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Abstract: In this paper, we propose a quantum circuit for the SPEEDY block cipher for the first
time and estimate its security strength based on the post-quantum security strength presented by
NIST. The strength of post-quantum security for symmetric key cryptography is estimated at the
cost of the Grover key retrieval algorithm. Grover’s algorithm in quantum computers reduces the
n-bit security of block ciphers to n

2 bits. The implementation of a quantum circuit is required to
estimate the Grover’s algorithm cost for the target cipher. We estimate the quantum resource required
for Grover’s algorithm by implementing a quantum circuit for SPEEDY in an optimized way and
show that SPEEDY provides either 128-bit security (i.e., NIST security level 1) or 192-bit security (i.e.,
NIST security level 3) depending on the number of rounds. Based on our estimated cost, increasing
the number of rounds is insufficient to satisfy the security against quantum attacks on quantum
computers.

Keywords: Grover’s algorithm; quantum computing; SPEEDY block cipher; post-quantum

1. Introduction

With the development of quantum computers, public key cryptography and sym-
metric key cryptography are vulnerable against quantum algorithms. It is expected that
cryptography will no longer be secure when large-scale quantum computers that have
reached the quantum resources required for target cryptography attacks are released [1].
Grover’s search algorithm is a well-known quantum algorithm that can accelerate the
exhaustive key search against symmetric key cryptography [2]. Grover’s algorithm can re-
duce the computational complexity from O(N) to O(

√
N) for symmetric key cryptography

using an n-bit key (i.e., N = 2n) in a quantum computer.
The National Institute of Standards and Technology (NIST) held a competition on post-

quantum cryptography with the goal of setting standards for post-quantum cryptography
to prepare for the post-quantum era, and presented an estimate of the strength of security
for symmetric key cryptography [3]. Block ciphers are not guaranteed to be secure in
quantum computers by Grover’s algorithm as well. In order to evaluate the safety of the
target cipher in the post-quantum era, it is necessary to estimate the required quantum
resources by implementing the target cipher as a quantum circuit. As a result, NIST
presented the cost of key retrieval using Grover’s algorithm as an indicator of security
strength in the post-quantum era. As a result, estimating the Grover key retrieval cost of
symmetric key cryptography is an interesting area of research [4–20].

SPEEDY is a block cipher proposed by CHES’21 [21] that operates with the block size,
key length, and the number of rounds as variables. Since SPEEDY targets 6-bit S-boxes and
64-bit CPUs, the least common multiple of 6 and 64 (i.e., 192) is used as the default block
size and key length. SPEEDY for a length of 192 bits and rounds of r is called SPEEDY-r-192.
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SPEEDY provides 128 bits of security when r = 6 and achieves full security of 192 bits at
r = 7.

In this paper, we implement the SPEEDY block cipher as a quantum circuit and
check the post-quantum security strength by estimating the resources to be applied to
Grover’s algorithm. To the best of our knowledge, this is the first implementation of
SPEEDY in quantum circuits. Grover’s algorithm operates by repeating oracle and diffusion
operations, and the quantum circuit of the target cipher is essential in oracle. We used
the proposed quantum circuit to estimate the quantum resources needed for Grover’s
algorithm. Furthermore, we decomposed the estimated resource into the lower-level
Cli f f ord + T gate to check the post-quantum security strength. We estimated the quantum
resource by increasing r to see how the number of rounds affects the post-quantum security
strength. SPEEDY-7-192 provided 192-bit security on classic computers, but showed a
security strength of level 1 (i.e., the AES-128 level) on quantum computers. The post-
quantum security strength did not increase even after a larger increase in rounds. In
other words, estimating the quantum cost according to various rounds, it was confirmed
that SPEEDY provided level 1 (AES-128) post-quantum security, and that the increase in
rounds did not significantly affect the quantum security strength. Our results show that
increasing the number of rounds can improve security for classical computers, but it is
not enough for quantum computers. Finally, it was confirmed through comparison with
other lightweight ciphers (i.e., LEA, CHAM, HIGHT, and PIPO) that the increase in rounds
did not significantly affect the post-quantum security strength and that increasing the key
length affects the security strength. We used IBM’s ProjectQ platform to implement and
simulate quantum circuits.

Contributions of This Paper

• Implementation of the first quantum circuit for SPEEDY block cipher: To the best of
our knowledge, this is the first quantum circuit implementation of SPEEDY. In the
S-box implementation, an efficient Algebraic Normal Form (ANF) S-box was adopted
in terms of quantum resources to reduce quantum resources, and separate quantum
resources were not used through logical swap in ShiftColumns and Key Schedule.

