
 Open access Journal Article DOI:10.1109/TDSC.2005.27

SPEK: a storage performance evaluation kernel module for block-level storage
systems under faulty conditions — Source link

Xubin He, Ming Zhang, Qing Yang

Institutions: Tennessee Technological University

Published on: 01 Apr 2005 - IEEE Transactions on Dependable and Secure Computing (IEEE Computer Society)

Topics: Storage area network, Direct-attached storage and Computer data storage

Related papers:

 InfoStor: Highly Available Distributed Block Store

 Dependability Analysis of Data Storage Systems in Presence of Soft Errors

 Object Storage: Scalable Bandwidth for HPC Clusters

 uStorage - A Storage Architecture to Provide Block-Level Storage Through Object-Based Storage

 Analysis of I/O Performance for Optimizing Software Defined Storage in Cloud Integration

Share this paper:

View more about this paper here: https://typeset.io/papers/spek-a-storage-performance-evaluation-kernel-module-for-
2jf7dqvxo7

https://typeset.io/
https://www.doi.org/10.1109/TDSC.2005.27
https://typeset.io/papers/spek-a-storage-performance-evaluation-kernel-module-for-2jf7dqvxo7
https://typeset.io/authors/xubin-he-1mzkocyz4y
https://typeset.io/authors/ming-zhang-1kkc72nvfp
https://typeset.io/authors/qing-yang-1rufitt1r1
https://typeset.io/institutions/tennessee-technological-university-2roye8t6
https://typeset.io/journals/ieee-transactions-on-dependable-and-secure-computing-5zaszx2x
https://typeset.io/topics/storage-area-network-qhbmnsd2
https://typeset.io/topics/direct-attached-storage-1i5qxd09
https://typeset.io/topics/computer-data-storage-254voak2
https://typeset.io/papers/infostor-highly-available-distributed-block-store-4lgnrj260t
https://typeset.io/papers/dependability-analysis-of-data-storage-systems-in-presence-4dpe6nrxbn
https://typeset.io/papers/object-storage-scalable-bandwidth-for-hpc-clusters-2t9f2tjj5z
https://typeset.io/papers/ustorage-a-storage-architecture-to-provide-block-level-16ikkev3pf
https://typeset.io/papers/analysis-of-i-o-performance-for-optimizing-software-defined-26cm094q7p
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/spek-a-storage-performance-evaluation-kernel-module-for-2jf7dqvxo7
https://twitter.com/intent/tweet?text=SPEK:%20a%20storage%20performance%20evaluation%20kernel%20module%20for%20block-level%20storage%20systems%20under%20faulty%20conditions&url=https://typeset.io/papers/spek-a-storage-performance-evaluation-kernel-module-for-2jf7dqvxo7
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/spek-a-storage-performance-evaluation-kernel-module-for-2jf7dqvxo7
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/spek-a-storage-performance-evaluation-kernel-module-for-2jf7dqvxo7
https://typeset.io/papers/spek-a-storage-performance-evaluation-kernel-module-for-2jf7dqvxo7

1

SPEK: A Storage Performance Evaluation Kernel

Module for Block Level Storage Systems under

Faulty Conditions
Xubin He, Member, IEEE, Ming Zhang, Member, IEEE, and Qing (Ken) Yang, Senior Member, IEEE

Abstract—This paper introduces a new benchmark tool,

SPEK (Storage Performance Evaluation Kernel module),

for evaluating the performance of block-level storage

systems in the presence of faults as well as under normal

operations. SPEK can work on both Direct Attached

Storage (DAS) and block level networked storage systems

such as storage area networks (SAN). Each SPEK consists

of a controller, several workers, one or more probers, and

several fault injection modules. Since it runs at kernel level

and eliminates skews and overheads caused by file systems,

SPEK is highly accurate and efficient. It allows a storage

architect to generate configurable workloads to a system

under test and to inject different faults into various system

components such as network devices, storage devices, and

controllers. Available performance measurements under

different workloads and faulty conditions are dynamically

collected and recorded in SPEK over a spectrum of

time. To demonstrate its functionality, we apply SPEK to

evaluate the performance of two direct attached storage

systems and two typical SANs under Linux with different

fault injections. Our experiments show that SPEK is highly

efficient and accurate to measure performance for block-

level storage systems.

Index Terms—Measurement Techniques, Performance

Analysis, Degraded performance, Data Storage, Disk I/O

I. INTRODUCTION

B
EING able to access data efficiently and reliably

has become the first priority of many organizations

in today’s information age. To achieve this goal, a

typical data storage system has built-in redundancies at

various levels. At the storage device level, redundancy

is achieved using RAID (redundant array of inexpensive

disks) [1], [2]. At the controller level, multiple HBAs

(host bus adapters) and NICs (network interface cards)

are used. Redundant switches, bridges, and connecting

X. He is with the Department of Electrical and Computer Engi-

neering,Tennessee Technological University, Cookeville, TN 38505.

E-mail: hexb@tntech.edu.

M. Zhang and Q. Yang are with the Department of Electrical

and Computer Engineering, University of Rhode Island, Kingston,

RI 02881.

Email:
�
mingz,qyang ✁ @ele.uri.edu.

cables are also employed at the network level. Software

mechanisms are designed to bypass failed components to

provide continued data availability. Different topological

architectures and fault-tolerant mechanisms exist for a

SAN (storage area network), and new ideas and tech-

nologies emerge rapidly [3]. In order to make design de-

cisions and provide optimal storage solutions, it is highly

desirable to have efficient benchmark tools to quantita-

tively evaluate performance of various SAN architectures

under faulty conditions. Current benchmark tools focus-

ing on performance evaluation are not efficient enough

to accurately measure the behavior of storage systems.

Under many circumstances, the performance of a storage

system available to users is the result achieved by file

systems. This result is influenced by many factors such as

file system caches, data organization, and buffer caches,

so it cannot represent the true performance of the storage.

For some applications, such as databases, which can

utilize the raw performance of a storage device directly,

it is desirable and necessary to measure and compare

different storage systems at the raw (block) level. It is

also important for file system and OS designers to know

how much potential raw performance they could exploit

and how much optimization they have made.

Existing benchmark tools such as PostMark [4], Io-

Zone [5], Bonnie++ [6], and IoMeter [7] are widely used

to measure various storage systems. PostMark, IoZone,

and Bonnie++ run at the file system level and there-

fore mainly characterize file system performance. Fig.

1 shows experimental performance measurements of a

same SCSI disk under different file system options using

PostMark, IoZone, and Bonnie++. Although we use the

same disk and same measurement metric (throughput in

terms of KB/second), these benchmark tools produce

completely different performance results. Such devia-

tions can be attributed to effects of the file system cache

as well as different characteristics of file systems [8].

While IoMeter can run below file systems, its measured

performance on Linux fluctuates dramatically due to the

effects of buffer caches.

Many operating systems provide a “raw” interface

2

Read Write
0

500

1000

1500

2000

2500

T
h
ro

u
g
h
p
u
t
(K

B
/s

)

Ext2
Ext3
Ext2 Sync

Read Write
0

1

2

3

4

5

6

7
x 10

4

T
h
ro

u
g
h
p
u
t
(K

B
/s

)

Ext2
Ext3
Ext2 Sync

Read Write
0

1

2

3

4

5

6

7
x 10

4

T
h
ro

u
g
h
p
u
t
(K

B
/s

)

Ext2
Ext3
Ext2 Sync

Fig. 1. Measured throughput of PostMark (left), IoZone (middle), and Bonnie++ (right). Although using the same hardware, measured

performance change dramatically with changes of file system options.

bypassing the file system. Simply using such an interface

will not efficiently produce accurate performance results

for block level storage systems for the following two

reasons. First, the raw interface provides a character

device, as opposed to block device that is used by all

storage systems. Second, since the “raw” interface is a

user level interface, operating on it requires many context

switches, giving rise to a great amount of overhead.

