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While hypothetical reasoning is a useful knowledge system 
framework that is applicable to many practical problems, its 
crucial problem is its slow inference speed. The paper presents a 
speedup method for hypothetical reasoning systems that uses 
an experience-based learning mechanism which can learn 
knowledge from inference experiences to improve the inference 
speed in subsequent inference processes, sharing subgoals simi- 
lar to those of the prior inference processes. 

This learning mechanism has common functions with exist- 
ing explanation-based learning. However, unlike explanation- 
based learning, the learning mechanism described in the paper 
has a learning capability even at intermediate subgoals that 
appear in the inference process. Therefore, the learned know- 
ledge is useful even in the case in which a new goal given to the 
system shares a subgoal that is similar to those learned in the 
prior inference. Since the amount of the learned knowledge 
becomes very large, the learning mechanism also has a function 
of learning selectively only at subgoals which substantially 
contribute to the speedup of the inference. In addition, the 
mechanism also includes a knowledge reformation function, 
which transforms learned knowledge into an efficient form to 
be used in subsequent inference. 

Keywords: hypothetical reasoning, deductive learning, efficient 
inference 

Incomplete knowledge plays an important role in 
expanding the capability of  knowledge bases. Incomplete 
knowledge here means knowledge with exceptions, 

Department of Information and Communication Engineering, Faculty 
of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 
1 ! 3, Japan 
*Currently with NTT Communication Science Laboratories, Japan 
Paper received 12 August 1992. Revised paper received 23 July 1993. 
Accepted 20 September 1993 

knowledge with the possibility of inconsistency, hypothe- 
tical knowledge, defeasible knowledge etc. A logic-based 
hypothetical reasoning system [1,2], which can handle 
incomplete knowledge as hypotheses, is an important 
framework for advanced knowledge systems, because of 
its theoretical basis and its practical usefulness. It is 
applicable to many problems, including diagnosis [1,3] 
and design [4]. However, one crucial problem with 
hypothetical reasoning is its slow inference speed. 

In order to improve its inference speed, some methods 
have been proposed. They are, for example, assumption- 
based truth maintenance systems (ATMS) [5], a fast 
hypothetical reasoning method using an inference-path 
network [6], and a fast hypothetical reasoning method [7] 
applicable to predicate Horn clauses utilizing a deductive 
database technique. A key technique in these methods is 
the avoidance of inefficient backtracking or recalculation 
caused by inconsistency among adopted hypotheses. 

However, since the computational complexity of non- 
monotonic reasoning including hypothetical reasoning 
has been proved to be NP-complete or NP-hard [8], we 
cannot overcome the limit of inference time increasing 
exponentially with respect to problem scales as long as 
we use ordinary inference methods. A method using an 
analogical inference [9] has been presented as one 
method of overcoming this inference speed limit. 

This paper presents a speedup method using an exper- 
ience-based learning mechanism for a hypothetical rea- 
soning system with predicate Horn clauses and consist- 
ency constraints. This method allows the acquisition of 
effective knowledge from inference experience for speed- 
ing up subsequent inference that has some similarity to 
prior inferences. Unlike existing explanation-based 
learning (EBL) [10,11], the system based on this method 
can learn knowledge even at intermediate subgoals 
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appearing in the inference process. This function enables 
us to expand the effectiveness of experience-based or 
explanation-based learning. Since the amount of know- 
ledge thus learned from inference experience becomes 
very large, the system also includes a function of selec- 
tively learning only at effective subgoals from the view- 
point of improving the inference speed, and a function of 
reforming learned knowledge into an efficient form for 
subsequent inference. 

LOGIC-BASED H Y P O T H E T I C A L  
R E A S O N I N G  AND E X P E R I E N C E - B A S E D  
L E A R N I N G  

Our hypothetical reasoning in this paper is a logic-based 
one first proposed by Poole et al. [1,2]. Knowledge in this 
system is divided into two categories, i.e. background 
knowledge denoted by X which is always true, and 
hypothesis knowledge denoted by H which is not always 
true, or defeasible knowledge. The hypothesis knowledge 
set H may include inconsistency, whereas the back- 
ground knowledge set E has no possibility of inconsis- 
tency. The basic behavior of this system is to find a 
consistent subset h of H necessary to prove or explain a 
given goal G together with E. This can be written as 
h ~_ H (where h is a subset of H), E U h t-- G (where G 
can be proved from Y t3 h), and E t3 h [--/- [] (where X t3 h 
is consistent). The h becomes a solution hypothesis set to 
satisfy the goal G. Here, the deductive inference mecha- 
nism is used in reverse direction to abductively generate a 
solution hypothesis h. 

