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Lu Zhang Hamdi Dibeklioğlu Laurens van der Maaten
Pattern Recognition & Bioinformatics Group, Delft University of Technology

Mekelweg 4, 2628 CD Delft, The Netherlands
{lu.zhang, h.dibeklioglu, l.j.p.vandermaaten}@tudelft.nl

Abstract

Most modern object trackers combine a motion prior
with sliding-window detection, using binary classifiers that
predict the presence of the target object based on histogram
features. Although the accuracy of such trackers is gener-
ally very good, they are often impractical because of their
high computational requirements. To resolve this problem,
the paper presents a new approach that limits the compu-
tational costs of trackers by ignoring features in image re-
gions that — after inspecting a few features — are unlikely
to contain the target object. To this end, we derive an up-
per bound on the probability that a location is most likely to
contain the target object, and we ignore (features in) loca-
tions for which this upper bound is small. We demonstrate
the effectiveness of our new approach in experiments with
model-free and model-based trackers that use linear mod-
els in combination with HOG features. The results of our
experiments demonstrate that our approach allows us to re-
duce the average number of inspected features by up to 90%
without affecting the accuracy of the tracker.

1. Introduction
The tracking of objects in an image sequence is a seminal

problem in computer vision, on which substantial progress
has been made in recent years. Trackers generally con-
stitute a combination of a motion prior and an object ap-
pearance model. Many modern trackers use a tracking-by-
detection framework [11], in which the object appearance
model comprises a binary classifier that predicts target ob-
ject presence or absence. The appearance model may be
trained in an offline manner for model-based trackers or in
an online manner for model-free trackers. The location of
the target object is determined by evaluating the classifier
on the contents of a sliding window over the image (at mul-
tiple scales) and finding the location where its response is
highest. The main drawback of such a sliding-window ap-
proach is that it is computationally expensive, in particular,
when the feature dimensionality is high or when the search

space (i.e. the number of locations and scales) is large. To
speed up sliding-window trackers, studies have proposed,
e.g., to use Haar features that can be computed efficiently
via integral images [11], to use GPU implementations [7],
and to exploit the fact that part of the computations may be
shared between nearby locations [13].

This paper exploits another property of many modern
trackers to speed up sliding-window search: viz. the fact
that classifier scores often decompose into a sum over fea-
tures, e.g., in linear models. Specifically, we may already
be able to infer that the target object is not present at a lo-
cation after considering only a small subset of features. For
instance, if the classifier subscore of a particular location is
a large negative number after considering 10% of the fea-
tures whilst other locations have a large positive subscore,
the chance that the highest classifier response will be at-
tained at that location after considering all features is very
small (in particular, if we ordered the features according to
their “importance”). In fact, we can derive exact upper and
lower bounds on the final classifier score for that location
if the feature values are bounded, as is the case for many
popular features including Haar, HOG, and LBP features.
Such bounds (or probabilistic versions thereof) allow us to
discard image locations without considering all features at
those locations. To the best of our knowledge, no prior work
has exploited this to speed up sliding-window tracking.

The paper presents a new algorithm, called feature ignor-
ing tracking (FIT), that speeds up sliding-window trackers
using an upper bound on the probability that an image lo-
cation —based on the features already processed— is the
location that is most likely to contain the target object. We
demonstrate the effectiveness of the new approach in exper-
iments with model-free and model-based trackers, focusing
on trackers of which the object appearance model is a linear
model that is trained on HOG features. (It should be noted
that the FIT algorithm is applicable to a much larger family
of trackers.) The results of our experiments reveal that the
FIT tracking algorithm may reduce the average number of
inspected features by up to 90% without affecting the accu-
racy of the tracker.
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2. Related Work
In tracking, there are two common approaches to search

for the most likely location of the target object, viz. sliding-
window search and particle filtering [10]. Particle filters use
a set of particles to approximate the posterior over object
locations, and are generally very fast because the number
of particles can be set by the user based on the available
computational budget. However, particle filters are also in-
accurate, which may cause the tracker to drift, in particular,
when the target object has been temporarily occluded. To
circumvent this problem, most modern trackers are based
on sliding-window search [3, 6, 17, 21]. The drawback of
sliding-window search is that it may be slow, in particular,
when the search space is large, i.e. when there are many
locations and scales that need to be considered. Various
strategies have been proposed to speed up sliding-window
search, of which we review the most prominent ones below.