Such overhead becomes significant when measuring high

performance storage systems such as RAID and SAN.

Besides the accuracy problem of existing benchmark

tools, they also raise an efficiency issue. Because these

benchmarks run in a user space, excessive number of

system calls and context switches result in large amounts

of overhead. This problem is more pronounced when

measuring high performance networked storage systems

because the intensity of traffic generated by these bench-

marks is limited due to excessive system overheads. As a

result, a large number of clients are needed to saturate a

high performance block level networked storage system.

In addition to performance measurement, degraded

performance under faulty conditions is another concern

for any storage system. Trivedi et al. [9]–[12] have exten-

sively studied availability modeling for multi-processor

systems and wireless communication networks using

Markov reward models. Little work has been done on

benchmark tools considering the degraded performance

of a networked storage system under faulty conditions.

One exception is the research by Brown and Patterson

[13] who advocated for availability benchmarking with

a case study on evaluating the availability of software

RAID systems.

We introduce here a new benchmark tool for eval-

uating performance in consideration of various failure

conditions of a storage system at the block level, which

is referred to as SPEK (Storage Performance Evaluation

Kernel module). The contributions of SPEK are two-fold.

First, we propose a benchmark tool to a storage designer

or purchaser to evaluate the performance of a storage

system at the block level. The tool is highly efficient

and accurate compared to existing benchmark tools that

measure storage performance at the file system level.

Second, our benchmark tool produces degraded per-

formance measurements of storage architectures under

faulty conditions. Specifically SPEK measures perfor-

mance levels in the presence of various faults over time

instead of using an average percentage of “up” time as an

availability metric. It allows a user to generate workloads

for a block level storage system, to inject faults at

different parts of the storage system such as networks,

storage devices, and storage controllers. By generat-

ing configurable workloads and injecting configurable

faults, users can grab the dynamic changes of potentially

compromised performance and therefore quantitatively

evaluate system performance of a measured SAN. To

demonstrate how SPEK works, we have performed sev-

eral tests on direct-attached storage systems including

single disks and disk arrays and two storage area network

systems: an iSCSI-based [14] SAN and a STICS-based

[15] SAN.

The paper is organized as follows. In next Section, we

discuss the architecture and design of SPEK in detail.

In Section 3, we present measurement results using

SPEK on two direct attached storage systems and two

networked storage systems. We discuss related work in

Section 4 and conclude this paper in Section 5.

II. ARCHITECTURE AND DESIGN OF SPEK

The overall structure of SPEK is shown in Fig. 2.

It consists of several components, including one SPEK

controller, several SPEK workers, one or more SPEK

probers, and different types of fault injection modules.

A SPEK controller resides on a controller machine which

is used to coordinate SPEK workers and probers. It can

start/stop SPEK workers and probers, send commands,

and receive responses from them. A Java GUI interface

allows a user to input configuration parameters such as

workload characteristics and to view measured results.

Each SPEK controller also has a data analysis module

to analyze measured data.

One SPEK worker runs on each testing client to

generate storage requests via the low level device driver

3

Worker

Worker

Network Fault Injector

Network Fault Injector

Prober

Worker Network Fault Injector

N−SPEK Component Network Connection Storage SCSI/FC/... cable

Controller
Storage Fault Injector

Storage Controller Storage Device

Controller Fault Injector Disk Drives

Fig. 2. SPEK Structure. It contains one SPEK controller, several SPEK workers, and one or several SPEK probers.

and to record performance data. A SPEK worker is a

Linux kernel module running in the kernel space. Each

SPEK worker has one main thread, one working thread,

and one probe thread. The main thread is responsible

for receiving instructions from the SPEK controller and

controlling the working thread to execute the actual I/O

operations. The working thread keeps sending storage

requests to the SCSI layer, and these requests are even-

tually sent to remote targets by the lower level device

driver. By using an event-driven architecture, SPEK

is able to perform several outstanding SCSI requests

concurrently, which is useful and necessary when testing

SCSI tagged command features [16] and exploring the

maximum throughput of a remote SCSI target. Many

modern SCSI storage systems have the command queue

feature that allows hosts to send several tagged com-

mands and decide the specific execution sequence based

on their own scheduling policies to get maximum overall

throughput. The probe thread periodically records system

status data and reports to the SPEK controller once a test

completes. On each target device, a SPEK prober thread

records system status for post-processing. Currently, we

have developed a SPEK prober for Linux and plan to

build SPEK probers for other platforms. Its functionality

is similar to the probe thread in a SPEK worker.

To evaluate the degraded performance of a system,

we need to inject faults at various parts of the system.

Fault injection is commonly used in the fault-tolerance

community to verify fault-tolerant systems or to study

system behaviors [17]–[19]. It has also been adopted

for the analysis of software RAID system availability

[13] and measurement of networked service availability

[20]–[22]. Three types of fault injection modules in

SPEK support performance evaluation. By using these

modules, users can introduce different types of faults to

different parts of a networked storage system under test

and measure the performance of the tested system at

degraded modes. These modules are:

Network fault injector. It resides on a network bridge

along the network path between a worker and the

measured storage target. It injects unexpected events

into network traffic traveling through the bridge by

adding excessive delays and dropping packets with a

configurable packet loss rate. Note that TCP provides

reliable transport over the Internet through flow control,

time-out, and retransmission mechanisms. Many network

faults, including hardware and software failures, result in

excessive delays at the transport layer; therefore,injecting

excessive delays at TCP layer mimics various network

faults. We call these faults delay faults. Our fault injec-

tor makes use of a program that controls the existing

dummynet [23] package in FreeBSD, a network traffic

control and shaping package previously used by other

researchers [24].

Storage fault injector. This module generates some

kinds of transient and sticky SCSI disk errors that may

compromise the system performance and reliability. Our

storage fault injection module is a RAM based virtual

SCSI disk residing on the storage target. It exports itself

as a normal SCSI disk and is utilized by the target

under test. Previous researchers [13], [25] have also

used disk emulation techniques to do fault injections and

performance evaluation.

Controller fault injector. Besides hardware failures

of a storage controller, major sources of faults of a

controller can be attributed to malfunctions of the CPU

and RAM. Normal operations of a controller can be

compromised if required CPU and/or RAM resources

are unavailable. Directed by configurable parameters, our

controller fault injector takes most of the CPU and/or

memory resources away from normal storage controller

operations by adding unrelated CPU loads and memory

loads to the controller.

A. Configuring Workload and Injecting Faults

The SPEK tool can take two types of workloads as

input: realistic I/O traces and synthetic workloads. When

it takes an I/O trace as input, SPEK replays it to the

target under test. It can support different formats of I/O

traces by implementing different converters. Currently,

it supports trace formats from DTB [26] and SPC [27].

