
Speedup of hypothetical
reasoning by experience-based

learning mechanism
Toshiro Makino* and Mitsuru Ishizuka

While hypothetical reasoning is a useful knowledge system
framework that is applicable to many practical problems, its
crucial problem is its slow inference speed. The paper presents a
speedup method for hypothetical reasoning systems that uses
an experience-based learning mechanism which can learn
knowledge from inference experiences to improve the inference
speed in subsequent inference processes, sharing subgoals simi-
lar to those of the prior inference processes.

This learning mechanism has common functions with exist-
ing explanation-based learning. However, unlike explanation-
based learning, the learning mechanism described in the paper
has a learning capability even at intermediate subgoals that
appear in the inference process. Therefore, the learned know-
ledge is useful even in the case in which a new goal given to the
system shares a subgoal that is similar to those learned in the
prior inference. Since the amount of the learned knowledge
becomes very large, the learning mechanism also has a function
of learning selectively only at subgoals which substantially
contribute to the speedup of the inference. In addition, the
mechanism also includes a knowledge reformation function,
which transforms learned knowledge into an efficient form to
be used in subsequent inference.

Keywords: hypothetical reasoning, deductive learning, efficient
inference

Incomplete knowledge plays an important role in
expanding the capability of knowledge bases. Incomplete
knowledge here means knowledge with exceptions,

Department of Information and Communication Engineering, Faculty
of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo
1 ! 3, Japan
*Currently with NTT Communication Science Laboratories, Japan
Paper received 12 August 1992. Revised paper received 23 July 1993.
Accepted 20 September 1993

knowledge with the possibility of inconsistency, hypothe-
tical knowledge, defeasible knowledge etc. A logic-based
hypothetical reasoning system [1,2], which can handle
incomplete knowledge as hypotheses, is an important
framework for advanced knowledge systems, because of
its theoretical basis and its practical usefulness. It is
applicable to many problems, including diagnosis [1,3]
and design [4]. However, one crucial problem with
hypothetical reasoning is its slow inference speed.

In order to improve its inference speed, some methods
have been proposed. They are, for example, assumption-
based truth maintenance systems (ATMS) [5], a fast
hypothetical reasoning method using an inference-path
network [6], and a fast hypothetical reasoning method [7]
applicable to predicate Horn clauses utilizing a deductive
database technique. A key technique in these methods is
the avoidance of inefficient backtracking or recalculation
caused by inconsistency among adopted hypotheses.

However, since the computational complexity of non-
monotonic reasoning including hypothetical reasoning
has been proved to be NP-complete or NP-hard [8], we
cannot overcome the limit of inference time increasing
exponentially with respect to problem scales as long as
we use ordinary inference methods. A method using an
analogical inference [9] has been presented as one
method of overcoming this inference speed limit.

This paper presents a speedup method using an exper-
ience-based learning mechanism for a hypothetical rea-
soning system with predicate Horn clauses and consist-
ency constraints. This method allows the acquisition of
effective knowledge from inference experience for speed-
ing up subsequent inference that has some similarity to
prior inferences. Unlike existing explanation-based
learning (EBL) [10,11], the system based on this method
can learn knowledge even at intermediate subgoals

0950-705119410310189-10 © 1994. Butterworth-Heinemann Ltd
Knowledge-Based Systems Volume 7 Number 3 September 1994 189

Speedup of hypothetical reasoning by experience-based learning mechanism: T Makino and M Ishizuka

appearing in the inference process. This function enables
us to expand the effectiveness of experience-based or
explanation-based learning. Since the amount of know-
ledge thus learned from inference experience becomes
very large, the system also includes a function of selec-
tively learning only at effective subgoals from the view-
point of improving the inference speed, and a function of
reforming learned knowledge into an efficient form for
subsequent inference.

LOGIC-BASED H Y P O T H E T I C A L
R E A S O N I N G AND E X P E R I E N C E - B A S E D
L E A R N I N G

Our hypothetical reasoning in this paper is a logic-based
one first proposed by Poole et al. [1,2]. Knowledge in this
system is divided into two categories, i.e. background
knowledge denoted by X which is always true, and
hypothesis knowledge denoted by H which is not always
true, or defeasible knowledge. The hypothesis knowledge
set H may include inconsistency, whereas the back-
ground knowledge set E has no possibility of inconsis-
tency. The basic behavior of this system is to find a
consistent subset h of H necessary to prove or explain a
given goal G together with E. This can be written as
h ~_ H (where h is a subset of H), E U h t-- G (where G
can be proved from Y t3 h), and E t3 h [--/- [] (where X t3 h
is consistent). The h becomes a solution hypothesis set to
satisfy the goal G. Here, the deductive inference mecha-
nism is used in reverse direction to abductively generate a
solution hypothesis h.

