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1 Introduction 

 

During the past decades artificial insemination (AI) has gained immense im-

portance worldwide, as can be seen throughout all large farm animal species 

including pig husbandry, where it is practised widely in countries with intensive 

pork production. In Western Europe over 90 % of sows have been bred by AI 

for over 20 years (GERRITS et al., 2005). The establishment of AI in Europe is to 

be ascribed to the abolishment of venereal diseases and improvement of herd 

book breeding after the Second World War, to ensure sufficient food production 

from the animal enterprises (LEIDL, 1994). Further, it is the most efficient tool to 

introduce high merit genes into pedigree herds (MAES et al., 2008).  

Since, much improvement in breeding procedures has been made, such as the 

development of linker-based sperm mediated gene transfer in swine (WEBSTER 

et al., 2005) or the introduction of genomic selection in bovine reproduction in 

2010 (LUND et al., 2011). However, breeding techniques as such, have changed 

marginally to not at all (RATH, 2002).  

In pig husbandry the conventional method of intrauterine deposition of an 80-

100 ml AI volume containing 1-3 x109 fresh spermatozoa (COLENBRANDER, 

1991) is the commonly used procedure. Sows are bred twice within 24 hours to 

ensure successful fertilisation. Compared to bovine insemination, where as little 

as 2 x106 spermatozoa result in gravities (SCHENK et al., 2009) and thus up to 

500 AI doses can be gained per ejaculate, boar ejaculates have only little effi-

ciency resulting in 5-30 doses per collection.  

The demand for genetically superior boars has increased immensely and can 

only be served by collecting semen from many individuals (RATH, 2002). Also, 

the use of sex sorted sperm has moved into focus, especially since the recent 

enforcement of laws within the European Union regulating castration of male 

piglets without anaesthesia and/or pain treatment. It could be beneficial to the 

pork industry to fatten female pigs only. However, the use of sexed boar sperm 

is very limited due to the high numbers required for successful AI. The reason 

for this limitation lies in the sexing process itself. To date the only conventional 

sperm sorting procedure available is the Beltsville sperm sexing technology, 

which produces at rates of up to 95 % purity (JOHNSON et al., 1999). Since this 

is a single cell detection flow cytometric system, the time passing until 3 billion 
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spermatozoa are sorted is too long. A more cost and labour efficient use of se-

men is needed to meet the high demands in conventional high merit pig breed-

ing. 

The only way to utilize low doses of boar sperm is to skirt the uterine horns and 

to deposit the semen closer to the site of fertilisation, which is in the distal isth-

mus of the oviduct. Deep intra-uterine insemination (KRUEGER et al., 1999) or 

semen deposition directly into the oviduct (JOHNSON, 1991) allows for a drastic 

sperm reduction, without losses in fertility and farrowing rates. 

To gain understanding for the requirement of large sperm numbers it is neces-

sary to illuminate the challenges porcine sperm face on route to fertilisation. The 

species-specific binding (SUAREZ, 2001) of spermatozoa, to several surface epi-

thelia in the female tract, foregoing capacitation and hyperactivation, encom-

passes carbohydrate recognition by lectin-like receptors on the sperm plasma 

membrane (TÖPFER-Petersen, 1999a). The interactions between sperm and 

oviduct epithelium as well as the Zona pellucida are lectin-mediated in all spe-

cies studied. In the pig it has been shown that the binding of sperm within the 

oviductal reservoir is mostly facilitated by mannose-specific binding mecha-

nisms (WAGNER et al., 2002). It was therefore assumed that the putative binding 

of porcine sperm and uterine epithelia is mediated by specific protein-

carbohydrate interactions, too. 

The aim of this thesis was to establish a reproducible in vitro cell culture model 

from primary uterine epithelial cells of the sow (sus scrofa) to examine and iden-

tify possible reasons for the high numbers needed in porcine fertilisation by 

studying putative binding mechanisms of porcine spermatozoa to the endome-

trium in vitro. 

Therefore the following hypotheses were proposed: 

 

1. Porcine spermatozoa undergo binding with the endometrium on route 

to the site of fertilization. 

 

2. This binding encompasses an interaction between the surface mem-

branes of spermatozoa and uterine epithelial cells. 
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3. This interaction is mediated by lectin-like proteins on the apical sperm 

plasma membrane with corresponding oligosaccharide ligands provid-

ed by the luminal membrane of the endometrium.  
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2 Literature 

2.1 Application methods to reduce sperm numbers in pig husbandry 

 

Recent improvements in sperm technologies have also caught in pig breeding. 

These techniques include application of frozen-thawed semen (WESTENDORF et 

al., 1977), sex selection by flow-cytometric sperm sorting (RATH et al., 1997) 

and the development of linker-based sperm mediated gene transfer producing 

transgenic pigs (WEBSTER et al., 2005). However, all of these techniques are 

inefficient in porcine AI, when semen is inseminated conventionally. The need 

for high merit boars and thus higher ejaculate efficiencies is calling for modified 

application methods to reduce sperm numbers without decreasing reproduction 

parameters. A further advantage of reducing sperm numbers is the option to 

considerably increase the number of insemination doses per boar. Currently, 

conventional AI procedures allow for around 2000 doses per boar and year, 

containing 1-3 x109 sperm each. A reduction in sperm number to 500 x106 could 

increase the number of AI doses per boar up to 600 % (MEZALIRA et al., 2005). 

In pigs, fertility is not measured as non-return to oestrous, as it is practised in 

cattle breeding, but as the sum of fertilisation rates, farrowing rates and moreo-

ver weaning rates merged to a reproductive performance value (VAZQUEZ et al, 

2005). It is thus not as easy to predict improved outcome when new breeding 

techniques are introduced. Optimal fertilisation appears to be a concert between 

the insemination-ovulation interval, site of semen deposition and the life span of 

fertile spermatozoa (VAZQUEZ et al., 2005).  

During natural mating the boar deposits an ejaculate containing up to 60 x109 

sperm cells into the proximal part of the cervix and distal part of the uterine 

body of the sow and plugs it with the secretions from the bulbourethral gland. In 

contrary to mating in so called “vaginal inseminators” (i.e. bovine, equine), por-

cine spermatozoa do not undergo first selection whilst passing through the cer-

vix where motility constricted spermatozoa and bacteria are drawn back out by 

the current of the cervical mucus (HAWK, 1987). The complete ejaculate is de-

posited into the proximal cervix and uterine body.  

For successful fertilisation rates of up to 90 %, in the pig 2-5 x109 spermatozoa 

are needed in a total volume of 80-100 ml (WIGGINS et al., 1951, 
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COLENBRANDER, 1991, BURANAAMNUAY et al., 2010). It is normal practice to per-

form multiple inseminations (2x) with high sperm numbers to ensure successful 

fertilisation (FLOWERS and ESBENSHADE, 1993). Conventional AI is usually per-

formed the first time around 24 h before ovulation (SOEDE et al., 1995), ob-

served as standing heat.  

The insemination catheter is inserted through the vagina and semen is deposit-

ed into the distal part of the short uterine body, the posterior region of the cer-

vix. Semen is drawn into the uterine horns by the typical peristaltic contractions 

of the sow’s myometrium towards the oviduct (BOWER, 1974). Spermatozoa 

have to then reach the site of fertilisation, located in the ampulla of the distal 

oviduct.  

Simple dilution as a means to reducing sperm numbers is only limitedly possible 

in the pig (CIERESZKO et al., 2000). High dilution, as it is practised with flow-

cytometric sorting, results in a shorter life span, reduced motility and sperm via-

bility, due to destabilised membranes and too early steps of final maturation 

(MAXWELL and JOHNSON, 1999). It is therefore a challenge inseminating lower 

numbers of spermatozoa without diminishing fertility rates. Figure 1 depicts the 

changes in required sperm numbers depending on the site of semen deposition. 

 

Figure 1. Possible sites for successful semen deposition and reduction of sperm 
numbers in pig AI. 

UTJ: 1 x10
6
 

Ovary 

Cervix 

Oviduct 

Uterine body 

Uterine horn 

Intra oviductal: 0.2 x10
6
 

Natural mating: 60 x10
9
 

Conventional: 2-3 x10
9

 

Deep intra-uterine: 10-100 x10
6

 

©Bergmann 



Literature 

6 
 

The deposition of low semen dosages in pigs can be divided into two catego-

ries: 

- non-invasive into the distal part of the uterine horn or proximate to the 

uterotubal junction (UTJ) and 

- invasive by surgical action directly into the ampulla of the oviduct, similar 

to Gamete Intra Fallopian Transfer (GIFT) 

 

 

2.1.1 Deep intrauterine insemination (IUI) 

 

HANCOCK and HOVELL (1961) already showed in 1961 in first intrauterine insem-

inations with 1 x108 or 1 x109 sperm either extended in 20 or 120 ml of egg-yolk 

extender, that AI with lower sperm numbers do result in gravities. Further, the 

lower volume achieved significantly better results regarding litter size, but not 

fertilisation rates, respectively.  

One method showing promising results is the deposition of the inseminate fur-

ther down the uterine horn towards the distal tip known as IUI. This modified 

technique is performed with a longer AI catheter, which is flexible and thus 

adapts to the uterine flexures. Many experiments have been undertaken to 

study optimal sperm numbers and inseminate volumes as well as time of AI and 

site of semen deposition.  

KRUEGER et al. (1999) and KRUEGER and RATH (2000) undertook trials to identify 

the minimal doses of flow-sorted semen needed, when inseminated into the 

distal tip of the uterine horn. Different sperm concentrations (1 x106; 5 x106; 

1 x107; 1 x108; 1 x109) in 0.5 ml of extender were surgically deposited into the 

tip of the uterine horn proximate to the UTJ. No significant differences showed 

in farrowing rates and litter size between the treatment groups containing more 

than 1 x106 spermatozoa. It was therefore proposed that a minimum of 1 x106 

sperm is needed to gain farrowing rates of > 90 %, when deposited proximal to 

the UTJ.  

WOLKEN (2001) developed a catheter for semen deposition into the distal part of 

the uterine horn of sows. She compared deposition of 1 x108 in 20 ml of ex-

tender into the distal uterus or corpus uteri and 5 x107 in 10 ml of extender de-

posited into each horn. No significant differences in fertilisation rates were seen 
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between the treatment groups and conventionally inseminated sows in the con-

trol group. However, the sperm numbers were still high compared to the inva-

sive inseminations undertaken by KRUEGER et al. (1999) and KRUEGER and 

RATH (2000). 

MARTINEZ et al. (2001) inseminated sows with either 5, 20 or 100 x107 sperma-

tozoa deep intrauterine non-surgically under endoscopic view and gained the 

same farrowing rates (86.6, 88.9 and 92.3, respectively) and litter sizes 

(9.41 ± 0.38 to 10.02 ± 0.25) as with the control group (3 x109 spermatozoa: 

87.5 %). Later MARTINEZ et al. (2002) developed a flexible catheter for non-

surgical and non-optically assisted deep intrauterine insemination in non-

sedated sows. Using this on-farm device showed that extended in 10 ml the 

deposition of 1, 2.5, 5 or 15 x107 spermatozoa in the vicinity of the anterior uter-

ine horn results in gravities. The low doses differed significantly (p < 0.001) in 

farrowing rates (39.1 and 46.7 %, respectively) compared to the control AI dose 

(3 x109 in 100 ml: 83 %). No significant differences were obtained with deep 

intrauterine AI of 5 and 15 x107 spermatozoa diluted in 10 ml (76.2 and 82.9 %). 

It was thus proposed that deep intrauterine AI requires sperm numbers of at 

least 15 x107 per dose. VAZQUEZ et al. (2003) showed that deep intrauterine 

insemination with the same device (MARTINEZ et al., 2002) using low doses of 

either 70 or 140 x106 spermatozoa produces piglets regardless of flowcytomet-

ric sorting or no treatment before fertilisation. Pregnancy as well as farrowing 

rates were significantly (p < 0.05) lower in the flow-sorted groups, however 

sperm number had no effect on the observed parameters. Litter size was not 

affected neither by flow-sorting, nor sperm number as similarly seen by 

KRUEGER et al. (1999) and KRUEGER and RATH (2000) . GROSSFELD et al. (2005) 

produced comparable litter sizes when applying the same deep IUI technique 

but with even lower sperm numbers (50 x106). Although sexed semen was 

used, no significant differences in pregnancy and farrowing rates occurred. Sim-

ilar results were achieved by BATHGATE et al. (2008) but with fresh semen using 

single doses of 6.25 x107 spermatozoa compared to double insemination with 

sexed sperm depositing 2.5 x108 to gain comparable farrowing rates as with 

conventional AI. MEZALIRA et al. (2005) performed deep intrauterine insemina-

tion on multiparous sows with one of three different AI doses (0.25, 0.5 or 

1 x109 spermatozoa) 24 h after onset of oestrous and gained high pregnancy 
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rates of over 77.1 % with no significant difference between sperm numbers. 