• Estimating the cost of Grover key search for SPEEDY: We estimated the Grover algo-
rithm’s quantum resource for the SPEEDY block cipher. Estimated quantum resources
are decomposed into a lower-level Cli f f ord + T gate to lay the foundation for quan-
tum security level analysis. Finally, we confirmed the post-quantum security strength
through quantum cost calculation.

• Post-quantum security evaluation and analysis of SPEEDY block cipher: We evaluated
post-quantum security for SPEEDY based on the Grover key retrieval cost presented by
NIST. Additionally, we noted the change in security strength with increasing rounds
of cipher. Based on these attempts, we discussed the differences in cipher security
between classical and quantum computers.

2. Related Work
2.1. Quantum Background

A quantum computer uses qubit, similar to the bit used in classic computer opera-
tions [22]. While bits have fixed values of 0 and 1, qubit can have values of 0 and 1 at the
same time [23]. The calculation can be performed quickly. Due to the nature of these qubits,
a 2n time brute-force attack in a classic computer can be performed only bπ

4 2
n
2 c times on

a quantum computer. In quantum computing, all changes except measurements must be
reversible. It is possible to return to the initial value only with the result value without
additional information.
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2.1.1. Quantum Gates

Quantum gates exploit the quantum entanglement and superposition states of qubits [24,25].
In quantum computing, the state of a qubit is changed with a quantum gate that can perform
reversible operations. Figure 1 shows some of the quantum gates.

1. NOT/X− gate, X(x) = x: The X gate inverts the state of a single qubit.
2. CNOTgate, CNOT(x, y) = (x, x⊕ y): One of the two input qubits becomes the control

qubit, and the other becomes the target qubit. When the control bit is set to one, the
state of the target qubit is inverted. If the control qubit x is one, target qubit y is
inverted.

3. To f f oligate, Toffoli(x, y, z) = (x, y, x · y⊕ z): Two of the three input qubits become the
control qubits, and the other becomes the target qubit. When all control bits are one,
the state of the target qubit is inverted. If both control qubits (x and y) are one, the
target qubit z is inverted.

4. SWAPgate, SWAP(x, y) = (y, x): This changes the state of two qubits.
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2.1.2. Grover’s Algorithm for Key Search

An exhaustive key search using Grover’s algorithm can recover an n-bit key with
only 2n/2 searches. The classical key search performs 2n searches in the worst case (i.e.,
O(2n)). Grover key search always repeats 2n/2. The Grover’s algorithm operates with
Oracle and Diffusion operation and increases the probability of finding the correct key
through repetition. The Oracle in Grover’s algorithm finds the correct key. The quantum
circuit of the target cipher is used. Diffusion operation in Grover’s algorithm operates to
increase the probability of measuring the correct key. The following describes the operation
process for Grover’s algorithm:

1. n-qubits are prepared to find a key of length n.
|0〉⊗n = |0〉0 ⊗ |0〉1 ⊗ · · · ⊗ |0〉n.

2. All n qubits are placed in a superposition state by a Hadamard gate.
|ψ〉⊗n = |ψ〉0 ⊗ |ψ〉1 ⊗ · · · ⊗ |ψ〉n.

3. If the ciphertext generated by the input n-qubits (i.e., key) matches the known cipher-
text, the sign of the key in that state is inverted.

4. The amplitude of the solution key is amplified through the diffusion operator.
5. Steps 3 and 4 are repeated by

√
2n times to increase the key search probability.

Figure 1. Quantum gates.

2.1.2. Grover’s Algorithm for Key Search

An exhaustive key search using Grover’s algorithm described in Figure 2 can recover
an n-bit key with only 2n/2 searches. The classical key search performs 2n searches in the
worst case (i.e., O(2n)). Grover key search always repeats 2n/2. The Grover’s algorithm
operates with oracle and diffusion operation and increases the probability of finding the
correct key through repetition. The oracle in Grover’s algorithm finds the correct key. The
quantum circuit of the target cipher is used. The diffusion operation in Grover’s algorithm
operates to increase the probability of measuring the correct key. The following describes
the operation process for Grover’s algorithm:

1. n-qubits are prepared to find a key of length n.
|0〉⊗n = |0〉0 ⊗ |0〉1 ⊗ · · · ⊗ |0〉n.

2. All n qubits are placed in a superposition state by a Hadamard gate.
|ψ〉⊗n = |ψ〉0 ⊗ |ψ〉1 ⊗ · · · ⊗ |ψ〉n.

3. If the ciphertext generated by the input n-qubits (i.e., key) matches the known cipher-
text, the sign of the key in that state is inverted.