When it works under synthetic workload, the SPEK

workload is generated by user configurable parameters

4

similar to those of IoMeter. Each SPEK worker gener-

ates workloads independently from each other allowing

realistic networking environment to be simulated. The

configurable parameters include:

✂ Block size. The current design of SPEK supports
up to 8 different block sizes in one test run. A

frequency weight is associated with each request

block size representing how often a particular block

size is used. For example, a sample workload may

contain 10% of 8KB, 20% of 16KB, 30% of 32KB,

and 40% of 64KB.
✂ Number of transactions. It controls how many trans-
actions are generated in a test run. A transaction is

defined as a block level read/write access.
✂ Ramp up count. This is a number used to bypass
a transient period of the measurement process.

Performance recording starts after the number of

finished requests exceeds this number.
✂ Burstiness. It is defined as the length of a bursty
request and the interval between two successive

bursts. As a special case, when the interval is zero,

SPEK sends requests continuously untill all requests

are finished.
✂ Read/write ratio and sequential/random ratio. Each
time when a SPEK worker generates a new I/O

request, it needs to decide whether the request is a

read or write and whether the address of this request

will be continuous relative to the previous request

(to be sequential) or will be random. These two

ratios decide the probability used by the worker.

For example, if the read ratio is 60% and the total

number of requests is 10,000, then the total number

of the read requests generated by the worker will

approximate to 6,000.
✂ Request address alignment. It defines how a request
address should align. Many storage systems perform

quite differently when requests start from different

addresses. For example, Linux performs best when

the address of a request aligns to a 4K boundary.

The default value is 512 Bytes.
✂ Report time interval. It defines the time interval
for a SPEK worker to report performance data to

a controller. By default,the interval is zero, which

means a SPEK worker reports all data at the end of

one test run. The interval ranges from zero seconds

to one hour.

The fault injection modules in SPEK are also con-

figurable by end users and can be set before a test

experiment. Users can set them as sticky (steady-state)

or transient [9], also known as permanent or intermittent

faults [10]. A sticky (permanent) fault influences tested

systems during the entire measurement period while a

transient (intermittent) fault occurs in the system during

a short period of time. For example, users can set a

network delay fault to 1 ms during an entire test process

as a sticky fault or add a packet loss rate of 0.0005 only

in the third minute as a transient fault. By introducing

these faults individually or simultaneously into a system,

users can realistically simulate different failure situations

and extract the performance of the measured system in

a variety of circumstances.

B. Performance Metrics

SPEK mainly reports two performance values:

throughput and response time. Throughput is represented

in two forms: average I/O per second (IOPS) and average

number of megabytes per second (MBPS). Response

time includes average, minimum, and maximum re-

sponse times. Users also have access to raw data to

obtain medians and other statistics easily. During each

test run, SPEK collects data related to performance

and system status. There are two options to record and

transfer such data to a SPEK controller: periodically at

run time or one time at the end of each run. Unlike

many other benchmark tools that collect some statistical

data and compute them on the fly, SPEK provides two

options: (1) deferring computation/analysis while allow-

ing more data to be collected or (2) computing/analyzing

data on the fly. The former option requires more memory

space because it provides more detailed data to analyze

performance dynamics of measured targets and gives

users the flexibility to process and analyze measured raw

data. A user can trade off memory and flexibility when

doing performance testing.

In addition to throughput and response time, SPEK

also records other performance related system status

values. These performance counters include CPU load

counters such as CPU utilization, user time, system

time, interrupts per second, and context switches per

second; network load counters including receive/send

packets per second and receive/send bytes per second;

and memory load counters such as free memory size,

shared memory size, buffered memory size, swap size,

swap exchange rate, and so forth. All these system status

performance counters are recorded periodically with a

user configurable interval.

III. MEASUREMENT RESULTS

A. Experimental Setup

Several PCs are used in our experiments. All PCs have

a single Pentium III 866 MHz CPU, 512 MB PC133

SDRAM and one or two Intel Pro1000 Gigabit NICs.

5

20 40 60 80 100 120 140 160
0

50

100

150

200

250

300

350

Time (Seconds)

T
h

ro
u

g
h

p
u

t
(I

O
P

S
)

IoMeter
SPEK

Fig. 3. Measured throughput for random write with block size being 16KB. The average IOPS of IoMeter is 175 while that of SPEK is

240. And the dynamic result of IoMeter fluctuates between 0 and 300 because of buffer cache effects while that of SPEK keeps consistent.

An Intel NetStructure 470T Gigabit Switch is used to

connect all of them. All PCs run RedHat Linux 7.3

with a recompiled 2.4.18 kernel, except for one PC that

acts as the bridge and runs FreeBSD 4.6. The iSCSI

implementation comes from University of New Hamp-

shire [14]. A Seagate SCSI disk (model: ST318452LW)

is connected to the test target via an Adaptec 39160 Ultra

160 controller. The disk specifications are: Ulta160 SCSI

interface, 18.4GB, 15000RPM, 2.0ms latency, and 4.2

ms average seek time.

In our performance experiments, one PC acts as a

SPEK controller, three act as test clients, and one as

a test target. In our experiments, four PCs act as a

SPEK controller, a SPEK worker, a network bridge,

and an iSCSI storage target, respectively. The network

fault injection module is installed on the bridge, and the

controller fault injection module resides on the iSCSI

target. The iSCSI target uses an SPEK storage fault

injection module and an emulated disk as a storage

device. The SPEK worker is connected to the switch

through the bridge using a crossover cable while the

other three PCs are connected to the switch directly.

In order to verify the promises of SPEK, we have

performed experiments to measure performance of Di-

rect Attached Storage (DAS) systems as well as net-

worked storage in consideration of faults using SPEK in

comparison with existing benchmark tools. Most existing

benchmark tools run at the file system level, with few

exceptions such as IoMeter. We therefore compare our

SPEK with IoMeter in terms of accuracy and efficiency.

B. Characterizing Direct Attached Storage Systems Us-

ing SPEK

In this section, we analyze the performance for a

single disk and a simulated high performance disk array.

Different experiments clearly show that our SPEK is

suitable for measuring “raw” storage performance.

1) Measurements and Analysis of a Single Disk:

In our first experiment, we measured the random write

performance of a Seagate disk in terms of IOPS with

each request size being 16KB as shown in Fig. 3. It is

interesting to observe that the throughput produced by

IoMeter fluctuates dramatically between 0 and 300 IOPS,

while those produced by SPEK are fairly consistent over

time. The fluctuations of the throughput produced by

IoMeter result mainly from the buffer cache. Because

of the existence of the buffer cache, throughput is high

at times. However, Linux flushes the buffer cache when

large enough sequential blocks are accumulated, every 30

seconds, or when dirty data exceeds a threshold value.

Since our workload consists mainly of random writes,

it is very unlikely to accumulate large sequential blocks.

Most of flushing is caused by timeout and excessive dirty

data. During a flushing period, measured throughput

approaches zero because the system is busy and is unable

to respond to normal I/O requests. This fact clearly

indicates a limitation of IoMeter in accurately measuring

disk I/O performance. Since our SPEK runs at a lower

layer and is not affected by the buffer cache, as shown

in Fig. 3, SPEK module, on the other hand, produces

accurate and stable throughput values over time.

20 40 60 80 100 120
0

10

20

30

40

50

60

Time (x10 Seconds)

T
h
ro

u
g
h
p
u
t
(M

B
/s

)

Fig. 4. Measured sequential read throughput on the Seagate disk

using SPEK. SPEK correctly captures the ZCAV scheme of the

Seagate disk.

The accuracy of SPEK is further evidenced by Fig.