However significant differences between the boars (p > 0.05) were noticed. 

WONGTAWAN et al. (2006) achieved pregnancies with highly concentrated low 

volume deep IUI using the device mentioned (MARTINEZ et al., 2002), applying 

1 x109 spermatozoa in only 0.5 ml of extender, which was however the same 

concentration as used in conventional trans-cervical AI.  

SUMRANSAP et al. (2007) inseminated multiparous sows with either 3 x109 sperm 

conventionally into the uterine body or with 1 x109 sperm deep intrauterine and 

measured sperm numbers at different sites of the reproductive tract. Sperm 

numbers recovered from either the uterotubal junction or the caudal isthmus in 

the oviduct differed significantly (p > 0.05), regardless of the insemination con-

centration. They too showed that bypassing the uterine horn allows a drastic 

reduction in sperm number without degrading the numbers of sperm available 

for the oviductal reservoir and succeeding fertilisation. 

WATSON and BEHAN (2002) proposed that deep intrauterine AI is a safe method 

and that 1 x109 sperm are sufficient to gain sufficient fertilisation rates. Avoiding 

sperm loss due to backflow is one of the important advantages that speak for 

deep intrauterine insemination in sows (MEZALIRA et al., 2005). MARTINEZ et al. 

(2002) and MEZALIRA et al. (2005) even concluded that only a minimum of 

5 x107 spermatozoa is needed to gain acceptable fertilisation rates when ap-

plied deep intrauterine.  

However, one key difficulty, which led to the dismissal of the deep intrauterine 

application of semen in the field, was the potential risk of perforating the uterine 

bifurcation when inserting the catheter too fiercely. WONGTAWAN et al. (2006) 

documented difficulties in 10 % of sows inseminated with the IUI device 

(MARTINEZ et al., 2002), which resulted in AI procedures enduring longer than 

5 min until the catheter was inserted completely. This presents a challenge to 

commercial field use, where handling is of immense importance to prevent inju-

ry to the uterine wall especially in the vicinity of the bifurcation when penetrating 

the distal cervix. Some trials documented blood in the tip of the catheter, after 

removal from the genital tract as shown by MARTINEZ et al. (2001) as well as 

WATSON and BEHAN (2002). BATHGATE et al. (2008) even noticed tissue damage 

in all sows observed. This included lesions on the inner cervix as well as endo-

metrium lining as it had been reported by MARTINEZ et al. (2001) before and 
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may have led to ethical concerns. However, MARTINEZ et al. (2006) could show 

that normal fertilisation rates (90.5 %) were achieved, even when little bleeding 

or tissue damage occurred during the AI procedure.  

Deep intrauterine insemination may be the tool of choice to allow semen depo-

sition and fertilisation with low numbers of sperm and/ or sperm with compro-

mised membrane such as freeze-thawed or sex-sorted spermatozoa (VAZQUEZ 

et al., 2003). VAZQUEZ et al. (2005) also described the fibre optic deep IUI meth-

od as a great advance, however the high costs and fragility of the device spoke 

against establishment throughout the industry. Intra-cervical insemination with 

flow-sorted spermatozoa is impossible because the 2-3 x109 required sperma-

tozoa cannot be obtained from the sorting process efficiently enough, as the 

Beltsville procedure currently only allows the production of 10-15 x106 sorted 

spermatozoa per hour (JOHNSON and WELCH, 1999).  

 

 

2.1.2 Intra-oviductal insemination 

 
Even lower sperm doses can be applied when placed directly into the oviduct, 

proximate to the site of fertilisation in the ampulla. This however, is currently 

only possible with invasive or minimal-invasive techniques which are unsuitable 

for commercial pig units.  

POLGE et al. (1970) proved that semen deposition of 1 x107 frozen-thawed 

sperm directly into the sow’s oviduct by surgical laparoscopy achieved high fer-

tility rates. Similar results were obtained by SCHOENBECK and DIDION (1995) un-

der field conditions where 0.5 - 1 x106 frozen thawed sperm were inseminated 

surgically under field conditions. Farrowing rates (27 %) as well as live born pig-

lets (6.23) did not differ significantly from the average rates on farm (29 % and 

5.91). JOHNSON (1991) showed that nowhere near these high sperm numbers 

are required when sperm is deposited as close as possible to the site of fertili-

sation. It was shown that only 2 x105 sex-sorted spermatozoa could be used 

when placed invasively directly into the oviduct as close to the site of fertilisation 

as possible.  

FANTINATI et al. (2005) did not apply such low doses, but 1.5 x108, 1.5 x107, 

1 x107, 5 x106 or 1 x106. There were no significant (p < 0.05) differences in fer-
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tility rates (94.5 ± 2.1, 91.2 ± 3.2, 92.3 ± 2.6, 81.9 ± 6.2 % respectively) between 

any of the applied doses, except for the lowest (1 x106: 50.5 ± 10.1%). These 

sperm numbers are comparable to the results gained by KRUEGER et al. (1999) 

who obtained optimal fertility rates after surgical deposition of 1 x107 spermato-

zoa at the UTJ.  

VAZQUEZ et al. (2008) achieved successful inseminations with only 3 x105 fro-

zen thawed spermatozoa into the oviduct by laparoscopy. 

Just recently DEL OLMO et al. (2013) reapplied insemination of sex sorted sperm 

in low dose either once (directly into the oviduct) or twice (oviduct and tip of 

uterine horn). Sperm doses of 5 x105 sperm were either applied once or twice. 

They discovered that double insemination, once into the oviduct and once into 

the tip of the uterine horn, of 3-6 x106 spermatozoa is needed to produce ade-

quate piglet numbers with sexed sperm, comparable to conventional AI with un-

sexed semen.  

Intra-oviductal semen deposition has so far only been possible when using in-

vasive techniques. These methods are not applicable in the field as they cannot 

be carried out by untrained staff and must be performed under anaesthesia. 

Consequently, these techniques are highly sophisticated biotechnological tools 

for research or maintenance of high merit nucleus herds and not suitable for 

commercial application in the field (RATH, 2002). 
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2.2 Sperm losses in the sow during uterine passage 

 

In pigs compared to other farm animals the number of spermatozoa required for 

successful insemination is with 2-3 x109 particularly high (COLENBRANDER, 

1991). When circumventing the uterus, sperm numbers can be lowered signifi-

cantly without decreasing farrowing rates (JOHNSON, 1991, MARTINEZ et al., 

2001). Furthermore, only small fraction as little as 5-10 % of the original sperm 

dose could be recovered by flushing post AI (FIRST et al., 1968, PURSEL et al., 

1978, JUNGE-KRAEMER, 2012). Several reasons for this drastic loss of sperma-

tozoa have been scrutinized and reported. However, none provides complete 

proof of sperm fate in vivo and a comparison is difficult as the variety of studies 

looking into the fate of sperm on route to fertilisation is immense. Subsequently 

it is to be said that sperm are lost and thus not available for fertilisation. Several 

different mechanisms act in the female reproductive tract and are in charge of 

retaining sperm, making them not available for recovering from the uterus or 

oviducts in such trials (TAYLOR et al., 2009).  

 

 

2.2.1 Backflow 

 

VIRING and EINARSSON (1981) ascribed one third of total sperm losses to back-

flow. BAKER et al. (1968) observed a volume loss due to backflow of 22-51 % 

and suggested that successful fertilisation is not only caused by a minimum of 

sperm concentration but also by a minimum volume of semen. STEVERINK et al. 

(1998) documented losses of up to 70 % of the inseminate volume and 25 % of 

total sperm cells within 2.5 h after artificial insemination. They concluded that 

backflow had a higher negative impact on fertilisation rates when only 1 x109 

sperm were inseminated rather than when conventional doses were applied. 

However the sperm concentration (1, 3 or 6 x109 spermatozoa in 80 ml insemi-

nate) had no effect on the volume of backflow.  

FIRST et al. (1968) recovered 40 % of the inseminated sperm from the uterus 

15 min post AI. Of this fraction 78 % were not able to be recovered two hours 

post insemination. STEVERINK et al. (1998) observed that sperm losses due to 

backflow of > 5 % had a negative impact on fertilisation rates, if less than 3 x109 
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sperm were applied. STEVERINK et al. (1998) also described that gilts had higher 

volume backflow than sows of higher parities. MEZALIRA et al. (2005) propagat-

ed that backflow is a frequent event in pig AI, independent of the deposition 

method of semen, i.e. conventional or deep intrauterine and documented vol-

ume losses between 0 and 65 %. However this volume only contained about 

15 % of the originally inseminated sperm. KUNAVONGKRIT et al. (2003) reported 

backflow of around 40 % of the total inseminated volume as well as sperm 

number after inseminating with either 100 ml inseminate or 50 ml se-

men + 50 ml extender subsequently and did not see any improvement. Table 

shows a summary of the sperm number and volume losses measured in nu-

merous studies.  

All measures to prevent backflow in sows using a cervical tamponade failed to 

increase sperm numbers in the distal uterus and oviduct (PURSEL, 1982). 

 

Table 1. Sperm and volume losses (%) due to backflow in the sow 

Sperm loss [%]  Volume loss [%] References 

- 22-51 BAKER et al. (1968) 

- 33 VIRING and EINARSSON (1981) 

25 70 
STEVERINK et al. (1998), 
KUNAVONGKRIT et al. (2003) 

40 40 KUNAVONGKRIT et al. (2003) 

- 0-65 MEZALIRA et al. (2005) 

 

It is not clear whether backflow is a means of selection of vitally compromised 

sperm, as it is not a physiological event. As boars ejaculate a fair larger number 

of sperm ensures inhibition of backflow by plugging the cervix with the secre-

tions of the bulbourethral gland, discharged in the late phase of ejaculation. In 

natural mating the secretions of the bulbourethral gland provide a physiological 

plug in the sow’s vagina and prevent semen from leaking (HART and 

GREENSTEIN, 1968). 
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2.2.2 Phagocytosis 

 

The constitution of immune cells found in the non-clinical endometrium, covers 

various types including lymphocytes, macrophages, neutrophils, eosinophils, 

mast and plasma cells. The greatly varying concentration is subject to the stage 

of oestrus (BISCHOF et al., 1994, ENGELHARDT et al., 1997, KAEOKET et al., 

2002). The predominant type of leucocyte found in the non-clinical and non-

gravid uterine epithelium and sub epithelial stromal layer, were lymphocytes. 

The highest population of lymphocytes was found during oestrus and early di-

oestrus, followed by eosinophil granulocytes. BISCHOF et al. (1994) implied that 

this presence of substantial numbers of immune cells in the endometrium and 

underlying connective tissue, provides the capability of a local immune re-

sponse. It is however not completely understood, whether this implied immune 

reaction provides enough macrophages to diminish substantial sperm numbers.  

During oestrus the uterus prepares for immunological responses to encounter 

the process of mating, which includes the uptake of foreign substances from the 

ejaculate, as well as the implantation of the embryo(s) after successful fertilisa-

tion (JUNGE-KRAEMER, 2012). 

LOVELL and GETTY (1968) proposed that a local inflammation occurs in the 

sow’s uterus post insemination, linked to a subsequent influx of polymorph nu-

clear granulocytes (PMN). ROZEBOOM et al. (1998) discovered that the number 

of recruited leucocytes depended on the constituency of semen. Semen ex-

tender alone did not result in such a strong migration of PMN into the uterine 

lumen as semen (p ≤ 0.01). Also, the greatest number of PMN, when gilts were 

inseminated with semen, was not found proximate to time of insemination, but 

12 h post AI. ENGELHARDT et al. (1997) saw that not sperm but seminal plasma 

triggered the recruitment of leucocytes into the uterine epithelium as well as the 

stromal layer beneath. FIRST et al. (1968) detected phagocytosis only eight 

hours post AI. 

MATTHIJS et al. (2003) and EISENBACH (2003) suggested that only damaged and 

falsely capacitated sperm cells are phagocytised to remove prospective necrotic 

products prone to cause inflammation in the uterus. PURSEL et al. (1978) as-

sumed the occurring phagocytosis by PMNs serves as a cleansing step to pre-
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pare the uterus for nidation of the descending embryos. This is strengthened by 

ROBERTSON (2005) who undertook trials in humans.  

MATTHIJS et al. (2003) proposed that backflow as well as phagocytosis of sper-

matozoa, as a result of PMNs migration, varies depending on the volume and 

sperm concentration of the inseminate. 