4. The amplitude of the solution key is amplified through the diffusion operator.
5. Steps 3 and 4 are repeated

√
2n times to increase the key search probability.
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Figure 2. Exhaustive key search in Grover’s algorithm.

2.1.3. Grover’s Algorithm for SPEEDY

The oracle in Grover’s algorithm performs a known plaintext attack (KPA), and the
attack is possible when it knows one plaintext–ciphertext pair. Figure 3 shows the oracle
in Grover’s algorithm. To perform KPA in oracle, a quantum circuit for the target cipher
is required, and our SPEEDY quantum circuit performs encryption within oracle. For the
SPEEDY quantum circuit, it performs encryption using a superposition key and finds the
key value when the encryption result is the same as the known ciphertext. When these
conditions are satisfied, the key is correct. In the SPEEDY block cipher, a known plaintext
of length 6l and a 192-bit superposition key is input to perform the encryption function
Enc. After storing the encryption result for the SPEEDY quantum circuit in the plaintext
qubit, it is compared with the known ciphertext to find the correct key. Thus, this increases
the observation probability of the correct key through the diffusion operation. Since the
Grover’s algorithm repeats this operation, the encrypted plaintext state is returned to the
previous state through the decryption (i.e., inverse) function Enc†.

Figure 3. Oracle in Grover’s algorithm.

2.2. SPEEDY: Family of Block Ciphers

The SPEEDY block cipher is a family of ultra-low-latency block ciphers proposed at
the CHES’21 [21]. It can use different block sizes and key lengths, and the number of rounds
determines the level of security. SPEEDY is also an ultra-low-latency block cipher suite
dedicated to the design of integrated circuits based on standard cells developed for very
high execution speeds in CMOS hardware. SPEEDY aims to be a secure architecture for
CPUs that require very-low-latency encryption, such as secure cache, dedicated hardware
expansion, memory encryption, and pointer authentication. SPEEDY is noted as SPEEDY
-r-6l for block size 6×l and number of rounds r. The internal state is represented as
a l×6 array. Since the SPEEDY block cipher targets 6-bit S-boxes and 64-bit high-end
CPUs, it uses the least common multiple of 6 and 64 (i.e., SPEEDY-r-192) as a default
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block size and key length. Therefore, in this paper, SPEEDY is described based on the
SPEEDY-r-192 representation. The operations in SPEEDY-r-192 work on a 32×6 array. In
SPEEDY, it works with functions such as round function (R), S-box (SB), ShiftColumns (SC),
MixColumns (MC), AddRoundKey (Akr ), and AddRoundConstant (Acr ). Each function of
SPEEDY operates in the following order, except for the last round: Akr , SB, SC, MC Acr ,
KeySchedule. The last round is an exception and operates in the following order: Akr , SB,
SC, SB, KeySchedule, Akr .

2.2.1. S-Box (SB)

The S-box in the SPEEDY block cipher is a 6-to-6-bit box with a 6-bit output (y0 to y5)
for a 6-bit input (x0 to x5). It operates as a combination of NOT gate and NAND gate, as
shown in Equation (1).

y0 = (x3 ∧ x5 ) ∨ (x3 ∧ x4 ∧ x2) ∨ (x3 ∧ x1 ∧ x0) ∨ (x5 ∧ x4 ∧ x1)
y1 = (x5 ∧ x3 ∧ x2) ∨ (x5 ∧ x3 ∧ x4) ∨ (x5 ∧ x2 ∧ x0) ∨ (x3 ∧ x0 ∧ x1)
y2 = (x3 ∧ x0 ∧ x4) ∨ (x3 ∧ x0 ∧ x1) ∨ (x3 ∧ x4 ∧ x2) ∨ (x0 ∧ x2 ∧ x5)
y3 = (x0 ∧ x2 ∧ x3) ∨ (x0 ∧ x2 ∧ x4) ∨ (x0 ∧ x2 ∧ x5) ∨ (x0 ∧ x3 ∧ x1)
y4 = (x0 ∧ x3 ) ∨ (x0 ∧ x4 ∧ x2) ∨ (x0 ∧ x4 ∧ x5) ∨ (x4 ∧ x2 ∧ x1)
y5 = (x2 ∧ x5 ) ∨ (x2 ∧ x1 ∧ x4) ∨ (x2 ∧ x1 ∧ x0) ∨ (x1 ∧ x0 ∧ x3)

(1)

2.2.2. ShiftColums (SC)

In ShiftColumns(SC), the j-th column of the state is rotated upside by j bits. The
process is shown in Equation (2).

y[i,j] = x[i+j,j] (0 ≤ i < l, 0 ≤ j < 6) (2)