In general, knowledge here can be expressed with first-
order predicate logic formulae. However, in order to
achieve efficient inference, we restrict the knowledge
expression to predicate Horn clauses and consistency
constraints. The consistency constraints are introduced
to express inconsistent combinations of hypotheses expli-
citly, since we cannot express logical negation explicitly,
and therefore inconsistency with Horn clauses in the
knowledge base.

The hypothetical reasoning system can be easily imple-
mented by utilizing a backward (top-down) inference
mechanism embedded in Prolog. In this case, a necessary
set of hypotheses is generated along the depth-first infer-
ence path. This generated hypothesis set is then subjected
to a consistency check. If an inconsistency is found, a
part of the generated hypothesis set is discarded and
another hypothesis is generated in accordance with the
backtracking mechanism of Prolog. When the inference
succeeds in proving a given goal, the generated consistent
hypothesis set becomes a solution hypothesis set for the
goal. Another type of inference method, i.e. the conse-
quence-finding-type inference method, is described in
Reference 12 for hypothetical or abductive reasoning.
These simple implementations are, however, not neces-

sarily efficient, particularly because of the backtracking
caused by the inconsistency among adopted hypotheses.
Thus, in order to improve efficiency, a notion of a goal-
directed parallel forward (bottom-up) inference mechan-
ism without backtracking is incorporated, for example,
in References 6 and 7. In this paper, we show another
way to speedup hypothetical reasoning, i.e. a method of
the reformation of the knowledge base into an efficient
one on the basis of the experience of inference processes.

An inference process for proving a given goal by
adopting necessary hypotheses can be regarded as
experience in hypothetical reasoning. Similar subgoals
appear in different inference processes with respect to
different goals. The similarity among the subgoals indi-
cates here a relation in which two subgoals share the
same generalized literal obtainable by changing the con-
stant terms of literals into variables. Thus, if we record
an inference result in one inference experience and store
its generalized version as knowledge, we can utilize its
knowledge to improve the inference speed in subsequent
inference processes including subgoals similar to prior
ones. We can acquire more widely useful knowledge by
learning at subgoals rather than learning only at a final
goal as in existing explanation-based learning. Since
consistency maintenance among adopted hypotheses is
required in the process of hypothetical reasoning, we
have to take care of this function in the design of our
experience-based learning mechanism.

In this paper, we use 'experience-based learning' for
our method, to distinguish it from existing explanation-
based learning (EBL).

S T R U C T U R E O F H Y P O T H E T I C A L
R E A S O N I N G S Y S T E M W I T H E X P E R I E N C E -
BASED L E A R N I N G M E C H A N I S M

We first describe the structure of a constructed hypothe-
tical reasoning system with an experience-based learning
mechanism. Basically, this system searches a single solu-
tion hypothesis set for a given goal in a backward depth-
first manner. The mechanism of the experience-based
learning will be described in the next three sections.
Figure 1 depicts the structure of the system, which is
implemented as a recta-interpreter of Sicstus-Prolog. We
will briefly describe the function of each component.

Inference engine: This inference engine tries to prove
a given goal using background knowledge and
hypotheses generated by a hypothesis generator. The
proof strategy of this inference engine is backward
and depth-first as in Prolog. When the goal proof is
succeeded, it produces a consistent hypothesis set
adopted in the inference process as a solution
hypothesis for the goal. Also, this engine generates a
generalized goal proof tree based on a generalized

190 Knowledge-Based Systems Volume 7 Number 3 September 1994

Speedup of hypothetical reasoning by experience-based learning mechanism: T Makino and M Ishizuka

Goal

Goal
Generalizer

Hypothesis
Generator I

Hypothesis
Knowledge-base

(H)

Generalized
Proof Tree

Inference
Engine

Solution / /
Knowledge

Background
Knowledge-base

(~)

Figure I Hypothetical reasoning system with expenenee-based
ing mechanism

learn-

goal provided by a goal generalizer. Using this gener-
alized proof tree, it produces generalized knowledge,
which is stored in the knowledge base.

• Background knowledge base: This knowledge base
stores background knowledge (E) with no possibility
of inconsistency with respect to other knowledge.
Consistency checking is not required for this back-
ground knowledge. Each piece of background know-
ledge is expressed in the form of bk(predicate Horn
clause). As a part of background knowledge, consist-
ency constraints are written with predicate Horn
clauses having an 'inc (inconsistent)' atom as their
heads, for example, as bk(inc :- p(a), q(b).), which
means that p(a) and q(b) cannot coexist in one
environment.