PURSEL et al. (1978) undertook studies observing the fate of fresh as well as 

frozen sperm in gilts, during several time points post insemination. Throughout 

their studies it was shown that the numbers of recovered fresh sperm were con-

stantly higher than the numbers of frozen sperm. They observed that the num-

ber of polymorph nuclear leukocytes was similar in gilts independently of insem-

ination with fresh or frozen semen and that phagocytosis of these sperm oc-

curred within two hours post AI. RODOLFO (1934) and BURGER (1952) however, 

proposed that the major sperm loss in swine is dedicated to backflow rather 

than to phagocytosis.  
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2.2.3 Leakage into the peritoneal the lumen 

 

OVERSTREET and COOPER (1978A), (1978B) studied sperm migration through the 

female reproductive tract in rabbits. They observed a large sperm population 

within as little as 15 min post service in the upper oviductal regions drawn by 

the myometrial peristalsis (BOWER, 1974). Most sperm of this population were, 

however, not motile and showed defect plasma membranes. It was thus fol-

lowed that those sperm were not intended to serve fertilisation (OVERSTREET 

and COOPER, 1978a) but were accelerated past the infundibulum into the perito-

neal lumen. This mechanism of sperm loss has however only been documented 

in rabbits and no other species yet. Also VIRING and EINARSSON (1981) docu-

mented sperm passing through the oviduct into the peritoneal lumen during the 

first hours after conventional insemination in the pig. It is still to be viewed criti-

cally, because studies regarding the transition to the peritoneal abdomen have 

so far only been undertaken in rabbits and not been repeated.  

 

 

2.2.4 Reservoir formation in the caudal oviductal isthmus  

 

 
Spermatozoa are not fully competent to fertilise when ejaculated, but undergo 

final activation on their route through the female reproductive tract. This matura-

tion process, referred to as capacitation, is necessary to enable interaction with 

the Zona pellucida, triggering the acrosome reaction and subsequent fertilisa-

tion of the ovum (YANAGIMACHI, 1994). Capacitation is facilitated by the connec-

tion of sperm to the oviductal epithelium prior to ovulation. Sperm migrate to-

wards the fluid current throughout the uterine cavity, pass the UTJ, which in it-

self, being a funnel, presents an anatomical “bottle neck” to infectious organ-

isms and sperm (SUAREZ, 2008). Further, the viscous mucus, present in the 

uterotubal cavity, provides a barrier, already shortening the amount of sperm 

entering the caudal isthmus of the oviduct at the same time. A selection process 

occurs by the attachment of vital and membrane intact sperm to the oviductal 

epithelial cells (OEC) and proximate to the UTJ in the caudal oviductal isthmus 

(MBURU et al., 1997, SUAREZ, 2001). This population is described as the func-
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tional sperm reservoir (HUNTER, 1981, HARPER, 1994, SUAREZ, 1998) and has 

multiple functions (FAZELI et al., 1999, SUAREZ, 2001, TÖPFER-PETERSEN et al., 

2002): 

 

 Selection of vital, fertilisation competent spermatozoa 

 Retention of sperm from the site of fertilisation and prevention of poly-

spermy 

 Maintenance of sperm vitality and suppression of motility until ovulation 

 Facilitation of capacitation and hyperactivation 

 

Population of the UTJ vicinity occurs as early as five to 15 min after insemina-

tion (FIRST et al., 1968, BAKER and DEGEN, 1972, OVERSTREET and COOPER, 

1978a) but can take up to eight hours in cattle (HUNTER and WILMUT, 1984) or 

only one to two hours in pigs (HUNTER, 1981). It is maintained by on-going mi-

gration of sperm from the uterus close to the UTJ during the first 24 h after in-

semination (RIGBY, 1966, PURSEL et al., 1978). Even though sperm are found in 

the oviduct as early as 15 min post insemination, the overall population never 

exceeds several thousand (PURSEL et al., 1978). 

TAYLOR et al. (2008) findings fortify this. Sperm numbers in the oviduct varied 

between 2000 and 16000 (PURSEL et al., 1978, KUNAVONGKRIT et al., 2003). 

RIGBY (1966) showed that six hours post AI approximately 1 x106 spermatozoa 

populated the UTJ and that this number was maintained until 24 h post AI. After 

ovulation there were no spermatozoa to be found.  

 

Only vital, intact sperm (MBURU et al., 1997) bind via the apical surface mem-

brane to the oviduct epithelium and the thereabouts located cilia. The sperm 

attaches, saving vital energy needed for hyperactivation to move towards the 

oocyte. Binding to the somatic oviductal epithelial cells (OEC) also perpetuates 

membrane integrity (TÖPFER-PETERSEN et al., 2002). When bound to the OEC, 

capacitation factors initiate the re-distribution of surface membrane structures at 

the apical region of the sperm head. This process involves re-organisation of 

surface proteins and the lipid bilayer (GADELLA et al., 2008) under the influence 

of intracellular hydrogen carbonate and extracellular calcium ions and serum 

albumin. It is still not completely clear what exactly induces the process of ca-
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pacitation. However, it is known that this structural re-organisation of the mem-

brane is substantial to fertilisation, as caudal epididymal sperm were not able to 

fertilise stage II oocytes in vitro, without the addition of artificial capacitation fac-

tors. In cattle (BAILLIE et al., 1997) and pigs (PETRUNKINA et al., 2001) the hor-

monal status of the oviductal fluid, does not seem to have any influence on ca-

pacitation.  

After attachment to the oviduct wall, the protective de-capacitation factors, ac-

quired from the seminal plasma (YANAGIMACHI, 1994) are removed. A massive 

influx of extracellular calcium ions, putatively via various ion channels in the 

plasma membrane, occurs and destabilizes the plasma membrane. This con-

siderable Ca2+ uptake is most likely enhanced by intracellular hydrogen car-

bonate. Carbonic anhydrase, present in the sperm head, maintains high intra-

cellular bicarbonate levels. Bicarbonate increases cyclic adenosine monophos-

phate (cAMP) production which then activates kinase (PKA), inducing tyrosine 

phosphorylation and migration of proteins towards the apical plasma mem-

brane. Tyrosine phosphorylation facilitates the onset of capacitation (VISCONTI 

et al., 1995) and increases Zona pellucida affinity (PUKAZHENTHI et al., 1998), 

which is substantial for gamete recognition and interaction, causing cholesterol 

efflux from the sperm (GADELLA et al., 2008). The presence of serum albumin, 

derived from oviductal as well as follicular fluid (TRAVIS and KOPF, 2002) medi-

ates this efflux and acts as a cholesterol acceptor. Further calcium influx results 

in the progression of the acrosome reaction, however only under Zona pellucida 

contact or artificially stimulated by progesterone. These molecular changes 

within the sperm plasma membrane result in a merging of the plasma and acro-

somal membrane after completion of the acrosome reaction. This re-

organisation of the plasma and outer acrosomal membrane results in punctual 

docking, however not in fusion of the respective (TSAI et al., 2010). The last 

phase of capacitation is the hyperactivation of the so far immotile sperm. Hy-

peractivated sperm show increased flagellar bend amplitudes resulting in strong 

whiplashing movements, allowing to draw away from the oviductal epithelium 

and to penetrate the Corona radiata and finally the Zona pellucida (SUAREZ and 

HO, 2003). It is proposed that the structural changes of the sperm membranes 

include shedding of the oviduct binding proteins, thus resulting in the gradual 

release of the sperm from the oviductal reservoir (FAZELI et al., 1999). However, 
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hyperactivation and release only occur prior to ovulation, indicating that signal-

ling from the ovary reaches the oviduct (HUNTER, 1993). A temperature gradient 

being 0.75 °C lower during mating and equalised at time of ovulation may also 

induce the withdrawal of hyperactivated sperm from the oviductal lining (HUNTER 

and NICHOL, 1986). The final accomplishment of capacitation, whilst proceeding 

towards the oocyte, enables gamete recognition, binding to the Zona pellucida 

and acrosome reaction with subsequent penetration and finally actual fertilisa-

tion (SUAREZ, 2001).  

Figure 2 illustrates the arrival and binding of intact, non-capacitated sperm to 

OEC (white sperm) and the onset release after capacitation and hyperactivation 

to proceed towards the descended oocyte (black sperm). 

 

 
Figure 2. Functional sperm reservoir at the caudal isthmus in the sow’s oviduct 
(TÖPFER-PETERSEN et al., 2002). 
 

To a certain extent, capacitation can be inhibited, if favourable disposal of 

decapacitation factors occurs. However once fully capacitated (TSAI et al., 

2010), spermatozoa only remain fertilisation competent for a limited amount of 

time (YANAGIMACHI, 1994). Should no engagement with an ovulated oocyte oc-

cur, apoptosis is most likely the consequence (HUNTER, 1993).  

As reviewed by GIL et al. (2010) capacitation can be induced artificially by the 

addition of caffeine to the respective medium as it is practiced in in vitro fertilisa-

tion (IVF) systems, where neither OEC nor follicular fluids are present.  
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Communication between sperm and the OEC synchronises and coordinates 

sperm function with ovulation and thus ensures the conjunction of two compe-

tent gametes at the right time (HUNTER, 1981).  

 

 

2.2.5 Binding to the endometrium  

 

In other species, i.e. bovines, avians or reptiles a pre-selection of ultrastructural-

ly intact sperm takes place. Sperm that do not cover these traits are dismissed 

by holding-back mechanisms or flushing. In the bovine only vital spermatozoa 

manage to migrate through the cervix into the uterine cavity, because motility 

deprived sperm are forwarded out by the current of the cervical mucus (Hawk, 

1987). In birds and reptiles, sperm can be kept in folds and cavities along the 

perimeter if the uterine lining for up to months until needed for fertilisation as 

reviewed by HOLT and LLOYD (2010). In pigs however no such selection is 

known so far. Semen is deposited right through the cervix into the uterine body 

and so no selection of weak spermatozoa takes place. It is thus that a binding to 

the endometrium before fertilisation acts as a comparable selection mechanism 

of fertile rather than a back holding of unfertile sperm.  

LOVELL and GETTY (1968) observed an interaction of sperm with the uterine epi-

thelia, but could not allocate function and reason of this binding. RODRIGUEZ-

MARTINEZ et al. (1990) described these sperm to be intact regarding ultrastruc-

ture, whilst most sperm found freely in the uterine lumen were damaged. 

TAYLOR et al. (2008) showed that only a fraction (55 ± 7 %) of the originally ap-

plied number of sperm is recovered by flushing after incubation for one hour 

with sections of uterine horns. The sperm flushed out of the uterus were pre-

dominantly damaged, leaving the motile ones with intact plasma membranes 

inside the uterus. As backflow as well as leakage into the peritoneal cavity could 

be excluded due to the experimental design, it may well be that sperm were 

held back due to binding to the endometrium. Further, they also documented 

free, fully functional sperm in the uterine lumen, possibly indicating that the 

binding to the endometrium is a temporary restricted binding, undone by certain 

still to be identified, factors.  
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JUNGE-KRAEMER (2012) inseminated gilts with 3 x109 sperm extended in 80 ml 

of seminal plasma and retrieved leucocytes and sperm from the uterine horns at 

either 15 min, 2 hours, six hours post AI or at time of ovulation (OV). They could 

not retain sperm from uterine horns flushed at different time points after conven-

tional 2 h, 6 h or at time of ovulation after hysterectomy. Also, gene expression 

in the endometrium at these time points was studied by a custom made array. 

Figure 4 shows leucocyte and sperm numbers retrieved from the uterine horns 

post AI. No sperm were found any later than two hours post AI. In the first flush-

ing (15 min post AI) x106 sperm were retrieved. However, no sperm could be 

found in different sections of the uterine horns when ultrathin slices were ob-

served for sperm. JUNGE-KRAEMER (2012) did not recover sperm any later than 

two hours post AI, after inseminating gilts with 3 x109 sperm extended in 80 ml 

of seminal plasma. Between 15 min and two hours post AI 5-6 x107 sperm were 

counted in the flushing volume of the uterine horns. However six hours after 

insemination and at time of ovulation, no sperm were found at all. 

 

 
Figure 3. Numbers of leucocytes and sperm recovered in flushing volume at 
certain time points post AI (JUNGE-KRAEMER, 2012). 
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The consequent modulation in gene expression nourishes the idea of firstly in-

teractions of sperm with the endometrium and secondly also a tight binding, as 

sperm were not flushed out when rinsing the uterine segments thoroughly 

(JUNGE-KRAEMER, 2012). However, it may be a transient binding, as LOVELL and 

GETTY (1968) and TAYLOR et al. (2008) suggest after retrieving only intact sperm 

by flushing uterine horn segments post AI. This leads to the hypothesis that 

porcine sperm undergo close binding with the endometrium, resulting in shifted 

gene expression patterns of the endometrium and putatively influencing later 

events such as fertilisation, implantation and gravity (TAYLOR et al., 2008). It is 

further indication for sperm release or active detachment once a respective im-

pulse has happened and thus migrate to the oviduct where they supply the res-

ervoir with fresh, non-capacitated sperm awaiting the next wave of ovulation. 