2.2.3. MixColumns (MC)

MixColumns performs a CNOT operation with a shift in a column. The shift follows
the order of the given constant α = [α0, α1, α2, α3, α4, α5]. In Equation (3) of MixColumn, i
and j are rows and columns.

yi,j = x[i,j] ⊕ x[i+α1,j] ⊕ x[i+α2,j] ⊕ x[i+α3,j] ⊕ x[i+α4,j] ⊕ x[i+α5,j] ⊕ x[i+α6,j] 0≤i<l, 0≤j<6 (3)

2.2.4. AddRoundKey (Akr )

The length of the key kr is equal to the length of 6 · l, and kr performs an XOR operation
with x on the same bit position. The AddRoundKey (Akr ) operation is as follows:

yi,j = x[i,j] ⊕ kr[i,j], ∀i, j (4)

2.2.5. AddRoundConstant (Acr )

The constant cr of 6l bits operates XOR with x on the same bit position. The round
constants are chosen as the binary number of π − 3 = 0.1415 . . . . The AddRoundConstant
(Acr ) operation is as follows:

yi,j = x[i,j] ⊕ cr[i,j] ∀i, j (5)

2.2.6. KeySchedule

In KeySchedule, the 0-th round key k0 is initialized to a specific value. Then, r round
key kr is computed as in Equation (6). The kr uses the permutation P to change the bit
position.

kr+1[i′ ,j′ ] = kr[i,j]

(i′, j′) := P(i, j) with (6 · i′ + j′) ≡ (β · (6 · i + j) + γ)mod 6
(6)
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2.2.7. Round Function

The SPEEDY block cipher repeats the round to proceed with encryption. In r-round
encryption, operations are performed in the same way from 0 to r− 1. In the last round,
MixColumn (MC) and ShiftColumn (SC) are performed once each. The operation of the
round function R follows Equation (7):

Rn =

{
Acn ◦MC ◦ SC ◦ SB ◦ Akn (0 < n < r− 2)

Akn+1 ◦ SB ◦ SC ◦ SB ◦ Akn (n = r− 1)
(7)

3. Quantum Circuit for SPEEDY

In this section, we describe our proposed SPEEDY quantum circuit. The quantum
circuit is designed based on SPEEDY-7-192. It is used to estimate the resources required for
Grover’s algorithm. The overall quantum circuit operation sequence is shown in Figure 4.
As shown in Figure 5, a 32 × 6 array (i.e., x[i][j], 0 ≤ i < 6, 0 ≤ j < 32) in a classi-
cal computer is implemented by a 1× 192 array (i.e., x[i], 0 ≤ i < 192) in a quantum
computer. We note the quantum circuits for the main algorithms of SPEEDY: S-box (SB),
ShiftColumns (SC), MixColumns (MC), AddRoundKey (Akr ), and AddRoundConstant
(Acr ). The SPEEDY quantum circuit operates for rounds 0 to r − 1, and the operation
is different only in the last round. In the quantum circuit, rounds 0 to r − 2 operate in
the following order: AddRoundKey, S-box, ShiftColumn, MixColumn, AddRoundCon-
stant, KeySchedule. The last round r− 1 operates in the order of AddRoundKey, S-box,
ShiftColumn, S-box, KeySchedule, AddRoundKey.

Figure 4. Operation sequence for SPEEDY quantum circuit.

The SPEEDY quantum circuit uses the quantum gates described in Section 2.2.1 and
additionally uses a multi-controlled X gate. The multi-controlled X gates used in the
SPEEDY quantum circuit are represented as follows:

• CCCX(x0, x1, x2, y0)=(x0, x1, x2, (x0 · x1 · x2)⊕ y0) : x0, x1, and x2 are the control qubits
and y0 is a target qubit. When all control qubits are 1, the X gate is used to y0.

• CCCCX(x0, x1, x2, x3, y0)=(x0, x1, x2, x3, (x0 · x1 · x2 · x3)⊕ y0) : x0, x1, x2, and x3 are the control
qubits and y0 is a target qubit. When all control qubits are 1, the X gate is used to y0.

• CCCCCX(x0, x1, x2, x3, x4, y0)=(x0, x1, x2, x3, (x0 · x1 · x2 · x3 · x4)⊕ y0) : x0, x1, x2, x3, and x4
are the control qubits and y0 is a target qubit. When all control qubits are 1, the NOT gate is
used to y0.