Specifically, [13] introduces a branch-and-bound search
strategy that exploits the fact that computations can be
shared between overlapping bounding boxes (i.e. target
locations). The branch-and-bound approach can be ex-
tended to localize objects with non-rectangular shapes [16].
Whilst such branch-and-bound approaches are computa-
tionally very efficient, they rely on the assumption that the
location of a feature within a bounding box is irrelevant
for the classifier score. This assumption holds for the bag-
of-visual-word features employed in [13], but it does not
hold for features that are often used in tracking such as his-
tograms of oriented gradients (HOG) [3], locally binary pat-
terns (LBP) [14], and Haar features [17]. By contrast, our
FIT algorithm does not assume that the effect of a feature
on the classifier score is independent of its location in the
bounding box under consideration. As a result, FIT is more
generally applicable than branch-and-bound approaches.

Another approach to speeding up sliding-window search
is to use a cascaded approach in which the evaluation of
weak classifiers is terminated as soon as one of the weak
classifiers outputs a negative decision [17]. Whilst such an
approach is very effective, it can only be used with features
that can be computed very efficiently, such as Haar features.
By contrast, the FIT algorithm can be used with all types of
features that can be bounded above and below.

Next to work on speeding up sliding-window search,
several recent studies consider object detection on a bud-
get (although such approaches have not yet been used for
tracking). Specifically, [12] learns a policy for multi-class
detection tasks that decides which detector to deploy next.
In [20], feature extraction costs during training are consid-
ered to learn detectors that jointly maximize accuracy and
minimize CPU usage at runtime. Whilst it may be possi-
ble to adapt FIT to such settings, we do not aim to perform
tracking under a strict computational budget in this paper;
we leave such extensions of FIT to future work.

3. Ignoring Features in Tracking

Sliding-window trackers compute a score s(·) for a large
number of bounding boxes B ∈ B that measures the like-
lihood of the target object being present at the correspond-
ing location in the image, and return the bounding box with
the highest score as the location of the target object. A
wide range of popular trackers have two main properties
that we can exploit to speed up sliding-window search: (1)
the score they compute is defined as the sum of a bias b
and the inner product between the object model w and the
features x(B) = φ(I, B) extracted from bounding box B:
s(B; I,w, b) = w>x(B) + b; and (2) the individual fea-
ture values can be upper and lower bounded, i.e. we can
find values l and u such that ∀d,B : l ≤ x

(B)
d ≤ u. It

is straightforward to find such lower and upper bounds for
popular features including HOG features [3], LBPs [14],
and Haar features [17]. Popular trackers that have both of
the aforementioned properties include [1, 4, 8, 9, 11, 21].

Our feature ignoring tracker (FIT) exploits the two prop-
erties introduced above to find the highest scoring bound-
ing box B∗ = argmaxB s(B; I,w, b) without computing
the full score for most of the bounding boxes. In particu-
lar, FIT discards bounding boxes that have a small chance
of attaining the highest score based on a small part of the
inner product w>x, i.e. after only a small subset of the fea-
tures is considered. FIT does this by (1) upper bounding the
probability that a bounding box can attain the highest score,
considering the part of the inner product currently computed
and (2) discarding bounding boxes for which this probabil-
ity is below some threshold θ. As a result, the threshold θ
allows one to trade-off speed for accuracy: if θ is set to zero,
FIT discards a small number of bounding boxes but is guar-
anteed to find the highest-scoring location, whereas higher
values of θ allow FIT to discard the majority of bounding
boxes after considering only a few features at the cost of a
small loss in tracking accuracy. Such a trade-off parameter
is very useful, e.g., when the same tracker is deployed on
platforms with different computational budgets.