The physiological background for this “uterine reservoir” may lie in the release 

of vital and motile sperm to feed the oviductal reservoir in case of a lengthened 

timespan between insemination and ovulation. Further explanations could lie in 

the activation of cytokine production of the epithelial cells after contact with 

sperm (TAYLOR et al., 2008, JUNGE-KRAEMER, 2012). Also, protection of sperm 

from the withdrawal by backflow or being attacked by PMNs could be a reason 

(TAYLOR et al., 2008). Retention of sperm by the uterine epithelium might also 

explain why circumventing the uterus leads to successful fertilisations with dras-

tically reduced sperm numbers. However, direct visual evidence of sperm 

bound to the epithelium have not been repeated since LOVELL and GETTY 

(1968).  
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2.3 Carbohydrate mediation of sperm- and female reproductive tract-

interactions  

 

The species-specific events of mammal fertilization require a variety of engaged 

molecules and make a comparison between species difficult (SINOWATZ et al., 

1995).  

However it is known that all mammalian sperm, on route to fertilization, undergo 

many interactions with the female reproductive tract utilizing their endogenous 

as well as acquired surface molecules to engage with the respective opposite 

membrane and that these events are protein-carbohydrate mediated (TÖPFER-

PETERSEN, 1999a).  

The most prominent interactions of sperm occur with the oviduct (SUAREZ et al., 

1991) membrane and the Zona pellucida (TÖPFER-PETERSEN et al., 2000). Fur-

ther it has been shown that sperm-binding to the Sertoli cells during spermio-

genesis involves carbohydrate recognition, too (RAYCHOUDHURY and MILLETTE, 

1997). Sperm interact with the female reproductive tract via protein-

carbohydrate interfacing, where the sperm surface provides the (glyco-) protein 

and the oviduct mucosa or Zona Pellucida, respectively provide a glycan ligand. 

These specific glycan-binding proteins (GBP) are called lectins (GABIUS, 1997) 

and shortly summarized below. 

 

 

2.3.1 Lectins as protein ligands 

 

Generally GBPs can be allocated to one of two groups (disregarding glycan-

specific antibodies): lectins and glycosaminoglycan-binding proteins (GABIUS, 

1997). 

Lectins are large, complex ubiquitous occurring proteins or glycoproteins of 

non-immunic origin (BARONDES, 1988). All lectins share evolutionary origins and 

show shared structural features. They were firstly found in plant and later also in 

animal organisms (GABIUS, 1997). As active ingredients in plants, lectins can be 

poison for animals after digestion and cause shigelloses for example.  

Animal derived lectins function mostly in cell-cell recognition and interactions 

such as recognition of viruses, initiation of the inflammatory response, bacterial 
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and viral pathogenesis or protein folding (TAYLOR and DRICKAMER, 2007). In re-

production animal lectins or lectin-like proteins, play an important role in sperm 

interaction with the female reproductive tract and gamete recognition and inter-

actions. It has been shown in several mammalian species, especially in the 

large farm animals, that sperm-epithelium interactions are interactions of mole-

cules on the sperm plasma membrane with the respective female oligosaccha-

ride structure (Calvete et al., 1992).  

A legitimate classification of proteins as lectins is undertaken by the carbohy-

drate-recognition-domains (CRD) of the molecule. In most cases the CRD is 

located terminally. Typical for the different groups are the group-specific amino 

acid residues involved in the binding to respective ligands on the end outer 

ends of glycan chains. 

 

Animal lectins are classified into different categories after their CRD (DRICKAMER 

and TAYLOR, 1993, GABIUS, 1997): 

C-type lectins adhere to various numbers of versatile sugar moieties, under 

Calcium-dependence. A subgroup of the C-type lectin family (Asialglycoprotein 

receptor) occurs in the testis and in spermatozoa (GABIUS, 1997). 

I-type lectins possess an immunoglobulin-like CRD and adhere to various car-

bohydrate ligands. They thus belong to the immunoglobulin superfamily (IgSF) 

excluding antibodies and T-cell receptors (VARKI and CROCKER, 2009). An im-

portant subgroup within this family is formed by the sialic acid-binding, immuno-

globulin-like lectins (Siglecs).  

The most ancient group of glycan-binding proteins are the galectins (or S-type 

lectins). They are found throughout all metazoan organisms studied and bind to 

β-galactoses. Galectins are involved in cell-cell as well as cell-matrix interac-

tions. Further galectin signalling at the cell surface has influence on cellular 

functions (CUMMINGS and LIU, 2009). 

P-type lectins bind to mannose 6-phosphate containing glycoproteins and are 

therefore also referred to as M6P receptors. The specialised trafficking of lyso-

somal enzymes requires M6P-recognition by P-type lectins. In case of some 

genetic disorders, the glycan recognition is inhibited and results in a failure of 

intracellular degradation of cellular components due to the lack of almost all ly-

sosomal enzymes (VARKI and KORNFELD, 2009). 
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In lectins, the CRD only involves one to three saccharide residues with a high 

specificity but at the same time low affinity for the respective ligand (VARKI et al., 

2009). Thus the interaction can be separated easily. Although this interaction 

involves low affinity for the opposite molecules, the binding of lectins to glycan 

ligands triggers biologically highly relevant processes, without the lectin pos-

sessing enzymatic properties (GABIUS, 1997). This requires multivalency for the 

respective substrate (RINI, 1995). Their specificity is highly stereo-specific, 

meaning one lectin binds to one or occasionally two different oligosaccharides 

only. Lectins tend to recognize specific terminal features of glycan chains by 

fitting them into shallow, but relatively well-defined, binding pockets (VARKI et 

al., 2009) Figure 6 shows two possible ways how surface lectins and glycan 

ligands can interact. Lectins may bind to glycans on the surface of respective 

cells (Figure 4 A), as well as with glycan moieties of glycoproteins (Figure 4 B).  

 

 
Figure 4. Possible lectin-carbohydrate interactions (mod. from VARKI et al., 2009). 

 

Due to the highly specific affinities for respective glycan ligands, lectins are ex-

cellent tools in carbohydrate diagnostics. Glycoconjugate distribution or cell dif-

ferentiation/maturation are few of the areas to be named. “The challenge then is 

to tell the difference between what can bind to a recombinant lectin in an in vitro 

experiment and what actually does bind to the native lectin in a biologically rele-

vant manner in vivo” (VARKI et al., 2009). 

A B 

The lectin is provided by one cell, the glycan ligand by 
the other.  

The lectin is provided by the 
cell and binding occurs to a 
free glycoprotein. 
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In mammal reproduction so called lectin-like proteins are found to be greatly 

involved in gamete interactions. It is known that species-specific oligosaccha-

rides are present on the female cell surfaces. Further, lectin-like proteins are 

present as sperm adhesins on the surface of the sperm head (CALVETE et al., 

1994). The following chapters describe how these (glyco) proteins are involved 

in the reproduction of sus scrofa.  

 

 

2.3.2 Porcine sperm adhesins 

 

The plasma membrane of released sperm from the testis is not fully matured. 

During the transition phase through the epididymis, the plasma membrane is 

subject to alterations such as the release, modification and adsorption of pro-

teins or lipids (EDDY and O’BRIEN, 1994). The acquirement of sperm adhesins is 

one of these changes. 

The main molecules involved in mammalian sperm binding are multifunctional 

proteins and glycoproteins (i.e. lectins), coating the apical region of the sperm 

head (CALVETE et al., 1992, DOSTALOVA et al., 1995b, TÖPFER-Petersen et al., 

1998). Due to their adhesive properties, they are grouped into the so-called 

family of sperm adhesins. These low molecular mass, lectin-like proteins of 12-

14 kDA in size are species-specific in all domestic mammals CALVETE ET AL. 

(1992). They are not synthesized by spermatozoa themselves, but by the ac-

cessory glands and are acquired during spermiogenesis and matura-

tion/migration to the epididymis as well as during ejaculation (CALVETE et al., 

1994). They are found to be expressed in the male genital tract and seminal 

plasma and have been documented in various shapes and varieties in several 

mammals (i.e. rat (KOHANE et al., 1980); cattle (MILLER et al., 1990)). However, 

the most thorough investigations have been undertaken in boar semen. Also, 

sus scrofa possess the largest number of different sperm adhesins compared to 

other mammals studied (TÖPFER-PETERSEN et al., 1998). The three boar sperm 

adhesins: AQN-1, AQN-3 and AWN as well as the porcine seminal plasma pro-

teins: PSP-I and PSP-II including their glycosylated isoforms (TÖPFER-PETERSEN 

et al., 1998, TÖPFER-PETERSEN, 1999a, TÖPFER-PETERSEN, 1999b). All members 

of the spermadhesin family share 60-98 % amino acid sequence, although they 
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are not functionally alike (ROMERO et al., 1997). Table 2 shows the five porcine 

sperm adhesins with their respective oligosaccharide ligands/glycan affinity.  

 

Table 2. Glycan ligands and functions of porcine sperm adhesins and seminal 
plasma proteins 

Sperm-
adhesin 

Glycan ligands Function 
Heparin 
affinity 

AQN-1 
Mannose/ 
Galactose 

Initiate recognition of and  
binding to ZP glycoproteins 

yes AQN-3 Galactose 
Binding to oviduct epithelium 
Binding to ZP 

AWN Galactose 
Initiate recognition of and  
binding to ZP glycoproteins 

PSP-I/PSP-II 
(AWN-2) 

Mannose 6-
Phosphate 

Decapacitation factors no 

 

All sperm adhesins are highly present in porcine seminal vesicle fluid and semi-

nal plasma and can thus be distinguished by their species-specific cellular origin 

from the male reproductive tract (SINOWATZ et al., 1995), as well as their func-

tion. Besides their binding properties to oligosaccharides on epithelia in the fe-

male reproductive tract and/or zona pellucida glycoproteins, they also show af-

finity for phospholipids, serine-proteinase-inhibitors and glycosaminglycans 

(SANZ et al., 1992a).  

In the pig, they can be assigned to two major groups: heparin binding (AWN-1, 

AQN-1, AQN-3) and heparin non-binding (PSP-I/PSP-II) (SANZ et al., 1993). 

Heparin is a zona pellucida component and therefore a potential ligand for the 

boar sperm adhesins. The heparin binding porcine sperm adhesins recognise 

and bind to non-reducing terminal galactose in O- and N-linked glycans. Be-

sides their role in oviduct binding, as well as zona pellucida recognition and 

penetration, they are also involved in sperm capacitation (SANZ et al., 1992a).  

At ejaculation and together with other proteins, the spermadhesin molecules 

form a protective layer around the acrosomal region of the sperm head, most 

likely protecting the sperm cell from an early acrosome reaction (TÖPFER-

PETERSEN et al., 1998).  
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AWN-1 

Of the three identified boar sperm adhesins, AWN-1 is the only one, already 

present on the plasma membrane of non-ejaculated epididymal sperm 

(DOSTALOVA et al., 1994). It is named after the first three residues of its amino 

acid sequence: Ala-Trp-Asn and is produced in the epithelium of the rete testis  

and transported to the epididymis, where it associates with the plasmalemma of 

immature sperm during their migration to the caudal epididymis (SINOWATZ et 

al., 1995). SANZ et al. (1992b) quantified AWN-1 with 5.9-7.5 x106 molecules 

per sperm, facilitating a sufficient cover of one third of the apical head with a 

mono-cellular layer. AWN-1 is absent from epididymal fluid  but was verified in 

porcine seminal plasma, where it accounts for up to 8 % of the total seminal 

plasma proteins (DOSTALOVA et al., 1994), indicating that it is not only produced 

in the testis or rete testis, but also in the accessory glands. During ejaculation 

further 50 x106 molecules AWN-1 coats the sperm head.  Along with 12-60 x106 

molecules of the other sperm adhesins it forms an up to eight molecules-dense 

layer on the sperm surface. These interactions occur through phospholipids, 

which are numerously present on the surface of non-ejaculated spermatozoa 

(DOSTALOVA et al., 1994). Post ejaculation the amount of AWN-1 on the sperm 

surface is nearly the tenfold of the amount documented on epididymal sperm 

(DOSTALOVA et al., 1994). SINOWATZ et al. (1995) assumed the origin of this frac-

tion of AWN-1 to be the epithelium of the seminal vesicles. Three hours post in 

vitro capacitation these large numbers decrease back to epididymal sperm level 

and isoform -2 is lost completely (DOSTALOVA et al., 1994).  

AWN-1 is capable of binding to heparin (SANZ et al., 1993), serine proteinase 

inhibitors (SANZ et al., 1992a) as well as zona pellucida glycoproteins (SANZ et 

al., 1992d). Thus it plays a major role in zona pellucida binding, as it possesses 

high affinity for the O-linked oligosaccharides, present as zona pellucida glyco-

proteins on the oocyte’s surface (DOSTALOVA et al., 1995a), such as NeuAcα(2-

3/6)-Galβ(1-3)-GalNAc (DOSTALOVA et al., 1995a). AWN-1 as well as AQN-1 

may share some molecular features with trypsin-like enzymes, however they do 

not show enzymatic activity (SANZ et al., 1992a). 
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AQN-1 and AQN-3 

Sperm adhesins of the AQN family are synthesized by epithelia from the semi-

nal vesicle (VESELSKY et al., 1992) and are named after their first three terminal 

N-amino acid sequences: Ala-Gln-Asn (SANZ et al., 1992c). 