• Hypothesis knowledge base: Hypothesis knowledge
(H), which is not always true and possibly becomes
inconsistent against other knowledge in certain sit-
uations, is stored separately in this hypothesis know-
ledge base. Necessary hypotheses in the process of
hypothetical reasoning are generated from this
knowledge base. Each possible hypothesis know-
ledge is expressed in the form of hk(knowledge-ID
with variables, predicate Horn clause), where the
variables attached to the knowledge ID correspond
to those appearing in the predicate Horn clauses.

• Hypothesis generator: This generator generates the
necessary hypothesis for the inference engine by
selecting appropriate hypothesis knowledge and
instantiating it if necessary.

Goal generalizer: This goal generalizer produces a
generalized goal by changing instances into vari-
ables. The generalized goal is given to the inference
engine to learn generalized knowledge from the
experience.
Generalized proof tree: This is a generalized proof
tree obtained, in principle, as a proof tree for the
generalized goal. The structure of this generalized
proof tree is the same as one obtained for the corres-
ponding specific goal. Since the constructions of
these two proof trees for the specific and generalized
goals or subgoals are made simultaneously in the
actual inference process, the computational cost of
constructing the generalized proof tree is small.

EXPERIENCE-BASED LEARNING
M E C H A N I S M

Our hypothetical reasoning system has been enhanced
with the following experience-based learning mechanism.

Learning from successful proof

In this case, knowledge is acquired basically as in expla-
nation-based learning [10,11]. That is, the system first
constructs a proof tree starting from a given specific goal.
At the same time, a generalized proof tree having the
same structure as the above tree is obtained for the
corresponding generalized goal, which is generated by
changing the constants instantiated for the specific goal
to original variables appearing in original knowledge.

The proof tree for the specific goal here serves as a
useful bias for producing the generalized knowledge, i.e.
a generalized short-cut proof path. Then the generalized
goal and a set of fact-type knowledge 'fact_k' (k -
1,2) necessary to satisfy this goal are identified from
the generalized proof tree. In our experience-based learn-
ing mechanism, fact-type knowledge (unit clauses) in the
knowledge base has an operationality that is a key con-
cept in explanation-based learning.

Since hypotheses are generated in the proof process of
hypothetical reasoning, knowledge thus learned is stored
in the following two ways:

When the goal is proved without adopting any
hypotheses, knowledge acquired from the experience
is stored in the background knowledge base (Z) as
bk(goal :- fact_l, fact_2 , fact_n0.
When more than one hypothesis is adopted in the
proof process for the goal, acquired knowledge is
stored together with the hypotheses in the hypothesis
knowledge base H as hk([hyp_ID_l hyp_ID_
m], goal :- fact_l fact_n.), where the 'hyp_ID_.k'
(k= 1, 2) denote hypothesis names with vari-
ables as their arguments, and 'fact_k' (k= l ,

Knowledge-Based Systems Volume 7 Number 3 September 1994 191

Speedup of hypothetical reasoning by experience-based learning mechanism: T Makino and M Ishizuka

2 , . . . ,n) are fact-type pieces of knowledge necessary
to satisfy the goal.

That is, in the first case, there is no possibility of inconsis-
tency between the learned knowledge and other know-
ledge, since no hypotheses are involved. Thus it can be
stored in the background knowledge base E. In contrast,
in the second case, it is not certain that the adopted
hypotheses are consistent with other knowledge in differ-
ent conditions. Accordingly, the learned knowledge is
stored with the list of accompanying hypotheses in the
hypothesis knowledge base H. When this knowledge is
used in subsequent inference processes, this list of
hypotheses is evoked to check the consistency of know-
ledge.

The following correspondence exists between existing
explanation-based learning and our experience-based
learning described in this paper.

goal concept subgoals appearing in
inference process

domain theory knowledge in background and
hypothesis knowledge bases

training example ~ specific goal given to
hypothetical reasoning system

operationality ,--, fact-type knowledge

Basic differences from existing explanation-based learn-
ing are as follows.

• Knowledge learning takes place even at subgoals,
and not only at the final goal, so that the system can
acquire more widely useful knowledge from exper-
ience.

• Since the hypothetical reasoning process generates
necessary hypotheses and executes consistency
checking, knowledge learned from experience keeps
a record of hypotheses that are necessary to validate
the learned knowledge.

Because of the occurrence of inconsistency among
adopted hypotheses, the number of backtrackings in
hypothetical reasoning is larger than that for other reas-
oning schemes. Furthermore, consistency checking is
computationally expensive. The use of the record of suc-
cessful proofs as learned knowledge accompanied by
necessary hypotheses contributes to a great extent to the
reduction of backtracking and consistency checking in
subsequent inference.

Learning from proof failure

There are two cases in which a proof fails. One is the case
in which the system cannot find a matching predicate

symbol in the heads of Horn clauses; another is the case
in which necessary unification fails.