In general, knowledge here can be expressed with first- 
order predicate logic formulae. However, in order to 
achieve efficient inference, we restrict the knowledge 
expression to predicate Horn clauses and consistency 
constraints. The consistency constraints are introduced 
to express inconsistent combinations of hypotheses expli- 
citly, since we cannot express logical negation explicitly, 
and therefore inconsistency with Horn clauses in the 
knowledge base. 

The hypothetical reasoning system can be easily imple- 
mented by utilizing a backward (top-down) inference 
mechanism embedded in Prolog. In this case, a necessary 
set of hypotheses is generated along the depth-first infer- 
ence path. This generated hypothesis set is then subjected 
to a consistency check. If an inconsistency is found, a 
part of the generated hypothesis set is discarded and 
another hypothesis is generated in accordance with the 
backtracking mechanism of Prolog. When the inference 
succeeds in proving a given goal, the generated consistent 
hypothesis set becomes a solution hypothesis set for the 
goal. Another type of inference method, i.e. the conse- 
quence-finding-type inference method, is described in 
Reference 12 for hypothetical or abductive reasoning. 
These simple implementations are, however, not neces- 

sarily efficient, particularly because of the backtracking 
caused by the inconsistency among adopted hypotheses. 
Thus, in order to improve efficiency, a notion of a goal- 
directed parallel forward (bottom-up) inference mechan- 
ism without backtracking is incorporated, for example, 
in References 6 and 7. In this paper, we show another 
way to speedup hypothetical reasoning, i.e. a method of 
the reformation of the knowledge base into an efficient 
one on the basis of the experience of inference processes. 

An inference process for proving a given goal by 
adopting necessary hypotheses can be regarded as 
experience in hypothetical reasoning. Similar subgoals 
appear in different inference processes with respect to 
different goals. The similarity among the subgoals indi- 
cates here a relation in which two subgoals share the 
same generalized literal obtainable by changing the con- 
stant terms of literals into variables. Thus, if we record 
an inference result in one inference experience and store 
its generalized version as knowledge, we can utilize its 
knowledge to improve the inference speed in subsequent 
inference processes including subgoals similar to prior 
ones. We can acquire more widely useful knowledge by 
learning at subgoals rather than learning only at a final 
goal as in existing explanation-based learning. Since 
consistency maintenance among adopted hypotheses is 
required in the process of hypothetical reasoning, we 
have to take care of this function in the design of our 
experience-based learning mechanism. 

In this paper, we use 'experience-based learning' for 
our method, to distinguish it from existing explanation- 
based learning (EBL). 

S T R U C T U R E  O F  H Y P O T H E T I C A L  
R E A S O N I N G  S Y S T E M  W I T H  E X P E R I E N C E -  
BASED L E A R N I N G  M E C H A N I S M  

We first describe the structure of a constructed hypothe- 
tical reasoning system with an experience-based learning 
mechanism. Basically, this system searches a single solu- 
tion hypothesis set for a given goal in a backward depth- 
first manner. The mechanism of the experience-based 
learning will be described in the next three sections. 
Figure 1 depicts the structure of the system, which is 
implemented as a recta-interpreter of Sicstus-Prolog. We 
will briefly describe the function of each component. 

Inference engine: This inference engine tries to prove 
a given goal using background knowledge and 
hypotheses generated by a hypothesis generator. The 
proof strategy of this inference engine is backward 
and depth-first as in Prolog. When the goal proof is 
succeeded, it produces a consistent hypothesis set 
adopted in the inference process as a solution 
hypothesis for the goal. Also, this engine generates a 
generalized goal proof tree based on a generalized 
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Figure I Hypothetical reasoning system with expenenee-based 
ing mechanism 
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goal provided by a goal generalizer. Using this gener- 
alized proof tree, it produces generalized knowledge, 
which is stored in the knowledge base. 

• Background knowledge base: This knowledge base 
stores background knowledge (E) with no possibility 
of inconsistency with respect to other knowledge. 
Consistency checking is not required for this back- 
ground knowledge. Each piece of background know- 
ledge is expressed in the form of bk(predicate Horn 
clause). As a part of background knowledge, consist- 
ency constraints are written with predicate Horn 
clauses having an 'inc (inconsistent)' atom as their 
heads, for example, as bk(inc :- p(a), q(b).), which 
means that p(a) and q(b) cannot coexist in one 
environment. 