FIT sorts the elements of the object appearance model
w in such a way that features x(B)

d with the highest abso-
lute weight wd are considered first1 (the sorting has to be
performed only once, so does not affect the computational
complexity of the tracker). Next, FIT computes the sub-
score for all possible bounding boxes based on the first d
features, i.e. it computes sd(B; I,w1:d, b) = b+w>1:dx

(B)
1:d ,

where we use the notation xa:b to represent elements a
through b of vector x. We select a first candidate location by
picking the bounding boxB∗d with the highest subscore, and
compute the full score for this bounding box. To determine
whether or not we still need to consider more features for an

1For simplicity, we assume that all features have the same “scale”. Fea-
tures may need to be normalized first if the scale of the features varies.
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arbitrary other bounding box B, we would like to compute
the probability that bounding box B can still attain a higher
score than the candidate bounding box B∗d :

p(s(B; I,w, b) ≥ s(B∗d ; I,w, b)). (1)

Whilst this probability cannot be computed without knowl-
edge of the feature distribution p(x), it is possible to up-
per bound the probability that bounding box B will obtain
a higher score than the first candidate B∗d using an upper
bound that resembles a Chernoff bound:

p(s(B;I,w, b) ≥ s(B∗d ; I,w, b))
= p(exp(s(B; I,w, b)) ≥ exp(s(B∗d ; I,w, b)))

≤ E [exp(s(B; I,w, b))]

exp(s(B∗d ; I,w, b))

≤ max
w>d+1:Dx

(B)
d+1:D

exp(s(B; I,w, b))

exp(s(B∗d ; I,w, b))
, (2)

where the expectation is over the part of the bounding
box score that has not yet been computed, i.e. over
p
(
w>d+1:Dx

(B)
d+1:D

)
. The first inequality follows directly

from Markov’s inequality because exp(s(B; I,w, b)) is
guaranteed to be non-negative. The second inequality fol-
lows from the fact that: maxx f(x) ≥ E[f(x)]p(x).

Importantly, the upper bound in Eqn. 2 can be computed
very efficiently because the elements in w are sorted and
we have an upper and lower bound on the features, u and l.
Specifically, Eqn. 2 can be computed by noting that:

max
w>d+1:Dx

(B)
d+1:D

exp(s(B; I,w, b))

exp(s(B∗d ; I,w, b))

=
exp(u

∑
i:wd+1:D>0 wi + l

∑
i:wd+1:D<0 wi)

exp (s(B∗d ; I,w, b)− sd(B; I,w1:d, b))
.

Note that the sums over the positive and negative elements
of w in the numerator can be computed offline and stored
for every value of d, and that all the terms in the denomina-
tor were already pre-computed. Therefore, the upper bound
for bounding box B in Eqn. 2 can be computed in O(1).

FIT proceeds by comparing the upper bound in Eqn. 2
with a user-specified threshold θ, and discarding all bound-
ing boxes for which the upper bound is sufficiently small.
Next, the subscores for the remaining bounding boxes are
updated by including a new subset of features, the actual
score is computed for the most promising location based
on the updated subscores, and bounding boxes for which
Eqn. 2 is smaller than threshold θ are removed from the
remaining candidate boxes. This process is iterated until
only one candidate bounding box remains or until all fea-
tures have been included in the scores for (a small subset)
of the bounding boxes. Pseudocode for our FIT algorithm
is presented in Algorithm 1.