In the former case, the system records failed goals or
subgoals after their generalization, since the proofs of
these goals or subgoals always fail, not depending on the
instantiation of their variables. In the latter case, failed
goals or subgoals are recorded without generalization,
since the failure is dependent on a specific instantiation
of their variables. That is, learned knowledge from proof
failure is stored in the knowledge base in the forms of

bk(goal(V1, V2, ...):- fail.) {Vi, V2 are variables}

for the former case, and

bk(goal(c, c2):- fail.) {cl, c2 are constants}

for the latter case.
Most proof failures in practice fall into the latter cate-

gory, since rules having a subgoal without a matching
predicate symbol in the former case are useless ones that
must be removed from the knowledge base. Therefore,
we must mainly consider the latter case in practice.

SELECTIVE L E A R N I N G AT S U B G O A L S

Our learning mechanism can learn generalized know-
ledge at subgoals, and not only at a final goal, to improve
the efficiency of subsequent inference processes. How-
ever, since the amount of this learned knowledge
becomes too large, it is necessary to restrict the target
subgoals at which the knowledge learning is evoked,
according to a certain criterion. One way is to ask know-
ledge-base builders to define such target subgoals of
learning. This may be a practical way, since most know-
ledge-base builders know the meaning and levels of
knowledge (predicates), and may be able to specify key
subgoals (predicates). The key subgoals (predicates) thus
specified, however, are not necessarily effective ones
from the viewpoint of speeding up hypothetical reason-
ing. Thus we will consider a systematic method of select-
ing effective target subgoals for our experience-based
learning.

Basic strategy

Our hypothetical reasoning system in this paper tries to
find a single solution hypothesis set in backward depth-
first search mode, as in Prolog. The most serious inef-
ficiency in this hypothetical reasoning comes from the
backtracking caused by inconsistency among adopted
hypotheses. Accordingly, it becomes effective to avoid
this type of backtracking by learning knowledge at root
subgoals of this backtracking. We will identify such sub-
goals for selective experience-based learning.

192 Knowledge-Based Systems Volume 7 Number 3 September 1994

Speedup of hypothetical reasoning by experience-based learning mechanism: T Makino and M Ishizuka

Background Hypothesis
Knowledge(~') Knowledge(H)

a :- b,d. g.
b:-h. h.
b:-i. i.
c:-e. j.
c:-f. k.
d :- .f, .g. 1.
C ; - l ,J.
f:-k,l .

inc :- i, k.

Figure 2 Knowledge base

As described above, knowledge denoting inconsis-
tency constraints is written in our knowledge base as
Horn clauses having 'inc' atoms as their heads. The
above backtracking may occur at subgoals where one of
these inconsistency constraints is applied to possibly
remove an inconsistent combination of adopted hypoth-
eses. These subgoals can be identified by analyzing the
knowledge structure described in the knowledge base.

and

inc

Figme 3 Networked knowledge expression for Figure 2

Proposit ional Horn clause case

We first consider a knowledge base expressed in pro-
positional Horn clauses for simplicity, before consider-
ing a somewhat complicated case of predicate Horn
clauses. In this case of propositional Horn clauses, the
knowledge structure representing the relations of the
described knowledge can be expressed as a network. For
example, the knowledge set of Figure 2 can be expressed
as the network of Figure 3, in which an inconsistency
constraint 'inc :- i, k.' is expressed by a link with 'inc'
between nodes i and k.

The target subgoals for our experience-based learning
are nodes where all the upward propagations along the
network from every tip node of one 'inc' link meet with
an AND relation. In Figure 3, node a is such a subgoal,
whereas node c is not, since two upward propagations
from nodes i and k meet with an OR relation, and not
with an AND relation, at node c. This type of node or
subgoal can be found by symbol manipulation as
follows.

Let us construct lists of upward ancestor atoms start-
ing from atoms that appear in the body part of one
inconsistency constraint. For example, in the knowledge
base of Figure 2 where i and k appear in an inconsistency
constraint 'inc :- i, k', the list of ancestor atoms for i is b,
e, a, c, and the list of ancestor atoms for k is f , c, d, a. We
detect common atoms in these lists. In this example,
atoms a and c are these common atoms, which corres-
pond to the nodes where the upward propagations from
an 'inc' link meet. Then we check the body of Horn
clause knowledge having these atoms as heads, that is,
the following Horn clauses are checked:

a : - b , d .
c. ' -e .
c : - f .

Since the body o f ' a :- b, d.' include two atoms appearing
in the lists of ancestor atoms for i and k, atom a is
identified to be a target subgoal or node where the propa-
gations from the 'inc' link meet with an A N D relation.
On the other hand, the body o f ' c :- e.' or 'c :-f. ' includes
only an atom (atoms in general) appearing in the list of
ancestor atoms for i or k. The propagations from the
'inc' link meet at c with an OR relation. Consequently,
atom c is not considered to be a target subgoal for our
learning.