4 that shows throughputs of the Seagate disk under

sequential read workloads. In this figure, throughput

changes periodically between 55MB/s and 39MB/s. We

noticed that the total data accessed in each period is

18GB which is approximately the disk size. With Zoned

Constant Angular Velocity (ZCAV) scheme [28], a mod-

ern SCSI disk has more sectors on the outer tracks than

6

1KB 2KB 4KB 8KB 16KB 32KB 64KB
0

0.5

1

1.5

2

2.5
x 10

4

Sequential Read Block Size

T
h

ro
u

g
h

p
u

t
(I

O
P

S
)

IoMeter
SPEK

1KB 2KB 4KB 8KB 16KB 32KB 64KB
15

20

25

30

35

40

45

50

55

Sequential Read Block Size

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

IoMeter
SPEK

1KB 2KB 4KB 8KB 16KB 32KB 64KB
0

0.5

1

1.5

2

2.5

3
x 10

4

Sequential Write Block Size

T
h

ro
u

g
h

p
u

t
(I

O
P

S
)

IoMeter
SPEK

1KB 2KB 4KB 8KB 16KB 32KB 64KB
20

25

30

35

40

45

50

55

Sequential Write Block Size

T
h

ro
u

g
h

p
u

t
(M

B
/s

) IoMeter
SPEK

(a) Sequential read workload (b) Sequential write workload

1KB 2KB 4KB 8KB 16KB 32KB 64KB
0

20

40

60

80

100

120

140

160

180

Random Read Block Size

T
h

ro
u

g
h

p
u

t
(I

O
P

S
)

IoMeter
SPEK

1KB 2KB 4KB 8KB 16KB 32KB 64KB
0

1

2

3

4

5

6

7

8

9

Random Read Block Size

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

IoMeter
SPEK

1KB 2KB 4KB 8KB 16KB 32KB 64KB
0

50

100

150

200

250

Random Write Block Size

T
h

ro
u

g
h

p
u

t
(I

O
P

S
)

IoMeter
SPEK

1KB 2KB 4KB 8KB 16KB 32KB 64KB
0

2

4

6

8

10

12

Random Write Block Size

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

IoMeter
SPEK

(c) Random read workload (d) Random write workload

Fig. 5. Measurement results with different workloads on a Seagate disk (a,b,c,d).

the inner tracks. As a result, accessing sectors on the

outer tracks is faster than the inner tracks, giving rise

to a periodic throughput change, as shown in the figure.

The sequential write throughput is almost identical to the

read throughput; thus it is not shown here.

To provide a comprehensive comparison between

IoMeter and SPEK, we performed experiments across

different types of workload. The results are shown in

Fig. 5. For sequential read workloads (Fig. 5a), IoMe-

ter achieves lower throughput than SPEK. In terms of

MBPS, throughput of IoMeter saturates at about 33MB/s

while SPEK saturates at about 53MB/s. The difference

results mainly from the system overheads for managing

the file system cache and the buffer cache without

providing any performance benefit because of sweeping

data access. Note that for read operations, Linux will

copy data read from the lower level to the file system

cache for possible future reuse. For sequential writes, as

shown in Fig. 5b, IoMeter produces better throughputs

than SPEK for small request sizes. This is because

written data bypass the file system cache, and the buffer

cache collects small writes to form large sequential

writes. As the request size increases, such differences

diminish. All these measured data clearly indicate that

throughputs produced by IoMeter are strongly influenced

by the file system cache and the buffer cache. They do

not accurately represent the actual performance of the

underlying disk storage. On the other hand, SPEK accu-

rately measures the raw performance of the block level

storage devices. In the case of random read workloads, as

shown in Fig. 5c, measured throughput by both IoMeter

and SPEK are approximately equal. The reason is that

the overheads due to the file system are negligible in this

situation compared to tens of milliseconds caused by disk

operations involving random seeks, rotation latencies,

and transfers. Furthermore, the effect of the file system

cache is also negligible, since 200,000 random read

requests are uniformly distributed over the 18 GB disk

space giving rise to approximately zero cache hit ratio.

For random write workloads, as shown in Fig. 5d, the

results are consistent with those in Fig. 3 with a 16KB

block size for the same reasons explained previously.

Note that Fig. 5d shows the average throughput, whereas

Fig. 3 shows the throughput measured at a particular time

instant.

8 16 32
0

2000

4000

6000

8000

10000

Read Block Size (KB)

T
h
ro

u
g
h
p
u
t
(I

O
P

S
)

IoMeter
SPEK

8 16 32
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

Read Block Size (KB)

T
h

ro
u

g
h

p
u

t
(I

O
P

S
)

IoMeter
SPEK

(a) (b)

Fig. 6. IoMeter and SPEK measurement results on simulated storage

with 100 ✄ s average response time (a) and 10 ✄ s average response
time (b), respectively. SPEK generates more requests to saturate

storage faster than IoMeter does because of lower overhead.

7

TABLE I

AVERAGE CONTEXT SWITCH NUMBERS PER I/O REQUEST OF

IOMETER AND SPEK

Sequential Random

Read Write Read Write

IoMeter 4.09 3.91 6.18 5.24

SPEK 1.98 2.01 2.03 2.02

2) Measurements and Analysis of a Disk Array:

Our next experiment is to measure a RAID system to

observe how SPEK and IoMeter perform in measuring

high performance storage systems. In the absence of

real high performance hardware and expensive storage

systems, we built a SCSI disk device to emulate them

using the Linux scsi debug module. Basically the device

is a RAM-based kernel space virtual storage system.

Normal user-space applications can access this device

from the user layer, similar to access any regular scsi

disk drives. A SPEK worker can access it from the

kernel layer directly. When the upper layer generates a

read/write request to the virtual storage, the simulator

simulates an access time that is user configurable. Fig.

6 shows the measurement results of the simulated high

performance disk storages with disk access times 100
☎ s and 10 ☎ s, respectively. As expected, file system
overheads make the throughput measured using IoMeter

to be much smaller than that measured using SPEK.

In addition to affecting the accuracy of performance

measurements, file system overheads can also lower the

efficiency of the measurements. Such low efficiency may

require longer measurement times or more resources

to carry out the same experiment. For example, if we

were to measure the performance of an entry-level RAID

system as a networked storage system as shown in Fig.

6a, two SPEK workers would be sufficient to saturate

such a system using SPEK, while five workers would

be necessary to saturate the storage using IoMeter.

Readers may wonder how much file system overhead

occurs using IoMeter as opposed to using SPEK. To

give a quantitative view of such file system overheads,

we measured the number of context switches as well

as the number of system calls generated by the two

benchmark tools. Table I lists the average number of

context switches per I/O request with IoMeter and SPEK,

respectively. The average numbers of context switches

per I/O request generated by IoMeter and SPEK are

4.85 and 2.01, respectively. In terms of the number of

system calls per I/O request, we found that an IoMeter

worker generates about 14 system calls on average for

each I/O request, while SPEK does not generate any

system call because it is a kernel module. We used the

HBench-OS [29] to measure context switches and system

call overheads on our test clients. Each context switch

cost ranges from 1.14 ☎ s to 7.41 ☎ s (average 4.27 ☎ s)
depending on the number of involved processes and the

amount of context-related data. The costs of six typical

system calls, including getpid, getrusage, gettimeofday,

sbrk, sigaction, and write, are 0.352 ☎ s, 0.579 ☎ s, 0.517
☎ s, 0.036 ☎ s, 0.696 ☎ s, and 0.465 ☎ s respectively, with
an average cost of 0.440 ☎ s. So for each I/O request,
IoMeter has approximately 19 ☎ s more overhead than
SPEK, which is comparable with the average response

time of a high-end RAID system, for example 10 ☎ s for
a RamSan-210 RAID system. This overhead hampers

IoMeter when measuring a high-end storage system as

verified by the results shown in Fig. 6. Thus, we believe

that SPEK is especially efficient when measuring high

performance storage systems. The context switching and

system call overheads also explain why SPEK is superior

to some benchmark tools that utilize the OS-provided

raw access interface and run in user space.