AQN-1 and 3- show similar affinity for ZP glycoproteins as AWN (DOSTALOVA et 

al., 1995a, CALVETE et al., 1996). Still, the difference indicates that each sper-

madhesin recognises distinct ZP glycan ligands. AQN-1, AQN-3 and AWN-1 are 

all lectin-like proteins with high affinity for distinct Zona pellucida glycoconju-

gates, and all share the affinity for Galβ(1-3)-GalNac oligosaccharide sequenc-

es (CALVETE et al., 1996). AQN-3 also shows slight affinity for 5-N-acetyl Neu-

ramic acid (NeuNac) and was shown to prefer tri- and tetra-antennary carbohy-

drates than diantennary structures (CALVETE et al., 1996). 

When N-glycosylated at Asp 50, AWN-1 and AQN-3 do not show carbohydrate 

binding activity, neither for Zona pellucida glycoproteins, nor serine proteinase 

inhibitor ligands (CALVETE et al., 1993a, CALVETE et al., 1993b). This indicates 

that the attachment of a glycosyl moiety may influence ligand affinities of sperm 

adhesins, consequently changing the function of AWN-1 and AQN-3 from ca-

pacitation factor to prime Zona pellucida binding molecule (CALVETE et al., 

1994). 

Together with AWN-1, AQN-3 is the main Zona pellucida binding protein 

(ENSSLIN et al., 1995). Both sperm adhesins bind tightly by association with 

phospholipids to the sperm surface membrane. It was shown that upon mixing 

with seminal plasma, all other sperm adhesins do not adhere directly to the 

sperm surface, but become coated on top of AWN-1 and AQN-1 (DOSTALOVA et 

al., 1995b). During in vitro capacitation all other sperm adhesins are lost and 

only AWN and AQN-3 remain on the sperm surface, providing putative primary 

receptors for Zona pellucida glycoproteins, enabling gamete recognition and 

interaction (TÖPFER-PETERSEN and CALVETE, 1996). 

 

PSP-I/PSP-II (AQN-2) 

Chiefly named AQN-2, the porcine seminal plasma proteins PSP-I/PSP-II het-

erodimer was firstly found in seminal vesicle fluid, subsequently coating ejacu-

lated spermatozoa. This isoform is completely lost during capacitation 

(DOSTALOVA et al., 1994). It binds loosely to the sperm surface and has so far 
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not been seen to have any function in gamete recognition or zona binding 

(CABALLERO et al., 2005).  

Whilst the sperm adhesins AWN, AQN-1 and AQN-3 show strong affinity for 

zona pellucida glycoproteins, PSP-I/PSP-II does not maintain any attachment to 

the sperm surface following in vitro capacitation or after migration through the 

female reproductive tract. Between 32,2-90,8 x106 molecules coat the sperm 

head after exposure to seminal plasma, but are shed completely during capaci-

tation (DOSTALOVA et al., 1994). An in vivo functional role of this spermadhesin 

during gamete binding is therefore omitted. However, CABALLERO et al. (2004) 

showed that in vitro the presence of the dimer, maintained the viability of freshly 

extended or frozen thawed boar sperm. Similar positive effects after addition of 

PSP-I/PSP-II, were documented for highly diluted semen, pretending concentra-

tion shifts imposed during flowcytometric sex selection, by CENTURION et al. 

(2003). Affinity of the dimer as well as the isolated PSP-II subunit for zona gly-

coproteins (ZPG) could be shown in vitro, but not for the isolated PSP-I mono-

mer. This indicates the presence of the ZPG binding region on the PSP-II mon-

omer (CALVETE et al., 1995). Further both isolated monomers bind to heparin 

whilst the PSP-I/PSP-II complex does not show affinity for heparin. It was con-

cluded that the binding activity is located on the PSP-II monomer but is con-

cealed in the dimer. The reason for this impairment may lay in sterical blocking 

or changes in conformation of the heparin ligands and remains unclear. When 

glycosylated at Asp 47, PSP-I is incapable of binding to the zona pellucida 

(CALVETE et al., 1993b). PSP-II forms a heterodimer with specific glycoforms of 

PSP-I. The type of glycosylation plays an important role as documented by 

CALVETE et al. (1993b), (1995). The shown zona pellucida binding may there-

fore not be relevant for gamete interaction, as it is known for the heparin-binding 

sperm adhesins (CALVETE et al., 1995). The dimerization of the PSP-I and PSP-

II units significantly affects their binding capabilities. Positive binding of isolated 

PSP-II was inhibited by aggregation with PSP-I interacted with the ZP. 

The binding properties of aggregates may differ from the properties of their 

monomers as CALVETE et al. (1995) documented for the PSP-I/PSP-II heterodi-

mer. JONAKOVA et al. (2000) showed that under physiological conditions the 

boar sperm surface proteins preferentially exist as aggregates within the semi-

nal plasma rather than their monomers and that the proportion of aggregated 
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seminal plasma components deceives single or as monomer existing mole-

cules. 

DOSTALOVA et al. (1994) concluded that different subpopulations of the same 

sperm adhesins play diverse roles in sperm membrane protection and 

(de)capacitation as well as zona pellucida recognition and penetration. 

 

 

2.3.3 Binding to the oviduct epithelium 

 

The binding ability of vital and viable sperm in the female reproductive tract is 

essential for the survival, storage and preparation for the fertilization process. 

Capacitation is facilitated by the connection of sperm to the oviductal epithelium 

prior to ovulation. Once capacitation is initiated, the sperm adhesins are shed 

from the sperm surface membrane (SUAREZ, 1998). 

All these functionalities underlie the forgoing interaction of sperm with the mu-

cosa of the oviduct epithelium. Hereby prevalently a direct contact to the cilia 

occurs (SUAREZ et al., 1991). This species-specific binding (SUAREZ, 2001) en-

compasses carbohydrate recognition by lectin-like receptors on the sperm 

plasma membrane (TÖPFER-PETERSEN et al., 1998). Table 3 lists the species-

specific glycan ligands for different mammalian sperm adhesins to form the 

functional oviductal reservoir. 

 

Table 3. Species-specific oviduct glycan ligands for mammalian sperm adhesins 
Species Oviductal glycan ligand References 

Hamster Galactose DEMOTT et al. (1995) 

Horse Galactose 
LEFEBVRE et al. (1995) 
DOBRINSKI et al. (1996) 

Cattle Fucose 
LEFEBVRE et al. (1997) 
SUAREZ et al., (1998) 

Pig 
Oligomannose/ terminal Ga-
lactose 

GREEN et al. (2001) 
WAGNER et al. (2002) 
EKHLASI-HUNDRIESER et al. (2005) 

Rat Sialic acid/ GlcNac CORTES et al. (2004) 

Llama Galactose/ GalNAc APICHELA et al. (2010) 
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In the pig the acquired sperm surface proteins (sperm adhesins) interact with 

oligomannoses and terminal galactoses on the oviductal epithelium. This inter-

action facilitates the formation of the functional oviductal reservoir in the pig.  

WAGNER et al. (2002) recognized that mannosyl-oligosaccharides play a key role 

in sperm-oviduct interactions.  

GREEN et al. (2001) identified not only mannose to inhibit sperm binding to ovi-

duct epithelial cells, but also lactose and maltose. However, they examined iso-

lated oviductal epithelia in suspension and not in monolayers or explant studies. 

This may mean that not only luminal but also basal carbohydrate structures 

were available for sperm binding and thus influencing the interpretation of the 

results.  

During capacitation around 50-75 % of AQN-1, AQN-3 and PSP-I/II as well as 

90 % of AWN-1 are released from the sperm head, indicating that the remaining 

molecules play a significant role in capacitation and/or gamete recognition 

(DOSTALOVA et al., 1994). These tightly attached molecules are most likely there 

to prevent early acrosome reaction and are subsequently released, allowing for 

Zona pellucida induced exocytosis (FLORMAN and FIRST, 1988, CROSS, 1993). 

 

 

2.3.4 Recognition of and binding to the Zona pellucida 

 
The recognition of the gametes and interactions of sperm with the Zona pelluci-

da, encasing mammalian oocytes is the crucial step to fertilization (SINOWATZ et 

al., 2001). With the changing conditions in the oviduct at the time of ovulation, 

sperm may shed their surface proteins sequentially and thus creating new sur-

face structures which could allow sperm to be released from the epithelium, 

complete capacitation and interact with the descending oocyte (TÖPFER-

PETERSEN, 1999a).  

After having undergone capacitation, hyperactivation and with the superficial 

acrosomal membrane sperm are now completely fertile. The recognition and 

potential binding to the Zona pellucida is also mediated by lectin-carbohydrate 

interactions (YANAGIMACHI and NICOLSON, 1976). Likewise to the sperm-oviduct 

binding, there are species-specific differences in the engaged proteins and re-
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spective saccharide ligands (SINOWATZ et al., 1998, TÖPFER-PETERSEN, 1999a, 

WASSARMAN et al., 2001). 

The ZP encompasses several putative binding mechanisms by providing sever-

al ligands for sperm surface molecule to engage to. The most prominent are the 

so-called Zona pellucida glycoproteins A, B and C (ZPA-C), containing a large 

number of highly specific glycans made up of neutral or highly sulphated or sia-

lyted O- and N-links (RATH et al., 2005). ZPA is the largest ZP protein in the pig, 

containing six potential N-glycosylation sites, meaning that at six potential sites 

an addition of a carbohydrate to a nitrogen atom within the molecule is possible, 

whereas the number of O-glycosylation sites remains still unknown. It is in-

volved in late fertilisation events (TÖPFER-PETERSEN, 1999a).  

ZPB and C are glycoprotein oligomers and assemble the three-dimensional ar-

chitecture of the ZP. ZPB3α and -β proteins play a major role in the mainte-

nance of the three-dimensional structure of the pig’s ZP (DUNBAR et al., 1994). 

They possess three and five potential N-glycosylation sites, respectively as well 

as three and six O-glycosylation sites, respectively (YUREWICZ et al., 1991). In 

the pig ZPB and ZPC are responsible for sperm attachment and binding and 

thus involved in the induction of the acrosome reaction and subsequent pene-

tration through the ZP (TÖPFER-PETERSEN, 1999b). DUNBAR et al. (1994) postu-

lated that not only the carbohydrate structure, but also its position within the 

molecule and three-dimensional architecture influences binding functionality. 

This reflects the binding properties of lectins, which mainly bind to terminal oli-

gosaccharide ligands. 

 

A further molecule tightly associated to the sperm’s surface and putatively in-

volved in initial oocyte recognition is the transmembrane sperm protein p47 

(ENSSLIN et al., 1998). It was shown to be present on sperm bound to the ZP 

and has a high affinity for glycoproteins. After the acrosome reaction it vanishes 

from the sperm surface and is thus thought to participate in gamete recognition 

and initial binding but not secondary binding (RATH et al., 2005). 

Another two porcine integral sperm membrane proteins are 

β1,4 Galactosyltransferase (GalTase) and zonadhesin. GalTase shows affinity 

for specific terminal N-glucosamines on the ZP and supports sperm binding. 

Zona Pellucida glycoprotein C induces the acrosome reaction by aggregating 



Literature 

33 
 

GalTase (LARSON and MILLER, 1997). However, SHUR (1998) showed that 

sperm from GalTase knock-out mice were still fertile, but showed diminished 

penetration properties.  This indicates that gamete recognition and the induction 

of the acrosome reaction is not dependent to only one mechanism. Also zonad-

hesin facilitates initial recognition and binding to the ZP. A precursor protein is 

expressed exclusively in the testis and forms a dimer during sperm maturation 

in the epididymes. After induction of the acrosome reaction it is lost from the 

anterior acrosome where it was localized (LEA et al., 2001).  

The very first sperm associated protein to be identified and characterized was 

(pro-) acrosin (TÖPFER-PETERSEN et al., 1990). It is a multifunctional enzyme 

and is the most dominant ZP-binding protein in the pig. It is a proteinase able to 

go into contact with the carbohydrate domain of the ZP combining hydrophobic 

domains enabling the proteolytic functionality to act membrane associated 

whilst the carbohydrate binding sites enabling binding to the ZP. In the sperm’s 

acrosome acrosin occurs as the inactive precursor proacrosin. This small 53-55 

kDa molecule is activated generating the high molecular mass acrosin. This 

activation appears to be regulated on and by the zona pellucida and occurs 

alongside during acrosome reaction. β-acrosin stimulates the digestion of the 

ZP during sperm migration through this membrane (RATH et al., 2005).  
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2.4 Endometrium cell cultures as biological models 

 

In vitro cultures are decent models to study physiology interaction and differen-

tiation of cell types in a controlled environment and defined parameters. Also 

cell culturing of primary cells has been a common tool to simulate biological tis-

sues (POLLARD, 1990). 

