of the used
switches in the network is higher, therefore the number of
connections among switches will also increase, allowing us to
reach a higher degree of fault-tolerance.

It is noteworthy that the developed tool supports using
multi-GPU, which provides a higher speedup in case of being
required. Moreover, it is also possible to run several instances
of the GPU–based tool on different nodes of a parallel machine
(i.e. a cluster of computers) provided that every one has a GPU
installed. Both ways of exploiting parallelism (i.e. at each node
and at each GPU) will lead to improved results.

CPU GPU

T
im

e
 (

m
s

)
-

[
L

o
g

 S
c

a
le

]

1.000.000

10.000.000

100.000.000

Number of faults
10080604020

Fig. 7: Execution time of the tools for a 16–ary 3–tree.

Network Processing Network Paths to
Size Nodes Links Evaluate

2–ary 6–tree 64 640 8,72960E+09
4–ary 3–tree 64 256 5,22240E+09
4–ary 5–tree 1024 8192 2,14745E+13
8–ary 3–tree 512 2048 1,49094E+12
8–ary 5–tree 32768 262144 3,90937E+17
16–ary 3–tree 4096 16384 4,04226E+14

TABLE IV: Number of paths to evaluate depending on the
network size.

VII. CONCLUSIONS

We have presented an approach to optimize the fault-
tolerance analysis of multistage interconnection networks us-
ing parallelism. In particular, we take advantage of the GPU
device available in most current systems. The fault-tolerance
analyzer based on a single CPU have a very high processing
time. Although several instances of the tool can be running on
a cluster of computers, it results in a high power consumption
and also the number of processing cores is bounded in practice
to tens of nodes. By using the GPU–based version, we have
obtained an improvement of up to 23X compared with the
CPU counterpart, allowing us to perform a more complex
analysis in a finite and reasonably execution time.

Furthermore, although this work has focused in the fat-
tree topology, the fault-tolerance analysis, and consequently
its optimization, can be used on other direct or indirect
interconnection networks.

ACKNOWLEDGMENT

This work was supported by the Spanish Ministerio de
Economa y Competitividad (MINECO) and by FEDER funds
under Grant TIN2012-38341-C04-01.

REFERENCES

[1] Top 500 supercomputers sites. http://www.top500.org.
[2] S. Bataineh and B. Allosl. Fault-Tolerant Multistage Interconnection

Network. Telecommunication Systems, 17(4):455–472, 2001.
[3] C. Chen and C. Chung. Designing a disjoint paths interconnection

network with fault tolerance and collision solving. The Journal of
Supercomputing, 34(1):63–80, 2005.

2-Ary 6-Tree 4-Ary 3-Tree

P
e

rc
e

n
ta

g
e

 o
f

S
u

c
c

e
s

s
fu

l
P

a
th

s

100

90

80

70

60

50

40

30

20

10

0

Number of faults
250200150100500

Fig. 8: Percentage of successful source–destination paths for
different network sizes.

2-Ary 6-Tree 4-Ary 3-Tree

N
o

n
 T

o
le

ra
te

d
 F

a
u

lt
 C

o
m

b
in

a
ti

o
n

s
 (

%
) 100

90

80

70

60

50

40

30

20

10

0

Number of faults
250200150100500

Fig. 9: Percentage of non tolerated faults for different networks
sizes.

[4] C. Chen, P. Gan, and C. Chang. Designing a High Performance and
Fault Tolerant Multistage Interconnection Network with Easy Dynamic
Rerouting. In J. Cao, L. Yang, M. Guo, and F. Lau, editors, Parallel and
Distributed Processing and Applications, volume 3358 of Lecture Notes
in Computer Science, pages 1007–1016. Springer Berlin Heidelberg,
2005.

[5] C. Chen, N. P. Lu, T. Chen, and C. Chung. Fault-tolerant gamma inter-
connection networks by chaining. Computers and Digital Techniques,
IEE Proceedings -, 147(2):75–81, March 2000.

[6] F. Chong and T. Knight, Jr. Design and Performance of Multipath MIN
Architectures. In Proceedings of the Fourth Annual ACM Symposium on
Parallel Algorithms and Architectures, SPAA ’92, pages 286–295, New
York, NY, USA, 1992. ACM.

[7] P. Chuang. CGIN: a fault tolerant modified Gamma interconnection
network. Parallel and Distributed Systems, IEEE Transactions on,
7(12):1301–1306, December 1996.

[8] I. Gazit and M. Malek. Fault tolerance capabilities in multistage
network-based multicomputer systems. Computers, IEEE Transactions
on, 37(7):788–798, July 1988.

[9] C. Gómez, M. Gómez, P. López, and J. Duato. An efficient fault-
tolerant routing methodology for fat-tree interconnection networks. In
Fifth International Symposium on Parallel and Distributed Processing
and Applications (ISPA07), pages 509–522, August 2007.

[10] N. Kamiura, T. Kodera, and N. Matsui. Design of a fault tolerant
multistage interconnection network with parallel duplicated switches. In
Defect and Fault Tolerance in VLSI Systems, 2000. Proceedings. IEEE
International Symposium on, pages 143–151, 2000.

[11] D. B. Kirk and W. mei W. Hwu. Programming Massively parallel
Processors. Morgan Kaufmann, 2010.

[12] D. S. Parker and C. Raghavendra. The Gamma Network. Computers,
IEEE Transactions on, C-33(4):367–373, April 1984.

[13] F. Petrini and M. Vanneschi. k-ary n-trees: high performance networks
for massively parallel architectures. In Parallel Processing Symposium,
1997. Proceedings., 11th International, pages 87–93, April 1997.

[14] R. Rastogi, Nitin, and D. Chauhan. 3-Disjoint Paths Fault-tolerant
Omega Multi-stage Interconnection Network with Reachable Sets and
Coloring Scheme. In Computer Modelling and Simulation (UKSim),
2011 UkSim 13th International Conference on, pages 551–556, March
2011.

[15] R. Rastogi, R. Verma, Nitin, and D. Chauhan. 3-Disjoint Paths
Fault-tolerant Multi-stage Interconnection Networks. In A. Abraham,
J. Lloret Mauri, J. Buford, J. Suzuki, and S. Thampi, editors, Advances
in Computing and Communications, volume 190 of Communications
in Computer and Information Science, pages 21–33. Springer Berlin
Heidelberg, 2011.

[16] N. Sharma. Fault-tolerance of a min using hybrid redundancy. in Proc.
of the 27th Annual Simulation Symp, 1994.

[17] M. Valerio, L. Moser, and P. Melliar-Smith. Fault-tolerant orthogonal
fat-trees as interconnection networks. In Algorithms and Architectures
for Parallel Processing, 1995. ICAPP 95. IEEE First ICA/sup 3/PP.,
IEEE First International Conference on, volume 2, pages 749–754, April
1995.

[18] G. Zarza, D. Lugones, D. Franco, and E. Luque. A Multipath Fault-
Tolerant Routing Method for High-Speed Interconnection Networks. In
H. Sips, D. Epema, and H.-X. Lin, editors, Euro-Par 2009 Parallel
Processing, volume 5704 of Lecture Notes in Computer Science, pages
1078–1088. Springer Berlin Heidelberg, 2009.