C. Measurements and Analysis of Storage Area Net-

works Using SPEK

Previous measurements have shown that SPEK is very

accurate and efficient to evaluate direct attached storage

systems including both single disks and disk arrays. In

this section we will show that SPEK also works well in

measuring networked storage systems, especially storage

area networks (SANs). We use SPEK to measure two

typical SANs: an iSCSI-based SAN and a STICS-based

SAN.

1) iSCSI and STICS Storage Area Networks: iSCSI

is an emerging standard [30] to support remote storage

access via encapsulating SCSI commands and data in IP

packets. It was originally proposed by IBM, Cisco, HP,

and others, and has recently become an industry standard

approved by the IETF. It enables clients to discover

and access SCSI devices directly via the mature TCP/IP

technology and existing Ethernet infrastructures. Previ-

ous work on iSCSI mainly concentrated on performance

evaluation and potential improvements [15], [24], [31],

[32]. By using our SPEK, we have evaluated the de-

graded performance of a popular iSCSI implementation

and observed that the performance of iSCSI degrades

dramatically in case of faults, but it can rapidly recover

after such faults are removed or corrected.

Using iSCSI to implement SAN over IP brings econ-

omy and convenience, however it also raises performance

issues. We have recently proposed a new storage archi-

tecture: SCSI-To-IP Cache Storage, or STICS for short

[15]. The purpose of STICS is to bridge the disparities

8

between SCSI and IP so that efficient SAN systems can

be built over the Internet. Besides caching storage data,

STICS also localizes SCSI commands and handshaking

operations to reduce unnecessary traffic over the Internet.

In this way, it acts as a storage filter to discard a

fraction of the data that would otherwise move across

the Internet, reducing the bottleneck problem imposed

by limited Internet bandwidth. More information about

STICS can be found in [15].

For both iSCSI-based SAN and STICS-based SAN,

we have measured performance under different faults

with different request patterns. We found that for differ-

ent request patterns, the results show similar tendencies

under the same faulty conditions, so we report here

focusing on the measurements under sequential reads

with an 8KB block size. In all experiments, we let a

worker generate a next request only if it successfully

receives a response for the previous request. If it gets

a response indicating that the previous request failed,

timed out, or finished with errors, it will retry the

previous request.

2) Measurements of an iSCSI SAN under Synthetic

Workloads: We have deployed an iSCSI SAN [14]

environment for measurement purposes. We use DISKIO

mode in the iSCSI target, allowing it to read/write

Seagate disks. The iSCSI target exports several SCSI

devices for test clients. We run different numbers of test

clients using a sequential read workload with a 32KB

block size. The results are shown in Table II. We found

that the iSCSI target is saturated at 29.007 MB/s using

two test clients. Since it is a software iSCSI implementa-

tion, the TCP/IP and iSCSI protocol overheads [15] are

the main reason why the target saturates rapidly. The

CPU utilization of the iSCSI target is consistently larger

than 90% when using two test clients and approaches

100% when using three test clients. Most of the time is

consumed on the iSCSI sending thread, since for these

read operations the target needs to send data out to

clients.

TABLE II

THROUGHPUT (MB/S) MEASUREMENT OF ISCSI SAN USING

SPEK WITH SEQUENTIAL READ WORKLOAD AND BLOCK SIZE

BEING 32KB

Client 1 Client 2 Client 3 Target

Test 1 18.012 N/A N/A 18.012

Test 2 15.488 13.519 N/A 29.007

Test 3 9.035 7.645 6.534 23.214

We plot the throughput results for iSCSI under differ-

ent network faults in Fig. 7. From Fig. 7 (a) and (b), we

observe that iSCSI performance degrades rapidly with

5 10 15 20 25 30
4

5

6

7

8

9

10

11

Times (seconds)

T
h
ro

u
g
h
p
u
t
(M

B
/s

)

5 10 15 20 25 30
0

2

4

6

8

10

12

Times (seconds)

T
h
ro

u
g
h
p
u
t
(M

B
/s

)

(a) (b)

Fig. 8. iSCSI performance under (a) transient disk faults injected

at time 15 seconds during 5 seconds and (b) sticky disk faults.

increasingly severe delay faults and increasing packet

loss rates. For example, when the network delay fault

increases from 0 ms to 1 ms, the iSCSI performance

drops from 9.68 MB/s to 1.94 MB/s, an 80% reduction.

And a 0.001 packet loss rate will degrade the system

performance from 9.68 MB/s to 3.42 MB/s. Since many

iSCSI deployments share the same network with other

applications, network congestion can greatly impair the

performance of the iSCSI storage system. Fig. 7 (c) is

the measured instant throughputs of the iSCSI target

under transient packet loss sustained for about 2 seconds.

During the 2 seconds, the system suffers from low

throughput. In general, we find that the system runs

with degraded performance during the time interval in

which network faults are injected but returns to normal

performance rapidly after the faults disappear.

The iSCSI performance measurements under transient

and sticky disk faults are shown in Fig. 8 (a) and (b),

respectively. During the transient fault injection period,

we let the storage fault injector reply to each I/O request

with a successful response or with a correctable error

response with the same probability. Such transient faults

result in a nearly 50% performance drop during the

period in which the transient errors are injected. To

understand why there is such a big performance drop, we

analyzed the source code of the iSCSI implementation.

We noticed that in this iSCSI implementation, the storage

controller simply returns the response of a request back

to an initiator without checking the response. Therefore,

for a failed request, the iSCSI controller sends the

response containing an error message back to the client,

and the client simply retries this request via the network.

A better policy would be to let the iSCSI controller

retry the failed request directly and return a successful

or failed response after a predefined maximum number

of trials. In this way, an iSCSI controller would handle

most transient errors locally, minimizing unnecessary

network traffic and thus improving iSCSI performance.

With sticky uncorrectable disk errors injected, the iSCSI

performance reduces to zero as shown in Fig. 8 (b). It can

be seen that the iSCSI performance is greatly influenced

9

0ms 1ms 4ms 8ms
0

2

4

6

8

10

Network delay

T
h
ro

u
g
h
p
u
t
(M

B
/s

)

0 0.1% 0.5% 1%
0

2

4

6

8

10

Network Packet Loss Rate

T
h
ro

u
g
h
p
u
t
(M

B
/s

)

5 10 15 20 25 30
0

2

4

6

8

10

12

Times (seconds)

T
h
ro

u
g
h
p
u
t
(M

B
/s

)

(a) (b) (c)

Fig. 7. iSCSI performance under several network faults. (a) Sticky delay faults. (b)packets loss faults injected. (b) Transient packets loss

faults with 0.005 packet loss rate injected at time 10 during 2 seconds.

by the storage devices it uses. Storage devices such as

RAID with some kind of redundancy or mirroring would

have significantly greater availability and would enhance

the performance at higher levels.

We have also measured the iSCSI performance under

transient controller faults and show the results in Fig.