In vitro cell culture models in general have been biotechnological practise for 

several years. The independence and uniformity that accompanies working with 

generated cell lines is the greatest advantage compared to in vivo models 

(POLLARD, 1990). Also looking at the ethical side of things, an in vitro model of-

fers controlled environment without the need of the suffering of the live animal. 

Cell cultures allow studies of distinct cell properties under identical environmen-

tal influences. In vitro cell systems are used for the examination of cell proper-

ties such as interaction with other cell types, hormone secretion, growth proper-

ties or gene expression and the dispersal or course of diseases (GUSEVA et al., 

2003). 

So far in vitro culture models of uterine epithelia have been used to monitor and 

study properties of the different cell types (i.e. luminal, glandular and stromal). 

Hormone secretion, RNA synthesis or ultrastructure were the most studied fea-

tures so far. Many of the human studies were carcinoma models and aimed to 

investigate tumour properties. Thus immortalised tumour cell lines were used to 

achieve the confluent cell layer. Primary culturing of mammalian endometrium 

has been shown for several species such as mouse (UCHIMA et al., 1991), pig 

(ZHANG et al., 1991), sheep (SHELDRICK et al., 1993), cattle (YAMAUCHI et al., 

2003) and horse (BUSCHATZ, 2008). In most cases endometrium cultures were 

used as models to study intracellular responses to various treatments. 

BRAILEANU et al. (1999) and CARNAHAN et al. (2002) studied calcium secretion 

after induction by oxytocin. Other studies looked into differences of the local 

physiology in the endometrium at different stages of gravity and the cell-cell in-

teractions of epithelial and stromal cell (DAVIS and BLAIR, 1993) or the synthesis 

and secretion of hormones during gravity (GROOTHUIS et al., 2002).  

Many studies regarding immune response to the uterine epithelium have fo-

cused on immune cell recruitment after infection or during implantation (CROY et 
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al., 2009). Endometrial cultures have also been used for toxicity screening, for 

example after exposal to insecticides (TIEMANN et al., 1996).  

 

Particularly cultured epithelia or other luminal cells have been applied to exam-

ine cell-cell interactions, not only with immune cells but also with other cell 

types. In the bovine the cultivation of oviduct epithelia was first shown by 

ELLINGTON et al. (1991) who studied the binding of sperm directly to the oviduct 

epithelium under direct visual control. Since, few other techniques have been 

used to verify sperm binding to the oviductal lining:  

 

 Retrieval of sperm by flushing the respective tubes 

 Fixation and section of tracts post mating/insemination 

 Explant cultures of respective tissues 

 

The endometrium is a complex epithelia-mesenchymal tissue consisting of lu-

minal and glandular epithelia, stromal and immune cells as well as vascular el-

ements (LIEBICH, 2004). In most cases, primary cells are extracted from tissues 

or mucosal epithelia by mincing and enzymatic digestion, subsequently filtering 

through different sizes of mesh to harvest the respective cells of size and cell 

type (ZHANG et al., 1991, TIEMANN et al., 1994).  

 

Firstly described by ZHANG et al. (1991), porcine uterine epithelial cells were 

cultured after dissection of endometrium tissue strips from multiparous sows as 

previously described by ROSENKRANS et al. (1990). Cell digestion and thus ex-

traction of epithelial cells was undertaken by enzymatic digestion of the tissue 

strips suspended in different enzymatic solutions of different concentrations (i.e. 

trypsin, collagenase and DNase-I) and incubated for up to 150 min with occa-

sional vigorous shaking to release cells (ZHANG et al., 1991). For the differentia-

tion of cell types, the cell suspension was centrifuged by density gradient cen-

trifugation and luminal epithelia were retained as a band on top of the colloid 

and subsequently disseminated for culturing. The differentiation of stromal and 

glandular cell fragments was undertaken similarly by centrifugation and preced-

ing straining through a 38 µm mesh (ZHANG et al., 1991).  
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Employing this cell harvesting technique, not only epithelia were extracted, but 

also stromal as well as glandular cells. All in vitro porcine endometrium cultures 

following applied the cell extraction method in same or modified manner as 

conducted by ZHANG et al. (1991). BRAILEANU et al. (1999) and UZUMCU et al. 

(1998) modified the method established by ZHANG et al. (1991) and have been 

cited in studies with endometrial primary cultures since.  

To mimic the synthesis of prostaglandins, tissue sections were incubated and 

treated respectively. However, these were not cultured cells, but tissue in sus-

pension and the tissue itself was analysed, not an endometrial monolayer 

(ROSENKRANS et al., 1990).  
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3 Materials and Methods 

 

The trial work for this study was divided into three steps as shown in Figure 7.  

Firstly, a cell culture model from primary porcine uterine epithelial cells (UEC) 

was established. Subsequent studies were undertaken applying the estab-

lished culture system. 

 

To verify putative binding of porcine sperm to UEC, binding trials were com-

menced with ejaculated as well as epididymal sperm. Also alternative cell types 

(porcine fibroblasts and aortal endothelia) were incubated with sperm, too.  

 

Both, UEC and sperm were incubated with lectins to identify possibly en-

gaged ligands. 

 

Finally, both cell types (UEC and sperm) where challenged with selected lectins 

before co-incubation and binding behaviour after blocking was examined. 
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Figure 5. Trial procedure overview: Cell culture establishment (blue), identification 

of binding patterns (red) and mechanisms (green).  
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3.1 Media and reagent compositions 

 

 

1st antibody (1:100):  PBS 
Triton 
Antibody 

 
2nd antibody (1:2000): PBS 

Triton 
Antibody 

 

Acetic acid (0.02 M): 100 ml PBS 
115 µl acetic acid 

 

Collagen (50 µg/ml): Acetic acid (0.02 M) 
Rat tail collagen type-I 

 

D20:    77 % DMEM 
20 % FBS 
1 % NaPyr 
1 % AA 
1 % P/S 

 
EDTA/Trypsin (1x): 1:10 in PBS  

 

Lectin solution (5 %): 200 µl PBS 
1 µl Lectin 

 

Methanol (80 %): 80 % Methanol 
   20 % H2O 

 

PBS (without Ca&Mg): 1 l H2O 
PBS Powder 

 
Sucrose (20 %): 20 % Sucrose powder 
   H2O dest. 
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3.2 Establishment of a primary cell culture from porcine uterine epithelial 

cells 

 

3.2.1 Animals 

 

In total, uteri from 78 primiparous German Landrace or German Edelschwein 

guilts aged 8-10 months and with live weights of over 110 kg, were retrieved to 

harvest primary cells. All animals were housed on site at the Institute of Farm 

Animal Genetics and fed a standard rearing diet. Animals were maintained and 

handled according to the German regulations for animal welfare. Animal num-

bers were announced to the respective authorities. An explicit permission for 

animal experiments was not required, since no harm was inflicted upon live an-

imals. 

 

3.2.2 Slaughter 

 

Guilts were monitored for natural oestrus and slaughtered according to standing 

heat, i.e. the time when artificial insemination would have been performed. Gilts 

were stunned electrically and subsequently slaughtered by exsanguination. 

Three minutes after bleeding the abdomen was opened and the uterus removed 

in toto. Further, the ovaries, oviducts and the mesometrium were removed by 

cutting with sterile scissors without damaging the myometrium. The uterine 

horns were ligated with stitching thread between and a section of 20-25 cm was 

cut off. The sections were placed in sterile Phosphate Buffered Saline (PBS) 

without Ca++ and Mg++ (Karl Roth, Karlsruhe, Germany) containing 2 % Penicil-

lin/Streptomycin (P/S; PAA, Pasching, Austria) in a glass screw top bottle and 

kept at 5 °C for 45 min before carrying out the cell harvest procedure. 

 

3.2.3 Cell Harvest and Dissemination 

 

After the above mentioned incubation time the uterine sections were removed 

from the bottle and placed on cellulose tissue under a laminar flow system to 

ensure an uncontaminated working environment. The stitching material was 

removed. Each end of the horn was fixed with sterile artery clamps ensuring 

open ends and the lumen was then rinsed three times with 10 ml sterile PBS 
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containing 2 % P/S using a 10 ml sterile serological pipette. The liquid was col-

lected in a beaker and disposed of by aspiration. One end was then shut by a 

clamp and 10 ml Ethylenediaminetetraacetic acid and Trypsin (EDTA/Try; 10 % 

(PAA, Pasching, Austria) in PBS without Ca++/Mg++) were inserted via a 10 ml 

sterile serological pipette into the horn and the remaining end equally closed 

with a clamp. Subtle movement of the horn ensured equal distribution through-

out the lumen. Incubation took place in a fresh, sterile beaker filled with 20 ml 

plain PBS containing 2 % P/S and shut with sterile tin foil and placed in a 37 °C 

water bath for 15 min. After enzymatic digestion 10 ml of PBS were added, the 

horn moved subtly and the liquid caught in a 50 ml centrifuge tube containing 

5 ml of warm cell culture medium (D20). The cell suspension was centrifuged 

for 4 min at 209 x g and RT. This protocol was performed three times per horn 

with a difference in digestion time of ten instead of 15 min for the second and 

third repeat.  

After centrifugation the supernatant was removed by aspiration and the cell pel-

let gently resuspended in 500 µl of 37 °C warm D20 medium. Cells from both 

horns were pooled and disseminated onto the glass coverslips coated with col-

lagen in a 6-well culture dish. Cells were cultured in an incubator at 5 % CO2 

saturation at 37 °C with humidified atmosphere. 

 

Glass cover slips (22 mm in diameter, Carl Roth, Karlsruhe, Germany) were 

thinly coated with collagen. Herefore Rat Tail Collagen Type-I (Becton Dickin-

son Biosciences, Heidelberg, Germany) was diluted with 0.02 M acetic acid 

(C2H4O2, Sigma Aldrich, Steinheim, Germany) in sterile PBS (without Ca++ and 

Mg++) to an end concentration of 50 µg/ml. One cover slip was placed in each 

well of the six-well dish and 600 µl collagen solution were carefully pipetted onto 

each coverslip to form a convex meniscus and were left to incubate at room 

temperature (RT) under the laminar flow for one hour. Remaining liquid was 

then removed by aspiration and the matrices were used for dissemination. Fig-

ure 8 shows the coating process. 
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Figure 6. Collagen coating of glass coverslips. 
 

 

3.2.4 Determination of number of cells and cell vitality 

 

Before disseminating the cells onto the coated coverslips, cell concentration per 

ml and cell vitality was determined. A Thoma® counting chamber (new) was 

filled with cell suspension and the epithelial cells were counted using a phase 

contrast microscope (Olympus BX 60, Olympus, Hamburg, Germany) with 400x 

magnification. Batches were sampled twice.  

Cell vitality was determined by flow-cytometry using a FACScan© (Becton Dick-

inson, Heidelberg, Germany) equipped with an Argon laser (488 nm, 15 mW). 

The cell suspension was added to 450 µl PBS and 3 µl Propidium-Iodide (PI, 

Carl Roth, Karlsruhe, Germany) and the cells were counted under red fluores-

cence (FL 3, 650LP nm). Two populations are presented: PI-negative (no red 

stain) and PI-postive (red stain). PI-positive cells possess a defect cell mem-

brane allowing the large molecules to stain the nucleus. The PI-negative popu-

lation is the percentage of vital cells. 

Generated data was evaluated with FCS Express Software, Version 3.0 (DeNo-

vo Software, Thornhill, Ontario, Canada).  

 

 

 

600µl Collagen Typ 1 

Ø 20 mm glass cover slip 

6-well dishes 
60 min, RT © Bergmann 



Materials and Methods 

43 
 

3.2.5 Culture media and additives 

 

Uterine epithelial cells were harvested, disseminated and cultured in cell culture 

medium (D20) containing modified whole Dulbecco’s modified Eagle’s medium 

DMEM (containing 2 mmol L-Glutamine (Applichem, Darmstadt, Germany) and 

0.1 mmol β-Mercaptoethanol (Sigma Aldrich, Darmstadt, Germany) supple-

mented with 20 % heat inactivated foetal bovine serum, 1 % Modified Eagle’s 

Medium (MEM) non-essential amino acids, 1 % P/S (all PAA, Pasching, Austria) 

and 1 % Sodium pyruvate (Sigma Aldrich, Darmstadt, Germany). For dissemi-

nation of the cells 15 µg/ml Endothelial Cell Growth Factor (ECGF, ReliaTech, 

Wolfsburg, Germany) were added.  