• Hypothesis knowledge base: Hypothesis knowledge 
(H), which is not always true and possibly becomes 
inconsistent against other knowledge in certain sit- 
uations, is stored separately in this hypothesis know- 
ledge base. Necessary hypotheses in the process of 
hypothetical reasoning are generated from this 
knowledge base. Each possible hypothesis know- 
ledge is expressed in the form of hk(knowledge-ID 
with variables, predicate Horn clause), where the 
variables attached to the knowledge ID correspond 
to those appearing in the predicate Horn clauses. 

• Hypothesis generator: This generator generates the 
necessary hypothesis for the inference engine by 
selecting appropriate hypothesis knowledge and 
instantiating it if necessary. 

Goal generalizer: This goal generalizer produces a 
generalized goal by changing instances into vari- 
ables. The generalized goal is given to the inference 
engine to learn generalized knowledge from the 
experience. 
Generalized proof tree: This is a generalized proof 
tree obtained, in principle, as a proof tree for the 
generalized goal. The structure of this generalized 
proof tree is the same as one obtained for the corres- 
ponding specific goal. Since the constructions of 
these two proof trees for the specific and generalized 
goals or subgoals are made simultaneously in the 
actual inference process, the computational cost of 
constructing the generalized proof tree is small. 

EXPERIENCE-BASED LEARNING 
M E C H A N I S M  

Our hypothetical reasoning system has been enhanced 
with the following experience-based learning mechanism. 

Learning from successful proof 

In this case, knowledge is acquired basically as in expla- 
nation-based learning [10,11]. That is, the system first 
constructs a proof tree starting from a given specific goal. 
At the same time, a generalized proof tree having the 
same structure as the above tree is obtained for the 
corresponding generalized goal, which is generated by 
changing the constants instantiated for the specific goal 
to original variables appearing in original knowledge. 

The proof tree for the specific goal here serves as a 
useful bias for producing the generalized knowledge, i.e. 
a generalized short-cut proof path. Then the generalized 
goal and a set of fact-type knowledge 'fact_k' (k - 
1,2 . . . .  ) necessary to satisfy this goal are identified from 
the generalized proof tree. In our experience-based learn- 
ing mechanism, fact-type knowledge (unit clauses) in the 
knowledge base has an operationality that is a key con- 
cept in explanation-based learning. 

Since hypotheses are generated in the proof process of 
hypothetical reasoning, knowledge thus learned is stored 
in the following two ways: 

When the goal is proved without adopting any 
hypotheses, knowledge acquired from the experience 
is stored in the background knowledge base (Z) as 
bk(goal :- fact_l, fact_2 . . . .  , fact_n0. 
When more than one hypothesis is adopted in the 
proof process for the goal, acquired knowledge is 
stored together with the hypotheses in the hypothesis 
knowledge base H as hk([hyp_ID_l . . . . .  hyp_ID_ 
m], goal :- fact_l . . . . .  fact_n.), where the 'hyp_ID_.k' 
(k= 1, 2 . . . .  ) denote hypothesis names with vari- 
ables as their arguments, and 'fact_k' ( k= l ,  
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2 , . . .  ,n) are fact-type pieces of knowledge necessary 
to satisfy the goal. 

That is, in the first case, there is no possibility of inconsis- 
tency between the learned knowledge and other know- 
ledge, since no hypotheses are involved. Thus it can be 
stored in the background knowledge base E. In contrast, 
in the second case, it is not certain that the adopted 
hypotheses are consistent with other knowledge in differ- 
ent conditions. Accordingly, the learned knowledge is 
stored with the list of accompanying hypotheses in the 
hypothesis knowledge base H. When this knowledge is 
used in subsequent inference processes, this list of 
hypotheses is evoked to check the consistency of know- 
ledge. 

The following correspondence exists between existing 
explanation-based learning and our experience-based 
learning described in this paper. 

goal concept subgoals appearing in 
inference process 

domain theory knowledge in background and 
hypothesis knowledge bases 

training example ~ specific goal given to 
hypothetical reasoning system 

operationality ,--, fact-type knowledge 

Basic differences from existing explanation-based learn- 
ing are as follows. 

• Knowledge learning takes place even at subgoals, 
and not only at the final goal, so that the system can 
acquire more widely useful knowledge from exper- 
ience. 

• Since the hypothetical reasoning process generates 
necessary hypotheses and executes consistency 
checking, knowledge learned from experience keeps 
a record of hypotheses that are necessary to validate 
the learned knowledge. 