9 (a). During the fault-injection period the iSCSI only

has 10% of its throughput in normal circumstances. This

is because during a fault-injection period, the controller

CPU becomes the bottleneck, although the Linux sched-

uler still gives the iSCSI process some time slices to

run. Once the CPU fault is removed, iSCSI recovers its

normal throughput rapidly.

5 10 15 20 25
0

2

4

6

8

10

12

Times (seconds)

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

5 10 15 20 25 30 35
0

2

4

6

8

10

12

Times (seconds)

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

(a) (b)

Fig. 9. iSCSI performance under (a) transient controller faults and

(b) transient network and controller faults.

Fig. 9 (b) shows the performance results of iSCSI

under multiple faults. With both network delay faults and

controller CPU faults injected at time 10 for a duration

of 5 seconds and 10 seconds respectively, iSCSI only

gets a throughput of around 0.39 MB/s, much lower

than in any any single fault scenario. After the network

delay fault is removed at time 15, the performance of

iSCSI recovers to around 0.79 MB/s, almost identical

to the performance it achieves with a single controller

CPU fault. Its performance recovers to the normal value

rapidly after the CPU fault is removed.

3) Performance of an iSCSI SAN under a Commercial

Workload: Besides the synthetic workloads, we also per-

formed our tests with a commercial workload, an EMC

trace, which was collected on an EMC Symmetrix disk

array system installed at a telecommunication customer

site. The trace file contains more than 230,000 storage

requests with a fixed request size of 2KB. The trace is

write-dominated, with 89% of operations being write

operations. The average request rate is approximately

333 requests/second.

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

Time (Seconds)

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

A B

normal
sticky delay fault
transient delay fault

Fig. 10. iSCSI throughput under network delay faults.

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

Time (Seconds)

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

A B

normal
sticky packet loss
transient packet loss

Fig. 11. iSCSI throughput under network packet loss faults.

Our measurement results for the iSCSI-based SAN

are shown in Figures 10 through 11, and those for the

STICS-based SAN are shown in Figures 14 and 15.

Curves marked with triangles in these figures represent

normal throughputs in terms of Megabytes per second

without faults, those marked with “x” represent system

throughputs under transient fault conditions, and those

marked with circles represent throughputs under sticky

fault conditions. Time point “A” marks the start of one

or more types of transient faults being injected, and

time point “B” marks the removal (or recovery) of the

transient faults.

Figures 10 and 11 show throughput variations over

time when network faults were injected at time point

10

A and removed at point B. For network delay faults,

we added 4 ms delay to every packet going through

the network bridge and for packet loss faults we set the

packet loss rate to 1%. We notice in Figures 10 through

11 that when a network fault is injected, available system

throughputs dropped by 50%.

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

Time (Seconds)

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

A B
normal
transient CPU fault

Fig. 12. iSCSI throughput under transient CPU faults.

Figure 12 shows available throughputs when transient

controller faults are injected at time point A and removed

at point B. A storage controller card hosts many codes

such as a RAID control code, an iSCSI protocol stack, a

TCP/IP stack, and so on, in addition to an on-board OS.

A software bug may result in a temporary unavailability

of the CPU to normal processes. We use our controller

fault injector to emulate such faults by taking away 98%

of the CPU resources. Such a CPU fault is injected at

point A of Fig. 12, and results in an approximate 50%

drop in throughput. The available throughputs gradually

go back to normal after the faults are removed (at time

point “B”).

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time (Seconds)

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

A B

normal
disk fault

Fig. 13. iSCSI throughput under disk faults.

Impacts of disk faults are shown in Fig. 13. When

a disk failure occurs, the simulated RAID system is

assumed to automatically replace the faulty disk with a

hot spare. The recovery process is done on-line, leading

degraded throughput while recovery is taking place.

Because the traffic intensity of the EMC trace is not

as high, the recovery process is fairly quick, as shown

in Fig. 13.

4) Performance of a STICS-based SAN: We also

measured the performance of STICS-based SAN under

network delay and loss faults. The results are shown in

Figures 14 and 15. These two figures show throughput

variations over time when network faults are injected

for the EMC trace. Compared to the iSCSI-based SAN,

the STICS-based SAN performs much better under those

network faults.

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

Time (Seconds)

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

A B

normal
sticky delay fault
transient delay fault

Fig. 14. STICS throughput under network delay faults.

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

Time (Seconds)

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

A B

normal
sticky packet loss
transient packet loss

Fig. 15. STICS throughput under network packet loss faults.

IV. RELATED WORK

Significant research has developed techniques and

models to evaluate the performance, availability, and

reliability in an integrated way over the past two decades

[12], [33], [34]. The concept of performability [35],

[36]captures the combined performance and depend-

ability characters of the system. Since it is difficult

to measure the performability directly, current system

designers must rely on models [37]. Previous work on

analytic performability estimation has concentrated on

Markov reward models [38], [39]. Trivedi et al. have

performed extensive analysis on composite performance

and availability using stochastic reward Petri nets [11],

[12], which are ultimately solved by translating them into

Markov models.

The SPEK we have proposed in this paper is an effort

to measure the performance of storage systems under

faulty conditions. It is a benchmark tool to evaluate

storage system performance efficiently.

Many I/O benchmark tools are available to measure

I/O performance. Typical benchmark tools fall into three

categories, as shown in Table III.

Most available I/O benchmark tools fall into the file

system benchmarks category. Most of them create one

or more files and perform read, write, append, and other

11

TABLE III

I/O BENCHMARK AND BENCHMARK TOOLS

Category Benchmark Tools

File System Benchmark Bonnie, Bonnie++, IoMeter, IoZone, LADDIS,

NetBench, LMBench, VxBench,

PostMark, SPEC SFS, IOGen, IOStone, IOBench,

Pablo I/O Benchmark, NHT-1 I/O Benchmarks, NTIOgen

Standalone Disk I/O Benchmark CORETest, Disktest, HD Tach, QBench, RawIO, SCSITool

Block level Networked Storage Benchmark SPC-1, SPEK

operations on these files. Bonnie++ also has tests for

file create, stat, and unlink operations. IOStone [40]

only performs operations on a 1MB size file, making

it impossible to get realistic results on modern stor-

age systems because of their large file system caches.

IOBench is obsolete and rarely used today. IoZone and

IoMeter are the most popular among these benchmarks

since they support many platforms and different file

systems, including network file systems. IoZone is a

file system benchmark allowing extensive file operations,

including read, write, re-read, re-write, read backwards,

read strided, fread, fwrite, random read, pread, mmap,

aio read, and aio write. It reports throughput and re-

sponse time results. IoMeter is originally from Intel and

is now a sourceforge project. It is widely used and its

workloads are highly parameterizable and configurable.

While it claims to be a raw device test tool, IoMeter

is still influenced by buffer caches under Linux, as

evidenced in the previous section. LADDIS [41] and

SPEC SFS [42] only operate on NFS, while NetBench

[43] operates only on CIFS. PostMark [4] is also a

widely used [25], [44] file system benchmark tool from

Network Appliance. It measures performance in terms of

transaction rates in an ephemeral small-file environment

by creating a large pool of continually changing files.

The Pablo I/O benchmark can be used to test MPI I/O

performance, as well as application I/O, but still at the

file system level. Its I/O Trace Library is very useful

for analyzing application I/O behaviors while not aimed

at block I/O measurement. NHT-1 I/O benchmark [45]

measures application I/O, disk I/O, and network I/O, but

its disk I/O measurement is still at the file system layer.