Figure 5. Bit array on classical computer and qubit array on quantum computer.
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3.1. S-Box (SB)

The SPEEDY S-box uses NAND and OAI gates best suited for ultra-low latency.
Therefore, the operation of the S-box follows Equation (1), expressed in disjunctive normal
form (DNF). However, DNF is inefficient in terms of resources in the quantum circuit.
In quantum circuits, NAND and OAI operations must allocate as many qubits as the
number of operations to store intermediate values. To solve this problem, we reduced the
quantum resources by using Algebraic Normal Form (ANF), which is performed as XOR
gates. ANF is expressed using a combination of XOR and AND. The equation of the S-box
expressed as ANF can be found in detail in [21]. Algorithm 1 shows our S-box quantum
circuit implemented using CNOT and multi-controlled X gates. Furthermore, we have
schematically shown the operation of Algorithm 1 as a quantum circuit in Figure 6. Here,
we reduce the quantum resource by omitting the extra qubits for intermediate values. Since
the SPEEDY S-box uses a lot of multi-controlled X gates, the gate cost is the highest part of
the overall operation. In the S-box, the results of inputs x0 to x5 are output in ancilla y0 to
y5. At the input ancilla, qubit y should initially be set to zero, and at the end of the circuit,
it stores the 6-bit result of the S-box. Input x is the result of ShiftColumn and is the target of
the S-box operation. That is, the S-box execution result of x is stored in y.

|x0〉 • • • • • • • • • • • • • • • • • • • • • • • |x0〉
|x1〉 • • • • • • • • • • • • • • • • • • |x1〉
|x2〉 • • • • • • • • • • • • • • • • • • • • |x2〉
|x3〉 • • • • • • • • • • • • • • • • • • • • |x3〉
|x4〉 • • • • • • • • • • • • • • • • • • • • • • |x4〉
|x5〉 • • • • • • • • • • • • • • • • • |x5〉

|y0〉 |y0〉

|y1〉 |y1〉

|y2〉 |y2〉

|y3〉 |y3〉

|y4〉 |y4〉

|y5〉 |y5〉
Figure 6. Quantum circuit for S-box.
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Algorithm 1 Quantum circuit of S-box (SB)

Input: x0, x1, x2, x3, x4, x5

Output: y0, y1, y2, y3, y4, y5

1: y0 ← CNOT(x3, y0)

2: Toffoli(x5, x3, y0)

3: CCCCX(x5, x4, x3, x2, y0)

4: CCCX(x5, x4, x1, y0)

5: CCCCCX(x5, x4, x3, x2, x1, y0)

6: Toffoli(x1, x0, y0)

7: CCCCX(x5, x4, x1, x0, y0)

8: CCCX(x3, x1, x0, y0)

9: CCCCCX(x5, x4, x3, x1, x0, y0)

10: y1 ← CNOT(x3, y1)

11: Toffoli(x4, x3, y1)

12: CCCX(x5, x4, x3, y1)

13: CCCX(x5, x3, x2, y1)

14: CNOT(x1, y1)

15: Toffoli(x3, x1, y1)

16: CCCX(x5, x2, x0, y1)

17: Toffoli(x1, x0, y1)

18: CCCX(x3, x1, x0, y1)

19: y2 ← NOT(y2)

20: CNOT(x5, y2)

21: Toffoli(x5, x2, y2)

22: Toffoli(x4, x2, y2)

23: Toffoli(x3, x2, y2)

24: CCCX(x4, x3, x2, y2)

25: CNOT(x0, y2)

26: Toffoli(x5, x0, y2)

27: Toffoli(x4, x0, y2)

28: CCCX(x4, x3, x0, y2)

29: Toffoli(x2, x0, y2)

30: CCCX(x5, x2, x0, y2)

31: CCCX(x3, x1, x0, y2)

32: y3 ← CNOT(x2,y3)

33: Toffoli(x3, x2, y3)

34: Toffoli(x3, x1, y3)

35: Toffoli(x5, x0, y3)

36: Toffoli(x2, x0, y3)

37: CCCX(x5, x2, x0, y3)

38: CCCX(x4, x2, x0, y3)

39: CCCX(x3, x2, x0, y3)

40: CCCX(x3, x1, x0, y3)

41: y4 ← Toffoli(x5, x4, y4)

42: CNOT(x1, y4)

43: Toffoli(x4, x1, y4)

44: Toffoli(x2, x1, y4)

45: CCCX(x4, x2, x1, y4)

46: CNOT(x0, y4)

47: CCCX(x5, x4, x0, y4)

48: CCCX(x4, x3, x0, y4)

49: CCCX(x3, x2, x0, y4)

50: CCCCX(x4, x3, x2, x0, y4)

51: Toffoli(x1, x0, y4)

52: CCCX(x4, x1, x0, y4)