Because of the occurrence of inconsistency among 
adopted hypotheses, the number of backtrackings in 
hypothetical reasoning is larger than that for other reas- 
oning schemes. Furthermore, consistency checking is 
computationally expensive. The use of the record of suc- 
cessful proofs as learned knowledge accompanied by 
necessary hypotheses contributes to a great extent to the 
reduction of backtracking and consistency checking in 
subsequent inference. 

Learning from proof failure 

There are two cases in which a proof fails. One is the case 
in which the system cannot find a matching predicate 

symbol in the heads of Horn clauses; another is the case 
in which necessary unification fails. 

In the former case, the system records failed goals or 
subgoals after their generalization, since the proofs of 
these goals or subgoals always fail, not depending on the 
instantiation of their variables. In the latter case, failed 
goals or subgoals are recorded without generalization, 
since the failure is dependent on a specific instantiation 
of their variables. That is, learned knowledge from proof 
failure is stored in the knowledge base in the forms of 

bk(goal(V1, V2, ...):- fail.) {Vi, V2 . . . .  are variables} 

for the former case, and 

bk(goal(c, c2 . . . .  ):- fail.) {cl, c2 . . . .  are constants} 

for the latter case. 
Most proof failures in practice fall into the latter cate- 

gory, since rules having a subgoal without a matching 
predicate symbol in the former case are useless ones that 
must be removed from the knowledge base. Therefore, 
we must mainly consider the latter case in practice. 

SELECTIVE L E A R N I N G  AT S U B G O A L S  

Our learning mechanism can learn generalized know- 
ledge at subgoals, and not only at a final goal, to improve 
the efficiency of subsequent inference processes. How- 
ever, since the amount of this learned knowledge 
becomes too large, it is necessary to restrict the target 
subgoals at which the knowledge learning is evoked, 
according to a certain criterion. One way is to ask know- 
ledge-base builders to define such target subgoals of 
learning. This may be a practical way, since most know- 
ledge-base builders know the meaning and levels of 
knowledge (predicates), and may be able to specify key 
subgoals (predicates). The key subgoals (predicates) thus 
specified, however, are not necessarily effective ones 
from the viewpoint of speeding up hypothetical reason- 
ing. Thus we will consider a systematic method of select- 
ing effective target subgoals for our experience-based 
learning. 

Basic strategy 

Our hypothetical reasoning system in this paper tries to 
find a single solution hypothesis set in backward depth- 
first search mode, as in Prolog. The most serious inef- 
ficiency in this hypothetical reasoning comes from the 
backtracking caused by inconsistency among adopted 
hypotheses. Accordingly, it becomes effective to avoid 
this type of backtracking by learning knowledge at root 
subgoals of this backtracking. We will identify such sub- 
goals for selective experience-based learning. 
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Background Hypothesis 
Knowledge(~') Knowledge(H) 

a :- b,d. g. 
b:-h. h. 
b:-i. i. 
c:-e.  j. 
c:-f.  k. 
d :- .f, .g. 1. 
C ; -  l ,J.  
f:-k,l .  

inc :- i, k. 

Figure 2 Knowledge base 

As described above, knowledge denoting inconsis- 
tency constraints is written in our knowledge base as 
Horn clauses having 'inc' atoms as their heads. The 
above backtracking may occur at subgoals where one of  
these inconsistency constraints is applied to possibly 
remove an inconsistent combination of  adopted hypoth- 
eses. These subgoals can be identified by analyzing the 
knowledge structure described in the knowledge base. 

and 

inc 

Figme 3 Networked knowledge expression for Figure 2 

Proposit ional  Horn  clause case 

We first consider a knowledge base expressed in pro- 
positional Horn clauses for simplicity, before consider- 
ing a somewhat complicated case of  predicate Horn 
clauses. In this case of  propositional Horn clauses, the 
knowledge structure representing the relations of  the 
described knowledge can be expressed as a network. For  
example, the knowledge set of  Figure 2 can be expressed 
as the network of  Figure 3, in which an inconsistency 
constraint 'inc :- i, k.' is expressed by a link with 'inc' 
between nodes i and k. 

The target subgoals for our experience-based learning 
are nodes where all the upward propagations along the 
network from every tip node of  one 'inc' link meet with 
an AND relation. In Figure 3, node a is such a subgoal, 
whereas node c is not, since two upward propagations 
from nodes i and k meet with an OR relation, and not 
with an AND relation, at node c. This type of  node or 
subgoal can be found by symbol manipulation as 
follows. 