 

 

3.2.6 Change of medium 

 

After two days 2 ml fresh D20 media (containing no ECGF) were added to the 

cells without removing the old media. This ensured complete adhesion of cells 

and no removal by aspiration of floating cells. After five days the old media was 

removed completely and replaced by 2 ml per well of fresh media every three 

days. 

 

 

3.2.7 Immunofluorescence staining 

 

For detection of epithelial cells an immune-fluorescence antibody stain proce-

dure was performed. The primary antibody used, was an epithelial cell-specific 

monoclonal rat antibody (Troma III-s; rat anti-cytokeratin-19; Developmental 

Studies Hybridoma Bank, Iowa, USA), targeting for cytokeratin-19 (KRT-19), an 

intermediate filament protein responsible for the structural integrity of epithelial 

cells. 

Cell culture media was removed from confluent UEC and the cells were washed 

with plain PBS and fixed with 1 ml iced methanol (MeOH; 80 %; Carl Roth, 

Karlsruhe, Germany) per well for 10 min. Methanol was removed and 1 ml 

blocking solution (2 % donkey serum in plain PBS) per well was applied and left 
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to incubate at room temperature for 15 min. The cells were washed twice sub-

sequently for 5 min with plain PBS. 

The primary antibody was applied in the following concentrations 1:100, 1:200 

and 1:500 and diluted with plain PBS and Triton (10x; Merck, Darmstadt, Ger-

many). The cells were incubated with the primary antibody for 24 h in a moist 

chamber at 5 °C. It was removed by washing the cells with 1 ml plain PBS per 

well three times. The secondary antibody (goat anti-Mouse IgG (H+L), 

AlexaFluor® 555 conjugate, MoBiTec, Göttingen, Germany) was applied in the 

concentration 1:2000 and incubated for 60 min at 37 °C in an incubator. The 

secondary antibody was removed by washing the cells twice with 1 ml of plain 

PBS per well and for the third rinse 1 ml bisBenzimide H 33342 trichydrochlo-

ride (HOECHST-33342; 0.1 mg/ml in H2O; Sigma Aldrich, Steinheim) was applied 

and incubated for 10 min at room temperature. Consequently, the cells were 

fixed yet one more time with iced MeOH (80 %). For detection with a fluorescent 

microscope (Olympus BX 60, Olympus, Hamburg, Germany) equipped with a 

high resolution digital camera (Olympus DP 71, Olympus, Hamburg, Germany), 

coverslips were removed from the wells and were placed on microscopic slides 

upside down onto mounting media (VectaShield®, Vector Laboratories, Califor-

nia, USA) and fixed with clear nail varnish along the outer edge. For detection 

UV light and a rhodamine filter (555-565 nm) as well as bright field were neces-

sary.  

 

  



Materials and Methods 

45 
 

3.3 Identification of binding patterns 

 

For the binding assays confluent UEC grown on glass cover slips, as described 

above, were used. To verify the binding specificity of porcine spermatozoa to 

the porcine endometrium, also alternative cells were co-incubated with sperma-

tozoa. For this purpose confluent porcine aortal endothelial cells (PAEC) as well 

as porcine foetal fibroblasts (foet. F) were chosen. The fibroblasts where used 

as an inter-species, but non-surface cell type, to prove whether sperm bind to 

any kind of cell or tissue in the same intensity as to porcine UEC. Further, por-

cine aortal endothelia where chosen as a lumen cell from non-reproductive or-

gans. These cell types are regularly used at the Institute of Farm Animal Genet-

ics and isolated as described by BOQUEST et al. (1999) and thus available as 

cryopreserved aliquots at any time.  

 

 

3.3.1 Ejaculate collection and processing 

 
Sperm was collected from four mature and verifiably fertile boars (German 

Landrace and German Edelschwein) donated by the AI centre Neustadt/Aisch, 

Germany, housed according to the German regulations for animal welfare and 

fed standard diets. To ensure constant semen quality, the service boars are 

collected for semen regularly twice a week with two to three days interval. The 

sperm rich fraction was collected by the gloved hand method and carefully ex-

tended with same parts of warm D20 medium. Sperm concentration was meas-

ured using a Nukleo Counter® NC-100™ (Chemo Metec A/S, Allerød, Denmark) 

and the sample examined for motility membrane integrity and morphological 

changes.  

The concentration was determined using a NukleoCounter® NC-100™ and 

membrane integrity was measured flow-cytometrically using a FACScan© apply-

ing the same PI-stain protocol as described for UEC vitality (see chapter 3.2.4). 

Motility was determined using an IVOS-sperm-analysis system (Hamilton 

Thorne Biosciences, Beverly, Ma, USA). Ejaculates with ≤ 70 % motile sperma-

tozoa were dismissed. Semen was then extended to a concentration of 

100 x106 sperm cells/ml and washed twice by centrifugation (10 min, 800 x g, 
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RT) to remove the seminal plasma. The supernatant was discarded and the 

pellet resuspended in D20 medium.  

To identify possible seminal plasma effects, UEC were also incubated with epi-

didymal sperm of four (German Edelschwein) knowingly fertile boars, donated 

by the AI centre Neustadt/Aisch, Germany. The testes were removed by castra-

tion and the seminiferous tubules were dissected from the testes and the caudal 

epididymes were flushed with warm D20 medium and epididymal sperm were 

extended to 100 x106/ml, respectively. It could therefore be excluded that semi-

nal plasma components, already attached to the sperm surface, have influence 

on binding patterns.   

 

 

3.3.2 Binding assays 

 

The cell culture medium was removed from the confluent monolayers and 

500 µl sperm suspension (100 x106/ml) of either ejaculated or caudal epididy-

mal sperm were applied to each well. For the first trials, co-incubation took 

place for up to 60 min in an incubator (37 °C, 8 % CO2). In proceeding trials, as 

little as ten minutes of incubation were identified to be sufficient time for sperm 

to undergo binding with the monolayer. Subsequently, remaining sperm were 

removed carefully by aspiration and the monolayer was washed gently with 

warm D20 cell culture medium. The coverslip was mounted onto a microscopic 

slide with the cells and sperm facing upwards and a 200 µl droplet of D20 was 

pipetted onto the cover slip to protect the cells from drying out (Figure 7). Sperm 

binding was viewed under a phase contrast microscope (Olympus GX 60, 

Olympus, Hamburg, Germany) connected to a high resolution digital camera 

(Olympus DP71, Olympus, Hamburg, Germany). The image and video docu-

mentation was performed with the CellP® software (Version 1.0, Olympus, 

Hamburg, Germany).  

The same procedure was performed with both porcine foetal fibroblasts (porc. 

foet. F) and porcine aortal endothelial cells (pAEC) growing on collagen coated 

coverslips, respectively. 
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Figure 7. Handling of sperm on UEC in binding trials.  

© Bergmann 
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3.4 Identification of putative binding mechanisms 

 

The identification of the binding mechanism of spermatozoa to UEC was carried 

out applying several approaches.  

Firstly ejaculated sperm and epididymal sperm as well as UEC were tested for 

their lectin binding properties and thus identifying respective oligosaccharide 

ligands. Later blocking trials with selected lectins were undertaken. 

 

3.4.1 FITC-labelled lectins 

 

The 21 plant derived lectins (Vector Laboratories, California, USA) listed in Ta-

ble 4 and used in the binding trials were labelled with fluoresceineisothiocya-

nate (FITC), a fluorescent stain which is detected at 488 nm wavelength.  

Table 4. Applied FITC-labelled lectins 
Acronym Lectin Source 

AIL Artocarpus integrifolia lectin Jackfruit 

ConA Concavalin A Jack bean 

DBA Dolichos biflorus agglutinin Horse gram 

DSL Datura stramoniium lectin Thorn apple 

ECL Erythrinacristagalli lectin Cockspur coral tree 

GSL I Griffonia (Bandeiraea) simplicifolia I African black bean 

GSL II Griffonia (Bandeiraea) simplicifolia II African black bean 

LCA Lenculinaris agglutinin Lentil 

LEL Lycopersicon escolentum lectin Tomato 

PHA-E Phaseolus vulgaris lectin E Red kidney bean 

PHA-L Phaseolus vulgaris lectin L Red kidney bean 

PNA Arachis hypogaea lectin Peanut 

PSA Pisum sativum agglutinin Pea 

RCA120 Ricinus communis agglutinin 120 Castor bean 

SBA Glycine max lectin Soy bean 

SJA Sophora japonica agglutinin Japanese Pagoda tree 

STL Solanum tuberosum lectin Potato 

sWGA succinylated Triticum vulg. agglutinin succinylated Wheat germ 

UEA I Ulex europaeus agglutinin I Gorse 

VVA Vivia villosa agglutinin Hairy vetch  

WGA Triticum vulgaris agglutinin Wheat germ  
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The binding intensity of each lectin was detected as fluorescence intensity and 

measured flow-cytometrically. Quantification of lectin binding to ejaculated 

spermatozoa as well as UEC was evaluated with a FACScan©, epididymal 

sperm were evaluated with a Gallios™ 10/3 flow-cytometer (Beckman Coulter 

GmbH, Krefeld, Germany). All treatments were tested as double samples 

(2 x 21). Binding intensities were graded into three groups (Table 5) for later 

selection of possible ligands. The mean fluorescence intensity of the green 

FITC signal was determined and grouped. 

 

Table 5. Grouping of lectin binding intensities to ejaculated/epididymal sperm 
and UEC 
 Binding intensity as mean fluorescence intensity 

Cell type Strong Mediate Weak/no binding 

Ejaculated sperm ≥ 150 150 - 50 ≤ 50 

Epididymal sperm ≥ 20 20 - 10 ≤ 10 

UEC ≥ 300 300 - 100 ≤ 100 
 

 

3.4.2 Lectin binding to ejaculated and epididymal spermatozoa 

 

Fresh semen was collected and processed as described in chapter 3.3.1. and 

consequently incubated with one of 21 FITC-labelled lectins (see Table 4). 

Therefore, 1 µl of each lectin was diluted in 200 µl PBS (without Ca++ and Mg++) 

to gain a concentration of 10 µg/ml. Fifteen microliters of lectin stock solution 

were added to 100 µl of sperm and incubated for 15 min at 37 °C in an incuba-

tor. In parallel 42 flow-cytometer tubes (Greiner bio-one, Frickenhausen, Ger-

many) were prepared with 480 µl PBS (without Ca++ and Mg++) and 3 µl PI 

each. After completed incubation, 20 µl sperm-lectin solution were added and 

incubated for further ten minutes at RT.  

The same procedure was performed with freshly retrieved epididymal sperm 

from four mature service boars (2x German Landrace, 2x German Edelschwein) 

donated by the AI centre Neustadt/Aisch, Germany and consequent separation 

and flushing of the epididymes as described in Chapter 3.3.1. 
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3.4.3 Lectin binding to uterine epithelial cells 

 

Confluent UEC were trypsinised with 500 µl Trypsin/EDTA per well for up to ten 

minutes until all cells had detached from the culture surface. Enzymatic activity 

was inhibited by addition of 500 µl of D20 medium containing FBS to each well. 

The cell suspension was removed, pooled and centrifuged (4 min, 209 x g, RT) 

to remove all Trypsin/EDTA. The pellet was then resuspended in 12.6 ml D20 

medium and divided into 300 µl aliquots into flow-cytometer tubes. For incuba-

tion (15 min, 37 °C, 8 % CO2) 45 µl lectin stock solution (10 µg/ml) as described 

in chapter 3.2.2 were added. Subsequently, 3 µl PI were added and further in-

cubation for 10 min at room temperature took place.  
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3.5 Blocking trials 

 

After identifying the lectins that showed highest binding affinity to spermatozoa 

or UEC and thus identifying the respective oligosaccharide ligands, both cell 

types were pre-incubated with selected lectins to assess whether the competi-

tive blocking of respective glycan ligands lead to an inhibition in sperm binding 

to the epithelium.  

Firstly, ejaculated spermatozoa were pre-incubated with lectins and then re-

leased onto UEC to study the putative changes in binding density. In following 

trials confluent UEC were pre-incubated with lectins before co-incubation with 

spermatozoa. Table 6 shows the selected lectins in the blocking trials for chal-

lenging sperm and UEC. 

 

 

Table 6. Selected lectins for pre-incubation with ejaculated sperm or UEC 

Lectin Sperm UEC 

WGA x x 

sWGA x x 

ConA x x 

PNA - x 

 

 

3.5.1 Pre-incubation of ejaculated spermatozoa with selected lectins 

 

Semen of three boars (2x German Landrace, 1x German Edelschwein) from the 

Institute of Farm Animal genetics was collected and handled as described pre-

viously and diluted to 100 x106/ml in D20 medium. Incubation with one of the 

three selected lectins (WGA, sWGA, ConA) took place as described in chapter 

3.4.2. As a control one aliquot of the sperm suspension was treated identically 

without a lectin. After another washing step (4 min, 800 x g, RT) to remove ex-

cess lectin, the pellet was resuspended in D20. For the co-incubation with UEC, 

500 µl of lectin pre-incubated sperm were released onto a UEC monolayer and 

the binding activity observed under a phase contrast microscope (Olympus BX 

60, Olympus, Hamburg, Germany) equipped with a high resolution digital cam-
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era (Olympus DL 70, Olympus, Hamburg, Germany). The binding density was 

quantified by area under view and compared to results from the control incuba-

tion with untreated sperm. Images (2 repeats/boar and lectin) were divided into 

fields of 61.6 µm2 and the area covered with and without sperm was counted.  