53: CCCX(x2, x1, x0, y4)

54: CCCCX(x4, x2, x1, x0, y4)

55: y5 ← CNOT(x4, y5)

56: Toffoli(x5, x2, y5)

57: Toffoli(x4, x2, y5)

58: Toffoli(x4, x1, y5)

59: CCCX(x4, x2, x1, y5)

60: Toffoli(x3, x0, y5)

61: CCCX(x4, x3, x0, y5)

62: CCCCX(x5, x3, x2, x0, y5)

63: CCCCX(x4, x3, x2, x0, y5)

64: CCCX(x3, x1, x0, y5)

65: CCCCX(x4, x3, x1, x0, y5)

66: CCCX(x2, x1, x0, y5)

67: CCCCX(x5, x2, x1, x0, y5)

68: CCCCCX(x5, x3, x2, x1, x0, y5)

69: CCCCCX(x4, x3, x2, x1, x0, y5)

70: return y0, · · · y5
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3.2. ShiftColumns (SC)

ShiftColumns in the quantum circuit perform column shifts. It is implemented as-
suming that 6 qubits are arranged in 32 rows for a 1×192 qubit array. Assuming that the
qubits are arranged as in Figure 7, each column of qubits shifts in the order δ = 0, 1, 2, 3, 4, 5.
That is, a shift of 1 in a column is a shift of index 6 in a qubit array. Here, we used logical
swap to rotate the columns. In quantum circuits, swap gate only changes the position
of the qubit. As a result, we do not use additional quantum resources in ShiftColumn
(SC). Algorithm 2 shows the quantum circuit operation of ShiftColumn. It rearranges the
input into new_array according to the operation. Then, it changes the index of the input as
arranged in new_array.

Figure 7. ShiftColumns (SC) operation process.

Algorithm 2 Quantum circuit of ShiftColumns (SC)

Input: 192-qubit array = [x0, x1, · · · , x192]

Output: 192-qubit array = [x0, x7, x14, · · · , x29]

1: new_array = [ ]

2: for i = 0 to 31 do
3: for j = 0 to 5 do
4: new_array [6 · i + j]← x(6·(i+j)+j)

5: end for

6: end for

7: return new_array

3.3. MixColumns (MC)

MixColumns repeats the XOR operation by shifting the index of the qubits. The
MixColumn quantum circuit works with Algorithm 3. In Algorithm 3, the result is stored
in the input qubit xk, and tempk is used as the temporary storage qubit. First, we use
the CNOT gate to store the original x in tempk. Then, the CNOT gate for temp and x is
performed during the shift in the index of temp. The standard of shift follows the order of
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α (α = 1, 5, 9, 15, 21, 26). The operation is stored in x, so no additional qubits are needed to
store the result.

Algorithm 3 Quantum circuit of MixColumns (MC)

Input: xk, tempk (k = 0, . . . , 191), α = [1, 5, 9, 15, 21, 26]

Output: xk (k = 0, . . . , 191)

1: for i = 0 to 191 do
2: tempi ← CNOT(xi, tempi) // copy target qubit(x) to temporary qubit(temp).

3: end for

4: for i = 0 to 31 do
5: for j = 0 to 5 do
6: x6·i+j ← CNOT(temp6·(i+α[0])+j, x6·i+j) // x6·i+j = x6·i+j ⊕ x6·(i+α[0])+j

7: x6·i+j ← CNOT(temp6·(i+α[1])+j, x6·i+j) // x6·i+j = line 6⊕ x6·(i+α[1])+j

8: x6·i+j ← CNOT(temp6·(i+α[2])+j, x6·i+j) // x6·i+j = line 7⊕ x6·(i+α[2])+j

9: x6·i+j ← CNOT(temp6·(i+α[3])+j, x6·i+j) // x6·i+j = line 8⊕ x6·(i+α[3])+j

10: x6·i+j ← CNOT(temp6·(i+α[4])+j, x6·i+j) // x6·i+j = line 9⊕ x6·(i+α[4])+j

11: x6·i+j ← CNOT(temp6·(i+α[5])+j, x6·i+j) // x6·i+j = line 10⊕ x6·(i+α[5])+j

12: end for

13: end for

14: return x0, · · · , x191

3.4. AddRoundKey (Akr )

AddRoundKey(Akr ) in the quantum circuit is assigned a qubit k (i.e., key) of length
equal to the input length. In qubit k, the key value is stored in advance. The input qubit
x operates the CNOT gate with k of the same index. We performed the XOR operation
according to Equation (4). Since the constant is already known, there is no need to allocate
qubits for it.