Many of the above mentioned benchmark tools per-

form well when used to measure file systems perfor-

mance. IoMeter operates on the block device layer,

bypassing the file system cache but is still affected by the

buffer cache. There are also a few benchmark tools for

measuring the block level or raw performance of storage

devices. CORETest is a DOS disk benchmark tool from

CORE International and is rarely used now. Disktest can

be used to benchmark disk I/O performance, but its main

purpose is to detect defects. Qbench is a DOS hard disk

benchmark from Quantum Corporation that measures

data access times and data transfer rates. SCSITOOL

is a diagnostics and benchmarking tool for SCSI storage

devices. The Pablo Physical I/O Characterization Tool

[46], although not a benchmark tool, can be used to get

useful trace information about disk I/O activity by using

an instrumented disk device driver. There are also some

research micro-benchmarks [47], [48]. Most of them are

built to test some simple and limited I/O workloads,

such as sequential read/write or random I/O workloads

in fixed sizes and aimed at standalone storage systems.

None of the current benchmarks is able to measure

performance of networked storage at a block level, an

exception being SPC-1, which is focused in measuring

block-level performance of networked storages [49].

SPC-1 is a standard specification being considered by

the Storage Performance Council. It is not yet readily

available to the public for performance evaluation pur-

poses, although some incomplete performance data has

been reported on the Web. In addition, SPC-1 has some

limitations such as a maximum number of I/O streams

and a lack of flexibility in defining each I/O stream [49].

To the best of our knowledge, our SPEK is the first

benchmark tool for measuring block level performance

of both DAS and networked storage systems with high

flexibility, accuracy, and efficiency.

Our SPEK differs from the above tools mainly in three

aspects. First, SPEK aims at measuring degraded perfor-

mance for storage systems. Second, SPEK runs on the

kernel level, bypassing the file system and reducing the

overhead caused by system calls and context switches.

Third, SPEK works well for both direct attached storage

systems and block-level networked storage systems.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed a new benchmark tool

called SPEK (Storage Performance Evaluation Kernel

module) for block level performance benchmarking of

12

storage systems. SPEK accurately measures the perfor-

mance of a storage system in the presence of faults as

well as under normal operations. It is able to bench-

mark both direct attached storage (DAS) and networked

storage systems without the influence of the file system

and low-level buffer caches. Performance results mea-

sured using our SPEK realistically represent the intrinsic

performance of data storage systems. Users can easily

configure SPEK to test a variety of workload scenarios

and collect a variety of interesting performance metrics.

Because it runs as a kernel module, system overheads

such as system calls and context switches are minimized,

making SPEK a highly efficient benchmarking tool.

An early version of SPEK has been implemented to

demonstrate its functionality and effectiveness and the

tool including source code is available publically on the

website at http://www.ece.tntech.edu/hexb/spek.tgz.

In the future, we plan to build a standard framework

based on SPEK and integrate reliability measurements

into this framework.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous ref-

erees for their insightful and constructive comments.

They are also grateful to Martha Kosa for reading the

paper and making suggestions and corrections. The first

author’s research is partially supported by the Research

Office under a Faculty Research Grant and the Center

for Manufacturing Research at Tennessee Technological

University. The second and third authors’ work has been

supported in part by the US National Science Foundation

under grants CCR-0073377 and CCR-0312613.

REFERENCES

[1] P. M. Chen, E. K. Lee, G. A. Gibson, R. H. Katz, and

D. A. Patterson, “RAID : High-performance, reliable secondary

storage,” ACM Computing Surveys, vol. 26, no. 2, pp. 145–188,

June 1994.

[2] M. Malhotra and K. Trivedi, “Reliability analysis of redundant

arrays of inexpensive disks,” Journal of Parallel and Distributed

Computing, vol. 17, pp. 146–151, 1993.

[3] J. Ward, M. O’Sullivan, T. Shahoumian, and J. Wilkes, “Appia:

Automatic storage area network fabric design,” in Proceedings

of the Conference on File and Storage Technologies (FAST),

Monterey, CA, Jan. 2002, pp. 203–217.

[4] J. Katcher, “PostMark: A new file system benchmark,” Network

Appliance, Tech. Rep. 3022, 1997.

[5] D. Capps and W. D. Norcott. Iozone filesystem benchmark.

[Online]. Available: http://www.iozone.org/

[6] R. Coker. Bonnie++ benchmark tool. [Online]. Available:

http://www.coker.com.au/bonnie++/

[7] Intel. Iometer, performance analysis tool.

http://www.intel.com/design/servers/devtools/iometer/.

[8] K. A. Smith and M. I. Seltzer, “File system aging - increas-

ing the relevance of file system benchmarks,” in Proceedings

of the 1997 ACM SIGMETRICS International Conference on

Measurement and Modeling of Computer Systems, June 1997,

pp. 203–213.

[9] A. Goyal, S. Lavenberg, and K. Trivedi, “Probabilistic mod-

eling of computer system availability,” Annals of Operations

Research, vol. 8, 1987.

[10] O. Ibe, R. Howe, and K. Trivedi, “Approximate availability

analysis of vaxcluster systems,” IEEE Transactions on Relia-

bility, vol. 38, no. 1, pp. 146–152, 1989.

[11] J. Muppala and K. Trivedi, “Composite performance and avail-

ability analysis using a hierarchy of stochastic reward nets,” in

Proceedings of the 5th International Conference on Modeling

Techniques and Tools for Computer Performance Evaluation,

Feb. 1991.

[12] Y. Ma, J. Han, and K. Trivedi, “Composite performance

and availability analysis of wireless communication networks,”

IEEE Transactions on Vehicular Technology, vol. 50, no. 5, pp.

1216–1223, 2001.

[13] A. Brown and D. A. Patterson, “Towards availability bench-

marks: A case study of software RAID systems,” in Proceedings

of the 2000 USENIX Annual Technical Conference, San Diego,

CA, June 2000, pp. 263–276.

[14] UNH. iSCSI reference implementation.

http://www.iol.unh.edu/consortiums/iscsi/.

[15] X. He, M. Zhang, and Q. Yang, “Stics:scsi-to-ip cache for

storage area networks,” Journal of Parallel and Distributed

Computing, vol. 64, no. 9, pp. 1069–1085, 2004.

[16] SCSI Block Commands, NCITS Working Draft Pro-

posed Standard, Rev. 8c, 1997. [Online]. Available:

http://www.t10.org/scsi-3.htm

[17] J. Arlat, A. Costes, Y. Crouzet, J.-C. Laprie, and D. Powell,

“Fault injection and dependability evaluation of fault-tolerant

systems,” IEEE Transactions on Computers, vol. 42, no. 8, pp.

913–923, 1993.

[18] S. Dawson, F. Jahanian, and T. Mitton, “ORCHESTRA: A fault

injection environment for distributed systems,” University of

Michigan, Tech. Rep. CSE-TR-318-96, 1996.

[19] D. Pradhan, Fault-tolerant Computer System Design. Prentice

Hall, 1996.

[20] X. Li, R. Martin, K. Nagaraja, T. Nguyen, and B. Zhang, “Men-

dosus: A SAN-based fault-injection test-bed for the construction

of highly available network services,” in Proceedings of 1st

Workshop on Novel Uses of System Area Networks (SAN-1),

Feb. 2002.

[21] M. L. Shooman, Reliability of Computer Systems and Networks:

Fault Tolerance,Analysis, and Design. John Wiley & Sons,

2002.