Although we have described the algorithm to identify
effective subgoals for learning in the propositional Horn
clause case, we have to take into account other con-
ditions for the predicate Horn clause case.

Predicate Horn clause case

Predicate Horn clauses including variable expressions
are usually required to represent knowledge in many
practical problems. Let us consider here function-free
predicate Horn clauses. In this case, it is difficult to
construct a knowledge network as in the case of pro-
positional Horn clauses, because of the existence of vari-
ables and recursive loops. However, since what we need
here is to determine target subgoals for our experience-
based learning, w e d o not necessarily need to construct
the knowledge network. We can determine them only by

Knowledge-Based Systems Volume 7 Number 3 September 1994 193

Speedup of hypothetical reasoning by experience-based learning mechanism: T Makino and M Ishizuka

considering ancestor literals of hypothesis knowledge
appearing in the body of inconsistency constraints.

Recursive loops
We can detect recursive loops when we generate a list of
ancestor literals. That is, if a new ancestor literal found
by tracing the connection of knowledge is the same as
one found previously, then we can detect the existence of
a loop. By avoiding the recursive part of the loop, we can
generate finite ancestor literals for each piece of hypothe-
sis knowledge related to inconsistency constraints.

Inconsistency constraints
The following deals with inconsistency constraints of the
following type:

and q(Y) coexist in one adopted hypothesis set, not
depending on the instantiations of variables Xand Y.
Therefore, generalized knowledge acquired from a
successful proof never invokes backtracking due to
the above type of inconsistency constraint. Thus, we
generalize knowledge acquired at a subgoal deter-
mined as a learning target by this type of inconsis-
tency constraint.
'inc :- p(X), q(Y), X \ = Y?: In this case, inconsis-
tency occurs depending on the instantiation of X and
Y. Therefore, generalized knowledge acquired from
a successful proof may possibly invoke backtracking
in some different instantiations of the variables.
Accordingly, we do not generalize knowledge
acquired at a subgoal determined by this type of
inconsistency constraint.

'inc;- p(X), p(Y), X \ = Y.'
{\ = not equal, X and Y variables}

Because of the existence of arguments, it is conceivable
that inconsistency occurs even between the same predi-
cate literals as exemplified above. The lists of ancestor
literals for p(X) and p(Y) are the same. Therefore, we
cannot determine the target subgoals for learning, i.e. the
subgoals where adopted hypothesis sets are possibly
removed by inconsistency checking, simply by finding
common predicate literals in the lists. However, if the
body of a piece of Horn-clause knowledge whose head is
a found ancestor literal includes plural elements (more
than two elements in this case) of the list of ancestor
literals, then we can determine that its head literal is a
target subgoal, where the propagations from an 'inc' link
meeting with an AND relation.

Generalization of learned knowledge depending on
types of inconsistency constraint

Since learned knowledge is acquired with generalization
from successful proofs in our experience-based learning,
there are possibilities that the learned generalized know-
ledge yields inconsistency. Therefore, when the system
uses this learned knowledge in the inference process,
there remains the possibility of backtracking. The back-
trackings that occur at the portion of learned knowledge
are shallow in general; they are not as serious as in the
case of original knowledge. It is, however, better to avoid
these backtrackings. Thus we determine whether or not
to execute the generalization of knowledge acquired at a
certain subgoal, depending on the types of inconsistency
constraint affecting the consistency checking at the sub-
goal, as follows:

• 'inc :- p(X), q(Y).': For this type of inconsistency
constraint, inconsistency always occurs when p(X)

REFORMATION OF LEARNED
KNOWLEDGE

The amount of knowledge increases by the accumulation
of learned knowledge from experiences. In particular, a
large number of pieces of rule-type knowledge having the
same head predicate symbol may be generated by learn-
ing. As a result, the efficiency of the inference may some-
times decline, because the system has to repeat
backtrackings until it finds an appropriate piece of
knowledge. In order to reduce this sort of inefficiency in
our hypothetical reasoning system, we introduce a refor-
mation function of learned knowledge into our system.

The reformation function rearranges learned know-
ledge with respect to each predicate symbol appearing in
the head part of Horn clauses, as follows:

• Step 1: Delete duplicate knowledge.
• Step 2: If there are pieces of background knowledge

and hypothesis knowledge with respect to a predicate
symbol in the head part, we treat them separately.
(While it seems that hypothesis knowledge is not
necessary in this case for obtaining a minimal solu-
tion hypothesis set, hypothesis knowledge becomes
necessary since the generalized version of learned
background knowledge does not always lead to a
successful proof. We need, therefore, to store
hypothesis knowledge even in this case.)