Algorithm 1 Feature-Ignoring Tracker
Require: image I
Require: scoring function s(B; I,w, b) with weights w

sorted based on absolute value (in descending order)
Require: upper bound u and lower bound l on features
Require: speed-accuracy trade-off parameter θ
Require: set of candidate bounding boxes B
Require: number of features δd to add at each iteration
Ensure: B∗ = argmaxB∈B s(B; ·) with high probability

d← 0
while |B| > 1 and d ≤ D do
d← d+ δd
for ∀B ∈ B do

compute subscore sd(B; I,w1:d, b)
end for
find candidate B∗d = argmaxB∈B sd(B; I,w1:d, b)
compute score s(B∗d ; I,w, b) for candidate box B∗d
for ∀B ∈ B do

if max
w>d+1:Dx

(B)
d+1:D

exp(s(B;I,w,b))
exp(s(B∗d ;I,w,b)) < θ then

remove B from B
end if

end for
end while
B∗ ← B∗d

4. Experiment 1: Model-free Tracking
Model-free tracking refers to the scenario in which the

tracker receives a single bounding-box annotation of the tar-
get object, and in which an appearance model for the target
object is learned in an online manner. We use an adapted
version of the recently introduced SPOT tracker2 [21] as
the basis for our experiments. The SPOT tracker is essen-
tially a Felzenszwalb detector [6] that is trained online; it
uses HOG features to represent image patches and a lin-
ear SVM to predict target object presence. We adapted the
SPOT tracker to (1) exclude part descriptors, i.e. we did not
use pictorial structures; and (2) extract HOG features at two
different scales simultaneously to increase the quality of the
features. (Specifically, we used HOG cells of size 8×8 and
4×4 pixels.) We refer to the resulting tracker, which serves
as the baseline for our experiments, as the SPOT* tracker.
It measures the score of a bounding box B as:

s(B; I,w, b) = w>x(B) − 1

2
λ
∥∥∥z(B) − z

∥∥∥2 , (3)

where the bias term b=− 1
2λ
∥∥z(B) − z̃

∥∥2 corresponds to a
simple Gaussian motion prior of the tracker: z(B) denotes
the location (x, y) of the center of bounding boxB, whereas

2The source code of the SPOT tracker can be obtained from http:
//visionlab.tudelft.nl/spot.
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z represents the location of the center of the tracked bound-
ing box in the previous frame. The parameter λ is a trade-
off parameter between the object appearance score and the
motion prior score. Depending on the number of HOG cells
that the target object comprises, the dimensionality of the
features in the SPOT* tracker may be up to D=11, 800.

To update the object appearance model, SPOT* uses
the tracked object in the previous frame as a positive ex-
ample, and image regions with high appearance score that
were not selected by the tracker as negative examples. The
SPOT* tracker minimizes the hinge loss on these positive
and negative examples by performing online updates using
the passive-aggressive algorithm [2]. For more details on
the online-learning algorithm in SPOT*, we refer to [21].

Speeding up SPOT* with FIT. Most computation time
in the SPOT* tracker is spent on (1) computing the high-
dimensional HOG features at every image location and (2)
computing the inner product of the object appearance model
with those HOG features at every image location. Because
HOG features are normalized histograms, it is not possi-
ble to compute a subset of the features; this would not save
much computation anyway, because the binning operation
is relatively cheap once the gradient magnitudes and orien-
tations are computed. Therefore, we focus on speeding up
the computation of the HOG features with the object ap-
pearance model w at every image location, which is rela-
tively expensive because multiplications are expensive op-
erations. To use FIT in the SPOT* tracker, we need to
define the upper and lower bound of the HOG features x.
These bounds can be derived based on how HOG features
are computed.: (1) an unnormalized gradient histogram is
computed, (2) the histogram is normalized, (3) all values
are clipped at 0.2, and (4) the histograms are then averaged
over the four neighboring cells and multiplied by 2. As a
result, the lower bound of HOG features is 0 and the upper
bound is 0.4.

4.1. Experimental Setup

We performed experiments on a publicly available col-
lection of nine videos [1]. The videos contain a wide range
of objects that are subject to sudden movements and (out-of-
plane) rotations, and have cluttered, dynamic backgrounds.
The videos have an average length of 556 frames. Each
video contains a single object to be tracked, which is in-
dicated by a bounding box in the first frame of the video.
(First-frame annotations for all movies are shown in [1].)