[22] K. Nagaraja, X. Li, R. Bianchini, R. Martin, and T. Nguyen,

“Using fault injection and modeling to evaluate the performa-

bility of cluster-based services,” in Proceedings of the USENIX

Symposium on Internet Technologies and Systems, 2003.

[23] L. Rizzo, “Dummynet: a simple approach to the evaluation of

network protocols,” ACM Computer Communication Review,

vol. 27, no. 1, pp. 31–41, 1997.

[24] W. T. Ng, B. Hillyer, E. Shriver, E. Gabber, and B. Ozden,

“Obtaining high performance for storage outsourcing,” in Pro-

ceedings of the Conference on File and Storage Technologies

(FAST), Monterey, CA, Jan. 2002, pp. 145–158.

[25] J. L. Griffin, J. Schindler, S. W. Schlosser, J. S. Bucy, and G. R.

Ganger, “Timing-accurate storage emulation,” in Proceedings

of the Conference on File and Storage Technologies (FAST),

Monterey, CA, Jan. 2002, pp. 75–88.

[26] Performance Evaluation Laboratory, Brigham

13

Young University. DTB: Linux Disk Trace Buffer.

http://traces.byu.edu/new/Tools/.

[27] SPC. Storage Performance Council I/O traces.

http://www.storageperformance.org/downloads.html.

[28] R. V. Meter, “Observing the effects of multi-zone disks,” in

Proceedings of the 1997 USENIX Annual Technical Conference,

Anaheim, CA, Jan. 1997.

[29] A. Brown and M. Seltzer, “Operating system benchmarking in

the wake of lmbench: A case study of the performance of netbsd

on the intel x86 architecture,” in Proceedings of the 1997 ACM

SIGMETRICS Conference on Measurement and Modeling of

Computer Systems, Seattle, USA, June 1997, pp. 214–224.

[30] J. Satran, K. Meth, C. Sapuntzakis, M. Chadalapaka, and

E. Zeidner. iSCSI draft standard. http://www.ietf.org/internet-

drafts/draft-ietf-ips-iscsi-20.txt.

[31] K. Voruganti and P. Sarkar, “An analysis of three gigabit

networking protocols for storage area networks,” in 20th IEEE

International Performance, Computing, and Communications

Conference, Phoenix, Arizona, Apr. 2001.

[32] K. Meth, “iSCSI initiator design and implementation experi-

ence,” in 19th IEEE Symposium on Mass Storage Systems,

Adelphi, MD, Apr. 2002.

[33] A. Heddaya and A. Helal, “Reliability, availability,dependability

and performability: A user-centered view,” Boston University,

Computer Science Department, Tech. Rep. BU-CS-97-011, Dec.

1996.

[34] K. Nagaraja, N. Krishnan, R. Bianchini, R. Martin, and

T. Nguyen, “Evaluating the impact of communication archi-

tecture on the performability of cluster-based services,” in

Proceedings of the 9th International Symposium on High-

Performance Computer Architecture (HPCA 9), Anaheim, CA,

Feb. 2003.

[35] J. Meyer, “On evaluating the performability of degradable

computing systems,” IEEE Transactions on Computers, vol. C-

29, no. 8, pp. 720–731, 1980.

[36] J. Meyer, “Performability: A retrospective and some pointers

to the future,” Performance Evaluation, vol. 14, no. 3-4, pp.

139–156, 1992.

[37] G. Alvarez, M. Uysal, and A. Merchant, “Efficient verification

of performability guarantees,” in Proceedings of the 5th Interna-

tional Workshop on Performability Modeling of Computer and

Communication Systems, Sept. 2001.

[38] R. Smith, K. Trivedi, and A. Ramesh, “Performability analysis:

Measures, and algorithm, and a case study,” IEEE Transactions

on Computers, vol. 37, no. 4, pp. 406–417, 1988.

[39] K. Trivedi, Probability and Statistics with Reliability, Queuing,

and Computer Science Applications. John Wiley & Sons, 2001.

[40] A. Park and J. C. Becker, “IOStone: a synthetic file system

benchmark,” Computer Architecture News, vol. 18, no. 2, pp.

45–52, June 1990.

[41] M. Wittle and B. E. Keith, “LADDIS: The next generation

in NFS file server benchmarking,” in In USENIX Association

Conference Proceedings ’93, April 1993.

[42] SPEC. SPEC SFS benchmark. http://www.spec.org/osg/sfs97/.

[43] VeriTest. Netbench file system benchamrk.

http://www.etestinglabs.com/benchmarks/netbench/netbench.asp.

[44] K. Magoutis, S. Addetia, A. Fedorova, M. Seltzer, J. Chase,

A. Gallatin, R. Kisley, R. Wickremesinghe, and E. Gabber,

“Structure and performance of the direct access file sys-

tem(DAFS),” in Proceedings of USENIX 2002 Annual Technical

Conference, Monterey, CA, June 2002, pp. 1–14.

[45] R. Carter, B. Ciotti, S. Fineberg, and B. Nitzberg, “NHT-1 I/O

benchmarks,” NAS Systems Division, NASA Ames, Tech. Rep.

RND-92-016, Nov 1992.

[46] H. Simitci and D. A. Reed, “A comparison of logical and

physical parallel I/O patterns,” The International Journal of

Supercomputer Applications and High Performance Computing,

vol. 12, no. 3, pp. 364–380, Fall 1998.

[47] Y. Zhu and Y. Hu, “Can large disk built-in caches really improve

system performance?” University of Cincinnati, Tech. Rep. 259,

2002.

[48] E. Zadok and J. Nieh, “FiST: A language for stackable file

systems,” in Proceedings of the 2000 USENIX Annual Technical

Conference, San Diego, CA, June 2000.

[49] SPC. SPC benchmark 1(SPC-1) specification.

http://www.storageperformance.org/Specifications/SPC-

1 v150.pdf.

Xubin He received the PhD degree in electri-

cal engineering from the University of Rhode

Island, USA, in 2002 and both the BS and

MS degrees in computer science from the

Huazhong University of Science and Technol-

ogy, China, in 1995 and 1997, respectively.

He is an assistant professor of electrical and

computer engineering at the Tennessee Tech-

nological University. His research interests in-

clude computer architecture, storage systems, computer security,

and performance evaluation. He received the Ralph E. Powe Junior

Faculty Enhancement Award in 2004 and TTU Chapter Sigma Xi

Research Award in 2005. He is a member of the IEEE Computer

Society, Sigma Xi, and ASEE.

Ming Zhang received his PhD degree in

electrical engineering from the University of

Rhode Island, USA, in 2002 and both the BS

and MS degrees in computer science from the

Huazhong University of Science and Technol-

ogy, China, in 1997 and 2000, respectively.

His research interests include computer ar-

chitecture, networked storage systems, bench-

marking, and performance evaluation. He is a

student member of the IEEE and ACM.

Qing (Ken) Yang received his B.Sc. in com-

puter science from Huazhong University of

Science and Technology, Wuhan, China, in

1982, the M.A.Sc. in electrical engineering

from University of Toronto, Canada, in 1985,

and the PhD degree in computer Engineer-

ing from the Center for Advanced Computer

Studies, University of Louisiana at Lafayette,

in 1988. Presently, he is a Distinguished En-

gineering Professor in the Department of Electrical and Computer

Engineering at The University of Rhode Island where he has been a

faculty member since 1988. His research interests include computer

architectures, memory systems, disk I/O systems, networked data

storages, parallel and distributed computing, performance evaluation,

and local area networks. He is a senior member of the IEEE Computer

Society and a member of the SIGARCH of the ACM.