• Step 3: Merge the pieces of learned knowledge with
the same predicate symbol as their heads into one
piece of knowledge, as follows:

© Step 3.1: If there exists Horn clause knowledge
with 'fail' in its body part, then, by checking the
values of arguments of its head predicate, place
the negation of this value combination in the
beginning position of the body of reformed
Horn-clause knowledge.

o Step 3.2: Extract common fact-type literals in the
body parts of different pieces of knowledge, and

194 Knowledge-Based Systems Volume 7 Number 3 September 1994

Speedup of hypothetical reasoning by experience-based learning mechanism: T Makino and M Ishizuka

F i g u r e 4 Example of original knowledge

place them in the preceding position of the body
of reformed Horn-clause knowledge. Place other
uncommon literals appearing in different body
parts of originally learned Horn-clause know-
ledge in latter positions of the body of a
reformed Prolog clause with an OR relation.

As an illustration, suppose that the system has the
following pieces of learned knowledge:

g(a, b) :- fail.
g(X, Y) :- p(X), q(X, Y), r(Y).
g(X, Y) :- p(X), s(X, Y), r(Y).

Then, these pieces of knowledge are reformed into one
Prolog clause in the form of

g(X, Y) :- \ + (X= = a, Y= -- b), p(X), r(Y),
(q(X, Y); s(X, Y)).

where \ + denotes 'not provable', and (q(X, Y) ; s(X, Y))
means q(X, Y) or s(X, Y) in Prolog.

To see the effect of the above knowledge reformation
mechanism, we consider an example knowledge base
with the knowledge structure shown in Figure 4. If the
experience-based learning takes place several times at the
top goal node g of Figure 4, the system can acquire the
learned knowledge shown in Figure 5 for g. Suppose, for
example, that only the proof of a predicate i fails owing
to the unification condition of attached variables, then
the system can eventually find a successful proof after
checking a twice, b once, c, d, e and f each three times,
and j once in the case shown in Figure 5. This is very
inefficient. Our knowledge reformation mechanism
transforms the knowledge structure of Figure 5 into the
structure shown in Figure 6. Then, the system can find a
successful proof by checking each c, d, e,f, a, i andj only
once. Furthermore, when the proof of f fails, the system
finds that the set of learned knowledge is useless in this
case after checking a and b once, and c, d, e and f each

• F i 5 L ed owl e

)
lad

Figure 6 Reformed learned knowledge

four times, in the case of the unreformed knowledge
shown in Figure 5. However, using the reformed know-
ledge in the form shown in Figure 6, the system can find
the uselessness of the learned knowledge by checking
each c, d, e and fon ly once.

The knowledge reformation function allows, as we
have seen above, the reduction of inference overheads
caused by the addition of learned knowledge, and it
contributes to achieving the effectiveness of our experi-
ence-based learning.

EXPERIMENTAL PERFORMANCE
E V A L U A T I O N

We evaluate the performance of our experience-based
learning mechanism with the selective learning function
at proper subgoals and the reformation function of
learned knowledge, using test knowledge sets which are
designed artificially to illustrate clearly the learning
effect.

Performance evaluation of selective learning at
proper subgoals

In this case, the test knowledge sets exemplified in Figure
7 are used, where left and right subtrees rooted at pt(X)

Knowledge-Based Systems Volume 7 Number 3 September 1994 195

Speedup of hypothetical reasoning by experience-based learning mechanism: T Makino and M Ishizuka

pl(X) ~ ~ql(X)

t l (X) ~ u l (X) r l (X) ~ " ~ s i (X)

I...\ IX\\ I I?\\

p2(X) q2(X)

t \ x, /.l \ \ t....X L!I \\ t21(x) 0 . 6 (j / ~ I (X) ta2(x) u23(x') r21(X) r2ra(~,/ ..,~X) ~2(X) O.3(X)

/ /
u3(X) q3(X)

Figure 7 Test knowledge set for evaluating speedup by selective
experience-based learning at proper subgoals
[Inconsistency constraints: inc :- rij(X) sij(x) {i = 1, 2 , j = 1,
2,. • .}, inc :- rij(X), ski(X) {i, k ~ 1, 2 (i ~ k) ; j = 4, 5, 6; l = 1, 2,
3}. Defined element hypotheses: rit(a), ri2(b), ri3(c), ri4(a), ris(b), rie(c),
si~(a), si2(b), si3(c), ti,(a), ti2(b), ti3(e), ti4(a), tis(b), ti,(c), ui,(a), ui2(b),
ui,(c), {i = 1, 2 }.]

and ql(X), respectively, are the same, except for inconsis-
tency constraints for the left subtree. Also, the subtrees
of q~(X), q2(X) have an identical structure, as do the
subtrees of p~(X), p2(X), We can change the tree
depth of the knowledge set to define the scale of know-
ledge bases or the number of possible element hypoth-
eses. For example, r~4(a) and sn(a) in the fight subtree
become the components of a solution hypothesis set for a
given goal g(a) in Figure 7. A number of backtrackings
take place in the fight subtree to find a solution hypothe-
sis first time, because of associated inconsistency con-
straints.