We evaluate the performance of the trackers by mea-
suring (1) average location error (ALE): the average dis-
tance of the center of the identified bounding box to the
center of the ground-truth bounding box; and (2) correct
detection rate (CDR): the percentage of frames for which
the overlap between the identified bounding box and the
ground truth bounding box is at least 50 percent. We com-

pare the performance of our FIT-SPOT* tracker with that of
the SPOT* tracker, which performs a full sliding-window
search. As additional baselines, we also compare the perfor-
mance FIT-SPOT* with those of the TLD [11] and Struck
[9] trackers. In all experiments, we set the trade-off pa-
rameter λ in Eqn. 3 to 1

2σ
2 with σ2 = 40 pixels, and

we set the number of features we add at each iteration of
FIT, δd, to 10% of the total number of features. Code
to reproduce the results of our experiments is available on
http://bit.ly/1hjOWHM.

4.2. Results

In Figure 1, we present the results of our experiments
with FIT-SPOT* on all nine videos. The different feature
percentages were obtained by varying the threshold θ. The
situation in which 100% of the features are used corre-
sponds to the baseline SPOT* tracker. The figure presents
the average location error of FIT-SPOT* as a function of the
percentage of features considered by the tracker for each of
the nine videos (1a); the correct detection rate as a function
of the percentage of features evaluated by the tracker (1b);
and the percentage of features evaluated as a function of θ
(1c). To obtain results for feature percentages lower than
10%, we lowered the value of δd accordingly.

The results presented in Figure 1 show that on most
videos, good results may be obtained even when only 10%
of the features is used, whilst considering 20% of the fea-
tures suffices to obtain a performance that is on par with that
of a tracker that considers all features. In other words, FIT
speeds up the most computationally costly part of a tracker
such as SPOT*, viz. the computation of the responses of
the object appearance model, by at least five times without
a loss in performance. Figure 1(c) highlights the effect of
varying the trade-off parameter θ: the percentage of fea-
tures evaluated is decreasing as θ increases, but tends to be
stable when θ is smaller than 1. We also measured the run-
time of FIT-SPOT* in a Matlab/C++ implementation. Fig-
ure 2 presents the results of these experiments: it shows the
tracking performance of of FIT-SPOT* as a function of its
relative speed (compared to SPOT*). The results show that
FIT-SPOT* is two to three times faster than SPOT* whilst
achieving the same accuracy.

In Table 1, we compare the performance of the FIT-
SPOT* tracker (using θ = 1) with that of SPOT*, TLD [11],
and Struck [9]. The results in the table show that —even
though it ignores most of the features— the FIT-SPOT*
tracker performs on par with state-of-the-art trackers such
as Struck and TLD. Since FIT-SPOT* may ignore some
confusing features, it occasionally outperforms SPOT*.

In Figure 4, we explore the average percentage of fea-
tures evaluated in each frame for four different videos:
Occl. Face 1, Girl, Tiger 1, and David. The results were
obtained using a threshold value of θ = 1. The results
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(a) (b) (c)
Figure 1. Performance of the FIT-SPOT* model-free tracker on all nine videos. (a) The average distance error by FIT-SPOT* as a function
of the percentage of features evaluated (lower is better). (b) Correct detection rate as a function of the percentage of features evaluated by
FIT-SPOT* (higher is better). (c) The percentage of features evaluated by FIT-SPOT* as a function of threshold θ. Note that the evaluation
of all features (100%) corresponds to the baseline SPOT* tracker, and that the x-axis of the plots uses a logarithmic scale.
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(a) (b)
Figure 2. Relative speed of FIT-SPOT* compared to SPOT* (the baseline SPOT* tracker runs at speed 1). The results are obtained by
varying the trade-off parameter θ. (a) The average distance error of FIT-SPOT* as a function of relative speed. (b) Correct detection rate
of FIT-SPOT* as a function of relative speed.

presented in Figure 4 provide insight into how FIT works:
specifically, FIT ignores more features when the target ob-
ject is subject to small appearance changes, whilst it uses
more features when there are large changes in object ap-
pearance due to rotations or occlusions of the target object.