Let us construct lists of  upward ancestor atoms start- 
ing from atoms that appear in the body part of  one 
inconsistency constraint. For  example, in the knowledge 
base of  Figure 2 where i and k appear in an inconsistency 
constraint 'inc :- i, k', the list of  ancestor atoms for i is b, 
e, a, c, and the list of  ancestor atoms for k is f ,  c, d, a. We 
detect common atoms in these lists. In this example, 
atoms a and c are these common atoms, which corres- 
pond to the nodes where the upward propagations from 
an 'inc' link meet. Then we check the body of  Horn 
clause knowledge having these atoms as heads, that is, 
the following Horn clauses are checked: 

a : - b , d .  
c. ' -e .  
c : - f .  

Since the body o f ' a  :- b, d.' include two atoms appearing 
in the lists of  ancestor atoms for i and k, atom a is 
identified to be a target subgoal or node where the propa- 
gations from the 'inc' link meet with an A N D  relation. 
On the other hand, the body o f ' c  :- e.' or 'c :-f. '  includes 
only an atom (atoms in general) appearing in the list of  
ancestor atoms for i or k. The propagations from the 
'inc' link meet at c with an OR relation. Consequently, 
atom c is not considered to be a target subgoal for our 
learning. 

Although we have described the algorithm to identify 
effective subgoals for learning in the propositional Horn 
clause case, we have to take into account other con- 
ditions for the predicate Horn clause case. 

Predicate Horn clause case 

Predicate Horn clauses including variable expressions 
are usually required to represent knowledge in many 
practical problems. Let us consider here function-free 
predicate Horn clauses. In this case, it is difficult to 
construct a knowledge network as in the case of  pro- 
positional Horn clauses, because of  the existence of  vari- 
ables and recursive loops. However, since what we need 
here is to determine target subgoals for our experience- 
based learning, w e d o  not necessarily need to construct 
the knowledge network. We can determine them only by 
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considering ancestor literals of hypothesis knowledge 
appearing in the body of inconsistency constraints. 

Recursive loops 
We can detect recursive loops when we generate a list of 
ancestor literals. That is, if a new ancestor literal found 
by tracing the connection of knowledge is the same as 
one found previously, then we can detect the existence of 
a loop. By avoiding the recursive part of the loop, we can 
generate finite ancestor literals for each piece of hypothe- 
sis knowledge related to inconsistency constraints. 

Inconsistency constraints 
The following deals with inconsistency constraints of the 
following type: 

and q(Y) coexist in one adopted hypothesis set, not 
depending on the instantiations of variables Xand Y. 
Therefore, generalized knowledge acquired from a 
successful proof never invokes backtracking due to 
the above type of inconsistency constraint. Thus, we 
generalize knowledge acquired at a subgoal deter- 
mined as a learning target by this type of inconsis- 
tency constraint. 
'inc :- p(X), q(Y), X \ = Y?: In this case, inconsis- 
tency occurs depending on the instantiation of X and 
Y. Therefore, generalized knowledge acquired from 
a successful proof may possibly invoke backtracking 
in some different instantiations of the variables. 
Accordingly, we do not generalize knowledge 
acquired at a subgoal determined by this type of 
inconsistency constraint. 

'inc;- p(X), p(Y), X \ = Y.' 
{\ = not equal, X and Y variables} 

Because of the existence of arguments, it is conceivable 
that inconsistency occurs even between the same predi- 
cate literals as exemplified above. The lists of ancestor 
literals for p(X) and p(Y) are the same. Therefore, we 
cannot determine the target subgoals for learning, i.e. the 
subgoals where adopted hypothesis sets are possibly 
removed by inconsistency checking, simply by finding 
common predicate literals in the lists. However, if the 
body of a piece of Horn-clause knowledge whose head is 
a found ancestor literal includes plural elements (more 
than two elements in this case) of the list of ancestor 
literals, then we can determine that its head literal is a 
target subgoal, where the propagations from an 'inc' link 
meeting with an AND relation. 