According to our selective experience-based learning
algorithm, qi(X), q2(X), • • • in the right subtree of Figure
7 will be selected as proper target subgoals for learning.
The experience-based learning for the knowledge set of
Figure 7 is evoked after a goal g(a), g(b) or g(c), for
example, is given to the system to acquire effective gener-
alized knowledge. To evaluate the speedup obtained by
this experience-based learning at proper subgoals, we
also carried out experiments of learning at other sub-
goals. The learning at p~(X), p2(X) in the left subtree
of Figure 7 has also been carried out for this purpose.

Figure 8 shows the results of the experiments, which
are measured in terms of the required CPU time. for
finding a solution hypothesis set for a goal, for example
g(a), g(b) or g(c). In Figure 8, we can clearly see a speedup
effect from our selective experience-based learning at
proper subgoals. The learning at other than the proper
effective subgoals cannot yield speed improvements,
because the inferences for these subgoals were initially
sufficiently efficient.

CPU time [sec]

lv
0

Figure 8

20 40 60 80 100

No. of possible element hypotheses

Example of speedup of hypothetical reasoning by selective
learning at proper subgoals
[O: without learning, D: with learning at proper subgoals, A: with
learning at other subgoals.]

Performance evaluation of knowledge reformation

For this evaluation, we used the test knowledge sets
exemplified in Figure 9, in which the scale of the test
knowledge set can be changed by defining the depth of
the inference tree. Figure 9 is a particular case in which
the depth is 3. sil(V), si2(V), sia(V), si4(V) and sis(V)
{i = 1,2,3} have the element hypotheses of si~(a), si2(b),
si3(c), si4(d) and sis(e), respectively, as their child nodes.
Inconsistency constraints are defined as

inc :- si~(V), sjs(W). {ij = 1,2, . . . ,5 and i ~ j}

Because of these inconsistency constraints, the subgoals
of qo(V, W,X, Y,Z) and qI(W,X, Y,Z) in Figure 9 become
the targets of our selective experience-based learning.

We consider the situation in which this learning has
taken place thoroughly at these target subgoals; this is
the situation after every possible instantiation of
q(V, W,X, Y,Z) is given as a goal to the system. In this
situation, the number of pieces of learned Horn-clause

196 Knowledge-Based Systems Volume 7 Number 3 September 1994

Speedup of hypothetical reasoning by experience-based learning mechanism: T Makino and M Ishizuka

sit'V) / . \
sll(V) slS(V)

g(V,W,X,Y~)

t
qO(V,W,X,Y~ ~)

ql(W,X,Y~)

s2(W) q2(X,Y~)

S21(W) s25(W)

s31(x) ; . . s35(x)

Figure 9 Test knowledge set for evaluating effect of knowledge refor-
mation
[Inconsistency constraints: inc: si~(V), sis(W) {i, j = 1, 2, 3, 4, 5 and
i ~ j}. Defined element hypotheses: si~(a), si2(b), si3(c), si,(d), sis(e)
{i = 1, 2, 3}.]

knowledge having qo(V, W,X, Y,Z) as the head, for exam-
ple, becomes the third power of 5 minus the number of
inconsistent hypothesis combinations, since there are five
OR-related child nodes for s~(V), s2(W) and s3(X) in
Figure 9. In the case of Figure 9, the number of these
learned pieces of knowledge becomes 99 for
go(V,W,X, Y,Z). This learned knowledge added to the
knowledge base may cause inefficiency unless the know-
ledge reformation mentioned in the sixth section is per-
formed.

Figure 10 shows the experimental results of the worst-
case inference time (CPU time) for finding a solution
hypothesis set for a given goal, for example g(e,e,e,e,e).
In order to obtain a clear experimental result, the given
goals in these experiments were chosen such that they did
not evoke backtracking owing to the defined inconsis-
tency constraints in the original knowledge base, and
their solutions were found after all the possible trials of
unification (the worst case) in the learned knowledge
base without knowledge reformation. There were a large
number of failures of unification in the inflated know-
ledge base with the learned knowledge, and the conse-
quent efficiency degradation of the learned knowledge
base is shown in Figure 10.

However, after the reformation of the learned know-
ledge base, this inefficiency is removed, as seen in Figure
10. If the given goals are such that they give rise to
backtrackings because of inconsistency constraints in the
original knowledge base, the inference efficiency can be
improved to a large extent by experience-based learning

CPU time [sec]

10

10 "1

/

/

10 20
No. of possible element hypotheses

Figure 10 Example of effect of learned-knowledge reformation
[O: original knowledge base, A: learned knowledge base without
reformation, D: learning knowledge base with reformation.]