3.5. AddRoundConstant (Acr )

In AddRoundConstant (Acr ), XOR uses the input x and a constant value. Since the
constant is already known, there is no need to allocate qubits for it. Therefore, the X gate
shifts to x at the position where the constant value is one, without using the CNOT gate. An
X gate operating with a single qubit has a lower gate cost than a CNOT gate operating with
two qubits. Therefore, our choice is efficient in terms of quantum resources, saving the gate
cost. The X gate is used only where the value in the constant is one, so the X gate is used as
much as the Hamming weight. Algorithm 4 shows the operation for AddRoundConstant
(Acr ).
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Algorithm 4 Quantum circuit of AddRoundConstant (Acr )

Input: constant, x0, · · · , x191

Output: x0, · · · , x191

1: for i = 0 to 191 do
2: if( constant & 1 = 1 )

3: xi ← X(xi)

constant = constant� 1

4: end for

5: return x0, · · · , x191

4. Evaluation

In this section, we estimate the resources of Grover’s algorithm for a SPEEDY block
cipher implemented as a quantum circuit. Resources estimated by the quantum simulator
are used to evaluate the security strength in the quantum computer. The cost is calculated
as (total gates × total depth) and the total gate is the sum of T and Cli f f ord gate. We
decompose the non-Clifford gates into T + Cli f f ord gates to obtain the total gate [26].
Finally, we show that SPEEDY-7-192, which achieved a security strength of 192 length in the
classic computer, does not achieve a security strength in the quantum computer. The block
cipher security strength is evaluated based on the estimate of the post-quantum security
strength presented by NIST [3].

4.1. Resource Estimation

Table 1 shows the quantum circuit resource estimation results for SPEEDY encryption.
We estimated resources for rounds 6, 14, and 28 other than round 7 to evaluate the strength
of security for each round. Based on SPEEDY-7-192, 4224 qubits, 1792 CCCCCX gates, 3584
CCCCX gates, 10752 CCCX gates, 10,304 Toffoli gates, 13,632 CNOT gates, and 2118 X gates
were used. The estimated quantum resource is proportional to the number of rounds.

Table 1. Quantum resources for SPEEDY.

Cipher r Qubits
Gates

Depth
CCCCCX CCCCX CCCX Toffoli CNOT X

SPEEDY-r-192

6 3648 1536 3072 9216 8832 11,520 855 859

7 4224 1792 3584 10,752 10,304 13,632 1018 1002

14 8256 3584 7168 21,504 20,608 28,416 2118 2011

28 16,320 7168 14,336 43,008 41,216 57,984 4346 4029

4.2. Security Strength Analysis for SPEEDY

The post-quantum security strength for SPEEDY is evaluated based on the security
strength category presented by NIST [3]. We calculate the cost with the same calculation
as Grassl et al. [4]. That is, the cost is calculated to (total gate × total depth). In NIST, the
cost of AES-128, 196, and 256, which are security strength standards, was estimated as
AES-128:2170, AES-196:2233, AES-256:2298. The following are security strength categories
presented by NIST based on AES-128, 196, 256:
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• Level 1: Block ciphers using a 128-bit key (e.g., AES 128) require computational
resources that are greater than or comparable to those required for key search.

• Level 3: Block ciphers using a 192-bit key (e.g., AES 192) require computational
resources that are greater than or comparable to those required for key search.

• Level 5: Block ciphers using a 256-bit key (e.g., AES 256) require computational
resources that are greater than or comparable to those required for key search.

Grover’s algorithm can reduce the computational complexity from O(N) to O(
√

N)
for symmetric key cryptography with an n-bit key (i.e., N = 2n). This search algo-
rithm increases the probability of finding the right key by repeating oracle and diffu-
sion, and the quantum circuit is used in the oracle operation for encryption and decryp-
tion. Since the quantum circuit is a reversible circuit, decryption can be performed by
reverse operation (i.e., encryption resource = decryption resource). Therefore, the to-
tal quantum resource used in the Grover’s algorithm is calculated as dkey size/block
sizee×(Encryption + Decryption)× number of iterations (i.e., R× 2× Table 1×bπ

4 2
n
2 c).

The Grover’s algorithm resource for SPEEDY is shown in Table 2. We compute the
Grover’s key search cost by decomposing the non-Cli f f ord gate into the T + Cli f f ord gate
from the estimated resource. Since the X gate and CNOT gate are the Cli f f ord gates, only
the Toffoli gate and multi-controlled X gate are decomposed into T + Cli f f ord gates. One
Tofffoli gate is decomposed into 7 T gates and 8 Cli f f ord gates, and multi-controlled X
gates are decomposed into (32× C− 84) T gates (C: number of control qubits).