Generalization of learned knowledge depending on 
types of inconsistency constraint 

Since learned knowledge is acquired with generalization 
from successful proofs in our experience-based learning, 
there are possibilities that the learned generalized know- 
ledge yields inconsistency. Therefore, when the system 
uses this learned knowledge in the inference process, 
there remains the possibility of backtracking. The back- 
trackings that occur at the portion of learned knowledge 
are shallow in general; they are not as serious as in the 
case of original knowledge. It is, however, better to avoid 
these backtrackings. Thus we determine whether or not 
to execute the generalization of knowledge acquired at a 
certain subgoal, depending on the types of inconsistency 
constraint affecting the consistency checking at the sub- 
goal, as follows: 

• 'inc :- p(X), q(Y).': For this type of inconsistency 
constraint, inconsistency always occurs when p(X) 

REFORMATION OF LEARNED 
KNOWLEDGE 

The amount of knowledge increases by the accumulation 
of learned knowledge from experiences. In particular, a 
large number of pieces of rule-type knowledge having the 
same head predicate symbol may be generated by learn- 
ing. As a result, the efficiency of the inference may some- 
times decline, because the system has to repeat 
backtrackings until it finds an appropriate piece of 
knowledge. In order to reduce this sort of inefficiency in 
our hypothetical reasoning system, we introduce a refor- 
mation function of learned knowledge into our system. 

The reformation function rearranges learned know- 
ledge with respect to each predicate symbol appearing in 
the head part of Horn clauses, as follows: 

• Step 1: Delete duplicate knowledge. 
• Step 2: If there are pieces of background knowledge 

and hypothesis knowledge with respect to a predicate 
symbol in the head part, we treat them separately. 
(While it seems that hypothesis knowledge is not 
necessary in this case for obtaining a minimal solu- 
tion hypothesis set, hypothesis knowledge becomes 
necessary since the generalized version of learned 
background knowledge does not always lead to a 
successful proof. We need, therefore, to store 
hypothesis knowledge even in this case.) 

• Step 3: Merge the pieces of learned knowledge with 
the same predicate symbol as their heads into one 
piece of knowledge, as follows: 

© Step 3.1: If there exists Horn clause knowledge 
with 'fail' in its body part, then, by checking the 
values of arguments of its head predicate, place 
the negation of this value combination in the 
beginning position of the body of reformed 
Horn-clause knowledge. 

o Step 3.2: Extract common fact-type literals in the 
body parts of different pieces of knowledge, and 
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F i g u r e  4 Example of original knowledge 

place them in the preceding position of the body 
of reformed Horn-clause knowledge. Place other 
uncommon literals appearing in different body 
parts of originally learned Horn-clause know- 
ledge in latter positions of the body of a 
reformed Prolog clause with an OR relation. 

As an illustration, suppose that the system has the 
following pieces of learned knowledge: 

g(a, b) :- fail. 
g(X, Y) :- p(X), q(X, Y), r(Y). 
g(X, Y) :- p(X), s(X, Y), r(Y). 

Then, these pieces of knowledge are reformed into one 
Prolog clause in the form of 

g(X, Y) :- \ + (X= = a, Y= -- b), p(X), r(Y), 
(q(X, Y); s(X, Y)). 

where \ + denotes 'not provable', and (q(X, Y) ; s(X, Y)) 
means q(X, Y) or s(X, Y) in Prolog. 

To see the effect of the above knowledge reformation 
mechanism, we consider an example knowledge base 
with the knowledge structure shown in Figure 4. If the 
experience-based learning takes place several times at the 
top goal node g of Figure 4, the system can acquire the 
learned knowledge shown in Figure 5 for g. Suppose, for 
example, that only the proof of a predicate i fails owing 
to the unification condition of attached variables, then 
the system can eventually find a successful proof after 
checking a twice, b once, c, d, e and f each three times, 
and j once in the case shown in Figure 5. This is very 
inefficient. Our knowledge reformation mechanism 
transforms the knowledge structure of Figure 5 into the 
structure shown in Figure 6. Then, the system can find a 
successful proof by checking each c, d, e,f, a, i andj  only 
once. Furthermore, when the proof of f fails, the system 
finds that the set of learned knowledge is useless in this 
case after checking a and b once, and c, d, e and f each 

• F i  5 L ed owl e 

) 
lad 

Figure 6 Reformed learned knowledge 

four times, in the case of the unreformed knowledge 
shown in Figure 5. However, using the reformed know- 
ledge in the form shown in Figure 6, the system can find 
the uselessness of the learned knowledge by checking 
each c, d, e and fon ly  once. 

The knowledge reformation function allows, as we 
have seen above, the reduction of inference overheads 
caused by the addition of learned knowledge, and it 
contributes to achieving the effectiveness of our experi- 
ence-based learning. 

EXPERIMENTAL PERFORMANCE 
E V A L U A T I O N  

We evaluate the performance of our experience-based 
learning mechanism with the selective learning function 
at proper subgoals and the reformation function of 
learned knowledge, using test knowledge sets which are 
designed artificially to illustrate clearly the learning 
effect. 