30

and knowledge reformation, which removes the infer-
ence overhead caused by the increase in learned know-
ledge.

CONCLUSIONS

We have presented a hypothetical reasoning system with
an experience-based learning mechanism. This learning
mechanism acquires generalized knowledge from infer-
ence experiences, and enables the subsequent inference
processes to be speeded up. In comparison with existing
explanation-based learning, the following new functions
have been introduced in our experience-based learning
mechanism.

The learning mechanism can work for hypothetical
reasoning, where necessary hypotheses are generated
and consistency checking among adopted hypoth-
eses is executed in the inference process.
The learning mechanism can learn effective know-
ledge even at subgoals that appear in the inference
process, and not only at the final goal, so that more
widely useful knowledge can be acquired for improv-
ing the inference speed in subsequent inference pro-
ceSSCS.

Knowledge-Based Systems Volume 7 Number 3 September 1994 197

Speedup of hypothetical reasoning by experience-based learning mechanism: T Makino and M Ishizuka

• In order to avoid similar p roo f failures occurring
more than twice, the learning mechanism learns
knowledge f rom p roo f failure by deciding whether or
not the generalization o f acquired knowledge is
appropriate, depending on the type o f a related
inconsistency constraint.

• Since the amount o f learned knowledge becomes
very large, the system can select effective target sub-
goals for experience-based learning f rom the view-
point o f improving the inference speed.

• A reformation function o f learned knowledge is
provided to reduce the inefficiency caused by the
addit ion o f learned knowledge.

The system was applied to a design problem involving
digital circuit block synthesis [4], and this showed the
speedup effect o f inference processes having partial simi-
larity to prior designs. Like explanat ion-based learning,
our experience-based learning is a deductive learning
mechanism (for hypothetical reasoning); it thus allows
the improvement o f inference speed by the reformation
of the knowledge base, but it has no power to generate
entirely new knowledge. A combinat ion with inductive
learning, particularly with inductive logic p rogramming
techniques [13], which allow the learning o f new genera-
lized knowledge f rom given positive and negative exam-
pies, seems to be one interesting extension o f our present
system.

R E F E R E N C E S

1 Poole, D, Aleliunas, R and Goebel, R 'Theorist: a logical reasoning
system for defaults and diagnosis' in Cercone, N J and Mccalla, G
(Eds.) The Knowledge Frontier: Essays in the Representation of
Knowledge Springer-Verlag, USA (1987)

2 Poole, D 'A logical framework for default reasoning' Artif. lntell.
Vol 36 pp 27-47 (1988)

3 Ishizuka, M and Matsuda, T 'Knowledge acquisition mechanisms
for a logical knowledge base including hypotheses' Knowledge-
Based Systems Vol 3 No 2 pp 77-86 (1990)

4 Makino, T and Ishizuka, M 'A hypothetical reasoning system with
constraint handling mechanism and its application to circuit-block
synthesis' Proc. PRICA1 '90 Nagoya, Japan pp 122-127 (1990)

5 de Kleer, J 'An assumption-based TMS' Artif. Intell. Vol 28 pp
127-162 (1986)

6 Ishizuka, M and Ito, F 'Fast hypothetical reasoning system using
inference-path network' Proc. Int. Conf. Tools for AI ICTAI '91 San
Jose, CA, USA pp 352-359 (1991)

7 Kondo, A, Makino, T and Ishizuka, M 'Et~cient hypothetical
reasoning system for predicate-logic knowledge base' Proc. Int.
Conf. Tools for AIICTAI '91 San Jose, CA, USA pp 360-367 (1991)
(and Knowledge-Based Systems Vol 6 No 2 pp 87-94 (1993))

8 Kautz, H A and Selman, B 'Hard problems for simple default
logics' Proc. Principles of Knowledge Representation and Reasoning
KR '89 Toronto, Canada pp 189-197 (1989)

9 Abe, A and Ishizuka, M 'Fast hypothetical reasoning system using
analogy on inference-path network' J. Japanese Soc. AIVol 7 No 1
pp 77-86 (t 992) (in Japanese)

10 Mitchell, T M, Keller, R M and Kedar-Carbelli, S T 'Explanation-
based generalization: a unifying view' Machine Learning Vol 1 pp
47-80 (1986)

11 DeJong, G and Mooney, R 'Explanation-based learning: an alter-
native view' Machine Learning Vol 1 No 2 pp 145-176 (1986)

12 Inoue, K 'Linear resolution for consequent finding' Artif. Intell. Vol
56 pp 301-353 (1992)

13 Muggleton S (Ed.) Inductive Logic Programming Academic Press
(1992)

198 Knowledge-Based Systems Volume 7 Number 3 September 1994