Figure 3 illustrates the convergence of FIT-SPOT* on a
single frame of the David sequence: it shows the subscores
obtained after one through four iterations of FIT. The sub-
scores show that after considering 30% of the features, there
is hardly any uncertainty about the location of the target ob-
ject. In practice, we may use even fewer features: after
considering 10% of the features, there is clear maximum in
the subscores near the location of the target object.

5. Experiment 2: Model-based Tracking
Model-based tracking uses detectors that are trained off-

line to recognize particular poses/views of a single object
class. To evaluate the efficiency of FIT in model-based
tracking, we implemented a standard baseline tracker. Our
baseline model-based tracker (MBT) combines an isotropic
Gaussian motion prior with the root detectors of the models
presented in [6]. These root detectors are linear SVMs that
operate on extended 32-dimensional HOG features, and that
are trained on annotated subsets of the Pascal VOC data [6].

Table 1. Performance of four model-free trackers on nine videos
measured in terms of: (1) average location error (lower is bet-
ter) and (2) correct detection rate (higher is better). To measure
the correct detection rate, a detection is counted as correct if the
overlap between the identified bounding box and the ground truth
bounding box is at least 50%. The best performance on each video
is boldfaced.

Struck [9] TLD [11] SPOT*[21] FIT-SPOT*
ALE CDR ALE CDR ALE CDR ALE CDR

Sylvester 9.3 0.86 20.0 0.91 8.6 0.85 8.7 0.83
David 8.2 0.96 4.5 1.00 6.8 1.00 4.9 1.00

Occl. Face 1 7.5 1.00 16.8 0.99 4.0 1.00 4.4 1.00
Occl. Face 2 6.3 0.98 22.1 0.77 10.7 0.97 10.2 0.96

Surfer 6.9 0.83 7.9 0.84 9.3 0.66 9.2 0.78
Tiger 1 7.2 0.82 28.7 0.13 5.6 0.93 6.9 0.87
Tiger 2 11.0 0.57 37.5 0.27 12.8 0.70 9.2 0.75
Dollar 14.4 1.00 14.8 0.95 2.8 1.00 2.6 1.00

Girl 10.8 1.00 24.7 0.78 12.6 0.98 12.0 0.97

To track an object of the object class under considera-
tion, a detection score s(B; I,w, b) for each bounding box
B ∈ B in the image I is computed using Eqn. 3 for all
mixture components in the model [6]. The bounding box
with the highest score is selected as the detection of the tar-
get object. In order to deal with scale changes, the MBT
tracker explores two adjacent scales (a coarser and a finer
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Figure 3. Search space left after one through four iterations of the FIT algorithm. Black regions indicate locations that were removed by
FIT, whereas the intensity of non-black regions indicates the subscore of evaluated features at these locations (left-upper corner of each
bounding box). The average evaluated features in total are given below each image.

Figure 4. Average percentage of the evaluated features in each
frame for videos Occl. Face 1, Girl, Tiger 1, and David.

one) in addition to the scale of the target object in the previ-
ous frame. Two mixture components (which correspond to
different viewpoints) are used to track pedestrians, whereas
six components are used for car tracking. Since we have
lower and upper bounds on the HOG features, FIT can be
used in MBT as before.

5.1. Experimental Setup

We gathered a set of pedestrian and car videos for our ex-
periments. To evaluate the efficiency of FIT in model-based

Figure 6. HOGgles visualizations of feature subsets. The first im-
age on the left shows the target object in Sunny day. The rest of
the images from left to right visualize 10%, 20%, 30%, 50%, and
100% feature usage, respectively.

tracking, we manually selected segments from each video
in which the baseline MBT tracker properly tracks the tar-
get object. In total, 11 segments from 10 pedestrian videos3

and 7 segments from 7 car videos4 are used in the exper-
iments. The selected segments of the pedestrian and car
videos have an average length of 121 and 293 frames, re-
spectively. Each test segment contains a single object to be
tracked. First-frame annotations for all movie segments are
shown in Figure 5.1. We measure the performance of MBT
and FIT-MBT in our experiments using ALE and CDR. We
set λ to 1

2σ
2 with σ2=5 pixels.