Performance evaluation of selective learning at 
proper subgoals 

In this case, the test knowledge sets exemplified in Figure 
7 are used, where left and right subtrees rooted at pt(X) 
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pl(X) ~ ~ql(X) 

t l ( X ) ~ u l ( X )  r l ( X ) ~ " ~ s i ( X )  

I...\ IX\\ I .... I?\\ 

p2(X) q2(X) 

t \  x, /.l \ \  t....X L!I \\ t21(x) . . . . .  0 . 6 ( j / ~ I ( X )  ta2(x) u23(x') r21(X) . . . . .  r2ra(~,/ ..,~X) ~2(X) O.3(X) 

/ / 
u3(X) q3(X) 

Figure 7 Test knowledge set for evaluating speedup by selective 
experience-based learning at proper subgoals 
[Inconsistency constraints: inc :- rij(X) sij(x) {i = 1, 2 . . . .  , j = 1, 
2,.  • .}, inc :- rij(X), ski(X) {i, k ~  1, 2 . . . . .  (i ~ k) ; j  = 4, 5, 6; l = 1, 2, 
3}. Defined element hypotheses: rit(a), ri2(b), ri3(c), ri4(a), ris(b), rie(c), 
si~(a), si2(b), si3(c), ti,(a), ti2(b), ti3(e), ti4(a), tis(b), ti,(c), ui,(a), ui2(b), 
ui,(c), {i = 1, 2 . . . .  }.] 

and ql(X), respectively, are the same, except for inconsis- 
tency constraints for the left subtree. Also, the subtrees 
of q~(X), q2(X) . . . .  have an identical structure, as do the 
subtrees of p~(X), p2(X), . . . .  We can change the tree 
depth of the knowledge set to define the scale of know- 
ledge bases or the number of possible element hypoth- 
eses. For example, r~4(a) and sn(a) in the fight subtree 
become the components of a solution hypothesis set for a 
given goal g(a) in Figure 7. A number of backtrackings 
take place in the fight subtree to find a solution hypothe- 
sis first time, because of associated inconsistency con- 
straints. 

According to our selective experience-based learning 
algorithm, qi(X), q2(X), • • • in the right subtree of Figure 
7 will be selected as proper target subgoals for learning. 
The experience-based learning for the knowledge set of 
Figure 7 is evoked after a goal g(a), g(b) or g(c), for 
example, is given to the system to acquire effective gener- 
alized knowledge. To evaluate the speedup obtained by 
this experience-based learning at proper subgoals, we 
also carried out experiments of learning at other sub- 
goals. The learning at p~(X), p2(X) . . . .  in the left subtree 
of Figure 7 has also been carried out for this purpose. 

Figure 8 shows the results of the experiments, which 
are measured in terms of the required CPU time. for 
finding a solution hypothesis set for a goal, for example 
g(a), g(b) or g(c). In Figure 8, we can clearly see a speedup 
effect from our selective experience-based learning at 
proper subgoals. The learning at other than the proper 
effective subgoals cannot yield speed improvements, 
because the inferences for these subgoals were initially 
sufficiently efficient. 

CPU time [sec] 

lv 
0 

Figure 8 

20 40 60 80 100 

No. of possible element hypotheses 

Example of  speedup of hypothetical reasoning by selective 
learning at proper subgoals 
[O: without learning, D: with learning at proper subgoals, A: with 
learning at other subgoals.] 

Performance evaluation of knowledge reformation 

For this evaluation, we used the test knowledge sets 
exemplified in Figure 9, in which the scale of the test 
knowledge set can be changed by defining the depth of 
the inference tree. Figure 9 is a particular case in which 
the depth is 3. sil(V), si2(V), sia(V), si4(V) and sis(V) 
{i = 1,2,3} have the element hypotheses of si~(a), si2(b), 
si3(c), si4(d) and sis(e), respectively, as their child nodes. 
Inconsistency constraints are defined as 

inc :- si~(V), sjs(W). {ij = 1,2, . . .  ,5 and i ~ j} 

Because of these inconsistency constraints, the subgoals 
of qo(V, W,X, Y,Z) and qI(W,X, Y,Z) in Figure 9 become 
the targets of our selective experience-based learning. 