Table 2. Cost estimation for Grover’s algorithm.

Cipher r Gates Total Gates Total Depth Cost Security
T Cli f f ord

SPEEDY-r-192

6 1.27× 2115 1.99× 2112 1.51× 2115 1.31× 2106 1.97× 2221 Level 1

7 1.48× 2115 1.16× 2113 1.77× 2115 1.53× 2106 1.38× 2222 Level 1

14 1.48× 2116 1.16× 2114 1.77× 2116 1.54× 2107 1.36× 2224 Level 1

28 1.48× 2117 1.17× 2115 1.77× 2117 1.54× 2108 1.36× 2226 Level 1

LEA-128/128 [27] 1.13× 281 1.92× 281 1.195× 282 1.247× 277 1.491× 2159 Not achieved

LEA-128/192 [27] - 1.67× 2115 1.42× 2115 1.775× 2115 1.455× 2109 1.292× 2225 Level 1

LEA-128/256 [27] 1.91× 2147 1.63× 2148 1.014× 2148 1.645× 2141 1.668× 2289 Level 3

CHAM-64/128 [27] 1.05× 281 1.04× 282 1.23× 281 1.003× 276 1.234× 2157 Not achieved

CHAM-128/128 [27] - 1.10× 280 1.11× 281 1.304× 281 1.018× 277 1.328× 2158 Not achieved

CHAM-128/256 [27] 1.31× 2146 1.34× 2146 1.566× 2146 1.264× 2146 1.98× 2287 Level 3

HIGHT-64/128 [27] - 1.05× 281 1.04× 282 1.384× 282 1.901× 275 1.316× 2158 Not achieved

PIPIO-64/128 [8]
-

1.68× 278 1.31× 279 1.07× 280 1.52× 273 1.62× 2153 Not achieved

PIPIO-64/256 [8] 1.09× 2144 1.72× 2144 1.40× 2145 1.99× 2138 1.39× 2284 Level 3

In a classic computer, SPEEDY-r-192 provides 128-bit security when r = 6 and 192-bit
security when r = 7. However, both SPEEDY-6-192 and SPEEDY-7-192 provided 128-
bit security in a quantum computer. In response, we performed encryption with more
rounds r to check the strength of security in quantum computers. However, even if the
number of rounds of r was increased as in Table 2, security was maintained at level 1.
Contrary to expectations, increasing the number of rounds did not provide higher security.
In other words, it can be confirmed that it is difficult to increase the security strength in
quantum computers by increasing the number of rounds of encryption. It is also very
inefficient because the number of rounds r must increase exponentially to enhance security
in quantum computers. Simply put, the classic method of increasing security by increasing
the number of rounds does not apply to quantum computers.
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On the other hand, looking at the LEA, CHAM, and PIPO ciphers evaluated by [8,27]
in Table 2, security strength was not achieved with a 64-bit key, but was achieved with
a 256-bit key length. HIGHT ciphers that only work with 64-bit keys do not achieve
security strength. For the LEA cipher, LEA-128/128 (using 128-bit key) did not achieve the
security strength, but LEA-128/192 (using 192-bit key) and LEA-128/256 (using 256-bit key)
achieved level 1 and level 3, respectively. In the case of the CHAM cipher, CHAM-64/128
and CHAM-128/128 (using 128-bit key) did not achieve the security strength, but CHAM-
64/256 (using 256-bit key) achieved level 3. In the case of the PIPO cipher, PIPO-64/128
(using 128-bit key) did not achieve the security strength, but PIPO-64/256 (using 256-bit
key) achieved level 3.

From the above results, it was confirmed that it is difficult to increase the quantum
security strength by increasing the number of rounds and the block length, but it can be
increased through the key length. Therefore, in order to strengthen the security in quan-
tum computers, it is necessary to consider measures to increase the number of iterations
exponentially by increasing the key length.

5. Conclusions

In this paper, a quantum circuit for the SPEEDY block cipher is presented. We esti-
mated the resources required to perform a key search attack based on SPEEDY-r-192 and
obtained the cost required to evaluate the security strength. As a result, SPEEDY-7-192
provided 192-bit security in classic computers, but showed a security strength of level 1
(i.e., AES-128 level) in quantum computers. In other words, encryption that is secure in
classic computers cannot be considered secure in quantum computers. We increased the
number of rounds as a way to strengthen the security in the quantum computer, but it
did not increase the security strength significantly. Based on the results in this paper, we
propose a method to increase the key length to ensure the security of the target cipher
(SPEEDY in this paper) in a quantum computer.
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