5.2. Results

Figure 7 presents the results obtained using our the
model-based pedestrian and car trackers (MBT) with and
without FIT. The first and the second row of the Figure 7
show the results for pedestrian and car tracking, respec-
tively. The left column of the figure presents the ALE as
a function of the number of features evaluated, the middle
column displays the CDR as a function of the number of
features evaluated, and the right column shows the change
in the percentage of the evaluated features as a function of

3Pedestrian videos were obtained from http://cvlab.hanyang.
ac.kr/tracker_benchmark_v10.html [19] and http://www.
vision.ee.ethz.ch/˜aess/dataset [5].

4Car videos were obtained from http://www.alov300.org [15]
and http://cvlab.hanyang.ac.kr/tracker_benchmark_
v10.html [19].
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Figure 5. First frame and the initial bounding box for each pedestrian and car movie segment.

threshold θ. Note that the evaluation of all features (100%)
corresponds to the baseline MBT tracker.

The results presented in the figure show that evaluating
10%–20% of the features suffices to obtain the same accu-
racy and precision as the baseline MBT tracker. On aver-
age, the CDR increases when more features are used and
the ALE decreases. The results also show that using less
than 10% of the features can cause the tracker to perform
unpredictably. For instance, on the Skating video, using 1%
of the features performs 17 pixels better (in terms of ALE)
than using 2% of the features. This can be explained by the
low dimensionality of the evaluated features: adding 1% of
features to 1% has a much larger effect than adding 1% to
10% of the features. Another interesting observation from
our results is that on the Crossing video, evaluating 2% of
the features leads to a higher CDR (95.83%) than evaluat-
ing all features (93.33%). Indeed, for the most of pedestrian
videos, using a very small amount of the features appears to
perform on par with using all features, both in terms of ALE
as in terms of CDR. This suggests that the pedestrian detec-
tor may be overfitted to the Pascal VOC data.

In Figure 6, we visualize the subsets of features (30%,
20%, and 10%) that FIT-MBT uses in Sunny day using
HOGgles [18]. The visualizations illustrate it is possible
to represent a target object well with only a small amount
of features, which explains the strong performance of FIT-
MBT even when most features are ignored.

6. Conclusion
We presented feature ignoring tracking (FIT): a novel

algorithm that reduces the computational costs of a popu-
lar family of sliding-window trackers based on tracking-by-

detection. Our experiments with state-of-the-art model-free
and model-based trackers based on HOG features and lin-
ear models show that FIT may reduce the average number
of inspected features by up to 90% without affecting the
accuracy of the trackers. It should be noted, however, that
the FIT algorithm is much more widely applicable: the only
two assumptions it makes is that (1) the classifier response
decomposes across features or feature subsets and (2) fea-
ture values can be bounded above and below. The former
assumption holds not only for linear models, but also for
mixture models and for kernel-based models such as those
used in Struck [9]. The latter assumption holds for many
popular features, including HOG, SIFT, Haar, and LBP fea-
tures, and bags of visual words.

One of the key advantages of FIT is that it has a parame-
ter, θ, that permits trading off speed for accuracy. The avail-
ability of such a trade-off parameter is essential when there
is a computational budget during runtime, e.g., when the
same tracker is deployed on different platforms. We did not
consider tracking-on-a-budget in this paper, but we do aim
to explore runtime budgets in future work. In future work,
we also plan to study extensions of FIT to trackers based on
pictorial-structures models as well as to trackers that em-
ploy mixture models [6, 21, 22].
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(a) (b) (c)
Figure 7. Performance of FIT-MBT in pedestrian and car tracking: (a) The average distance error by FIT-MBT as a function of the
percentage of features evaluated. (b) Correct detection rate as a function of the percentage of features evaluated by FIT-MBT. (c) The
percentage of features evaluated by FIT-MBT as a function of threshold θ. Note that the evaluation of all features (100%) corresponds to
the baseline, and that the x-axis of the plots uses a logarithmic scale.
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