We consider the situation in which this learning has 
taken place thoroughly at these target subgoals; this is 
the situation after every possible instantiation of 
q(V, W,X, Y,Z) is given as a goal to the system. In this 
situation, the number of pieces of learned Horn-clause 
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sit'V) / . \  
sll(V) . . . . . . . . . . .  slS(V) 

g(V,W,X,Y~) 

t 
qO(V,W,X,Y~ ~) 

ql(W,X,Y~) 

s2(W) q2(X,Y~) 

S21(W) . . . . . . . . . . .  s25(W) 

s31(x) . . . . . . . .  ; . .  s35(x) 

Figure 9 Test knowledge set for evaluating effect of knowledge refor- 
mation 
[Inconsistency constraints: inc: si~(V), sis(W) {i, j = 1, 2, 3, 4, 5 and 
i ~ j}. Defined element hypotheses: si~(a), si2(b), si3(c), si,(d), sis(e) 
{i = 1, 2, 3}.] 

knowledge having qo(V, W,X, Y,Z) as the head, for exam- 
ple, becomes the third power of 5 minus the number of 
inconsistent hypothesis combinations, since there are five 
OR-related child nodes for s~(V), s2(W) and s3(X) in 
Figure 9. In the case of Figure 9, the number of these 
learned pieces of knowledge becomes 99 for 
go(V,W,X, Y,Z). This learned knowledge added to the 
knowledge base may cause inefficiency unless the know- 
ledge reformation mentioned in the sixth section is per- 
formed. 

Figure 10 shows the experimental results of the worst- 
case inference time (CPU time) for finding a solution 
hypothesis set for a given goal, for example g(e,e,e,e,e). 
In order to obtain a clear experimental result, the given 
goals in these experiments were chosen such that they did 
not evoke backtracking owing to the defined inconsis- 
tency constraints in the original knowledge base, and 
their solutions were found after all the possible trials of 
unification (the worst case) in the learned knowledge 
base without knowledge reformation. There were a large 
number of failures of unification in the inflated know- 
ledge base with the learned knowledge, and the conse- 
quent efficiency degradation of the learned knowledge 
base is shown in Figure 10. 

However, after the reformation of the learned know- 
ledge base, this inefficiency is removed, as seen in Figure 
10. If the given goals are such that they give rise to 
backtrackings because of inconsistency constraints in the 
original knowledge base, the inference efficiency can be 
improved to a large extent by experience-based learning 

CPU time [sec] 

10 

10 "1 

/ 

/ 

10 20 
No. of possible element hypotheses 

Figure 10 Example of effect of learned-knowledge reformation 
[O: original knowledge base, A: learned knowledge base without 
reformation, D: learning knowledge base with reformation.] 

30 

and knowledge reformation, which removes the infer- 
ence overhead caused by the increase in learned know- 
ledge. 

CONCLUSIONS 

We have presented a hypothetical reasoning system with 
an experience-based learning mechanism. This learning 
mechanism acquires generalized knowledge from infer- 
ence experiences, and enables the subsequent inference 
processes to be speeded up. In comparison with existing 
explanation-based learning, the following new functions 
have been introduced in our experience-based learning 
mechanism. 

The learning mechanism can work for hypothetical 
reasoning, where necessary hypotheses are generated 
and consistency checking among adopted hypoth- 
eses is executed in the inference process. 
The learning mechanism can learn effective know- 
ledge even at subgoals that appear in the inference 
process, and not only at the final goal, so that more 
widely useful knowledge can be acquired for improv- 
ing the inference speed in subsequent inference pro- 
ceSSCS. 
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• In order  to avoid similar p roo f  failures occurring 
more  than twice, the learning mechanism learns 
knowledge f rom p roo f  failure by deciding whether or  
not  the generalization o f  acquired knowledge is 
appropriate,  depending on the type o f  a related 
inconsistency constraint.  

• Since the amount  o f  learned knowledge becomes 
very large, the system can select effective target sub- 
goals for experience-based learning f rom the view- 
point  o f  improving the inference speed. 

• A reformation function o f  learned knowledge is 
provided to reduce the inefficiency caused by the 
addit ion o f  learned knowledge. 

The system was applied to a design problem involving 
digital circuit block synthesis [4], and this showed the 
speedup effect o f  inference processes having partial simi- 
larity to prior designs. Like explanat ion-based learning, 
our  experience-based learning is a deductive learning 
mechanism (for hypothetical  reasoning); it thus allows 
the improvement  o f  inference speed by the reformation 
of  the knowledge base, but  it has no power to generate 
entirely new knowledge. A combinat ion  with inductive 
learning, particularly with inductive logic p rogramming  
techniques [13], which allow the learning o f  new genera- 
lized knowledge f rom given positive and negative exam- 
pies, seems to be one interesting extension o f  our  present 
system. 
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