 

 

3.5.2 Pre-incubation of uterine epithelial cells with selected lectins 

 

Confluent UEC were washed twice with 1 ml PBS (without Ca++ and Mg++) and 

45 µl lectin suspension (10 µg/ml) of one of the four selected lectins (WGA, 

sWGA, PNA, ConA) and incubated for 15 min at 37 °C at 8 % CO2 in an incuba-

tor. Subsequently, the lectin solution was aspirated and cells washed gently 

with 1 ml PBS (without Ca++ and Mg++) and 500 µl of sperm (100x 106 

sperm/ml) were released onto the UEC monolayer and incubated for 10 min. 

Binding activity was observed under a phase contrast microscope (Olympus, 

BX  60, Olympus, Hamburg, Germany) equipped with a high resolution digital 

camera (Olympus DL 70, Olympus, Hamburg, Germany) and the density was 

estimated. 
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3.6 Statistical Analysis 

 

For the assessment of the binding patterns and density, a semi-quantitative 

method was applied. Due to dense binding of the sperm to the UEC, a single 

cellular counting method was not possible. Instead a manual area-under-view 

method was used. For this purpose images were taken with 200x magnification 

and graded into squares of 61.6 µm2 size. The area covered with and without 

sperm was quantified. Five images per boar were taken and evaluated. The 

area evaluation was performed by the same person throughout all experiments. 

 

Flow-cytometry-derived data was converted and prepared with the software 

FCS Express 3.0 (DeNovo Software, California, USA). For lectin binding to 

UEC, also histogram-outputs of the fluorescence intensities were used to eval-

uate the binding intensity. These outputs were generated with FCS Express 3.0  

 

All statistical analyses were carried out using SigmaStat 2.03 for Windows® 

(Jandel Scientific Cooperation, CA, USA). 
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4 Results  

 

4.1 Cell culture establishment 

 

Porcine epithelial cells were harvested by layer-enzymatic digestion with 10x 

Trypsin/EDTA three times for 15, and two times 10 min. The shorter, but more 

frequent digestion cycles resulted in a higher cell crop and also in more vital 

cells with higher proliferative properties. The mean number of cells per cm2 at 

dissemination as well as the percentage of vital cells are listed in Table 7. Cul-

ture medium containing Modified Dulbeccos’s Eagle’s Medium and 20 % FBS 

resulted in equal UEC growth, but at the same time suppressed fibroblast 

growth, which facilitated better UEC proliferation. Further improvement in ad-

herence and proliferation was seen after the addition of 15 µg/ml ECGF to the 

harvest and dissemination media. The mean number of cells per cm2 at dissem-

ination was 730556 ± 125807 (MEAN ± STD) and the percentage of vital cells 

varied between 45 and 81 % (MEAN ± STD).  

 

Table 7. Results and optimisation steps of the cell culture 

Average number of cells 
disseminated per cm²  
(MEAN ± STD) 

730556 ± 125807  

Cell vitality [%] 45 - 81 

Problem Optimum 

Contamination 
Transport in PBS + 2 % P/S 

45 min incubation at 5°C 

Low cell numbers harvested 

Animal age: 8-10 months, primiparous 
Cycle stage: peri ovulative 
Time of slaughter: standing heat 

Rinsing of lumen with PBS + 2 % P/S 

Digestion time: 15 + 2x  10 min 

Slow adhesion/growth Glas cover slips coated + collagen matrix 

Fibroblasts overgrow UEC 
15 µg/ml ECGF in harvest media 

20 % FBS in harvest/culture media 
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Cells started to adhere to the collagen matrix after 12 to 36 hours (Figure 8 A) 

and colonies were formed after five to seven days (Figure 8 B). Confluence 

could be documented after 14 days onwards (Figure 8 C). When confluence 

provided sufficient quantities of cells, UEC layers were used for following trials. 
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Figure 8. Growth properties of UEC in culture. Phase contrast microscope. Sin-
gle cells (A), first colonies (B), confluence (C).  

A 

B 

C 

200 µm 
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Handling- as well as culture-solutions and media contained 2 % P/S. Fresh me-

dium was applied after removal of the old volume every three days. Cell type 

verification for epithelial cells was completed by an immune-fluorescence anti-

body stain procedure using an epithelial specific primary antibody (targeting 

cytokeratin-19) and showed clear cytokeratin structures under fluorescence im-

aging. Figure 9 shows a positive image of AlexaFluor-555 stained and excited 

UEC (A) and in comparison an overlay image with HOECHST-33342® stained 

and excited UEC nuclei (B).  

 
Figure 9. Antibody (A, Troma-III) and nucleus stain (B, HOECHST-33342).

A 

B 
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4.2 Sperm binding patterns 

 

Spermatozoa bound within 10 minutes after release to the UEC monolayer. At-

tachment occurred via the apical head membrane and the sperm remained mo-

tile. Binding occurred as dense clusters. It was noted that while clusters of 

sperm attached to single UEC along the complete perimeter of the cell (Figure 

10 A), others were not populated by sperm at all (Figure 10 B).  

 

Figure 10. Confluent UEC densely populated by spermatozoa (A), binding of 
spermatozoa to specific UEC (B). 

A 

B 
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When comparing cell type specific binding, it was observed that sperm bound 

equally quickly, but in a less dense pattern than to UEC. Binding also occurred 

via the apical head membrane, however no clusters were formed neither on 

fibroblasts nor on aortal endothelial cells (Figure 11 A+B). Single sperm bound 

to fibroblasts in culture. The binding density (MEAN ± STD µm2) was significant-

ly (p = 0.002) lower in fibroblasts (3018.4 ± 638.1) compared to UEC 

(15923.6 ± 2657.9). Similar findings were made with porcine aortal endothelial 

cells (Figure 11 B) where spermatozoa bound in comparable manner as to fi-

broblasts. The binding density (2897.8.4 ± 593.4) was also significantly 

(p = 0.002) lower than to uterine epithelial cells. Figure 11 B shows HOECHST-

33342 stained spermatozoa in interaction with confluent porcine aortal epithelial 

cells. Again few sperm bound to the perimeter of single cells however, no clus-

ter formation was shown. 
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Figure 11. Sperm bound to porc. foet. F (A) and pAEC (B; sperm nuclei stained 
with HOECHST-33342)  
 

Caudal epididymal sperm showed equally dense bound clusters 

(10542.64 ± 1354.22 µm2) on UEC as seen with ejaculated sperm before. Yet 

again dense clusters of large numbers of sperm were observed next to areas of 

UEC that had not been populated by sperm at all. Figure 12 shows clearly the 

typical cytoplasmic droplet along the epididymal sperms’ tail section (inlay).  

A 

B 
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Figure 12. Epididymal sperm co-incubated with UEC.  
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4.3 Sperm binding mechanisms 

 

4.3.1 Lectin binding to ejaculated porcine spermatozoa  

 

Lectin binding was evaluated as fluorescence intensity by lectin (green) stain. 

Strong binding was observed for WGA/sWGA, ConA and RCA120. The mean 

fluorescence intensities ± standard deviation as well as the corresponding oli-

gosaccharides for the respective lectins are shown in Table 8. These results 

identify the surface carbohydrates that intact ejaculated boar sperm possess.  

 

Table 8. MEAN fluorescence intensity of lectins bound to ejaculated sperm 

Lectin Glycan ligand 
Fluorescence  

Intensity  
(MEAN ± STD) 

Binding  
intensity 

WGA 
N-acetyl-Glucosamine 
Sialic acid 

917.27 ± 332.74 

Strong sWGA N-acetyl-Glucosamine 553.46 ± 153.99 

ConA Mannose/Glucose 260.25 ± 122.15 

RCA120 β-D-Gal-D-Galactosamine 151.56 ± 71.18 

LCA Mannose/Glucose 92.49 ± 76.00  

PNA β-D-Gal-D-Galactosamine 86.28 ± 101.62 

SJA N-acetyl-Galactosamine 79.51 ± 55.64 

Mediate 

GSL I N-acetyl-Galactosamine 77.42 ± 35.49 

PSA Mannose/Glucose 73.49 ± 67.75 

SBA N-acetyl-Galactosamine 55.70 ± 33.31 

GSL II N-acetyl-Galactosamine 50.78 ± 33.90 

VVA N-acetyl-Galactosamine 44.67 ± 26.93 

Weak or  
no  

binding 

AIL α-D-Galactopyranoside 39.96 ± 15.54 

ECL Galactose 37.16 ± 27.39 

PHA-L β-D-Gal-D-Galactosamine 32.80 ± 26.81 

PHA-E N-acetyl-Galactosamine 26.75 ± 15.61 

UEA I L-Fucose 23.79 ± 15.35 

DSL N-acetyl-Lactosamine 16.09 ± 4.08 

LEL N-acetyl-Glucosamine 14.53 ± 4.77 

STL N-acetyl-Glucosamine 14.10 ± 3.93 

DBA N-acetyl-Galactosamine 12.93 ± 4.36 
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4.3.2 Lectin binding to porcine epididymal spermatozoa 

 

The flowcytometric evaluation revealed a similiar distribution of strong binding 

lectins, as seen in ejaculated sperm incubations. However, the intensity values 

(nm) differed. In General the fluorescence intensity was weaker in epididymal 

sperm, than in ejaculated sperm. Strong binding was observed for sWGA, WGA 

and ConA (Table 9), detecting the same sugars as present on ejaculated 

sperm. The mean fluorescence intensities ± standard deviation as well as the 

corresponding oligosaccharides for the respective lectins are shown in Table 9. 

 

Table 9. MEAN fluorescence intensity of lectins bound to epididymal sperm 

Lectin Glycan ligand 
Fluorescence  

Intensity 
(MEAN ± STD) 

Binding  
intensity 

WGA 
N-acetyl-Glucosamine 
Sialic acid 

59.40 ± 27.13 

Strong sWGA N-acetyl-Glucosamine 56.61 ± 21.75 

ConA Mannose/Glucose 21.91 ± 2.49 

RCA120 β-D-Gal-D-Galactosamine 15.16 ± 4.19 

Mediate 

GSL I N-acetyl-Galactosamine 13.71 ± 1.26 

LCA Mannose/Glucose 11.46 ± 1.26 

PSA Mannose/Glucose 11.3 ± 1.98 

STL N-acetyl-Glucosamine 10.21 ± 33.69 

PHA-E N-acetyl-Galactosamine 10.05 ± 0.40 

LEL N-acetyl-Glucosamine 10.01 ± 1.89 

GSL II N-acetyl-Galactosamine 9.93 ± 1.40 

Weak or 
no  

binding 

SBA N-acetyl-Galactosamine 9.87 ± 1.38 

VVA N-acetyl-Galactosamine 9.52 ± 1.38 

UEA I L-Fucose 9.46 ± 2.39 

ECL Galactose 9.28 ± 1.11 

PHA-L β-D-Gal-D-Galactosamine 9.27 ± 1.44 

DBA N-acetyl-Galactosamine 9.25 ± 1.67 

PNA β-D-Gal-D-Galactosamine 9.22 ± 2.05 

SJA N-acetyl-Galactosamine 9.10 ± 1.64 

DSL N-acetyl-Lactosamine 9.11 ± 1.53 

AIL α-D-Galactopyranoside 9.03 ± 1.43 
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4.3.3 Lectin binding to porcine uterine epithelial cells  

 

Due to high standard deviations in the fluorescence intensities measured (Table 

10), not only the MEAN values but also the histogram results were considered 

for grouping the binding intensity. Strong binding was observed for sWGA, 

WGA, GSL I, SBA and PHA-L.  

 

Table 10. MEAN fluorescence intensity of lectins bound to UEC 

 

These results identify the surface carbohydrates present on cultured porcine 

uterine epithelial cells in suspension. Figure 13 shows an example of a histo-

gram for a lectin classed as strongly binding (sWGA) and a lectin classed as not 

binding (PSA). The grouping by histogram plots is shown in Figure 14.  

Lectin Glycan ligand 
Fluorescence  

Intensity  
(MEAN ± STD) 

Binding 
intensity 

sWGA N-acetyl-Glucosamine 1534.34 ± 793.15 

Strong 

WGA 
N-acetyl-Glucosamine 
Sialic acid 

971.48 ± 556.89  

GSL I N-acetyl-Galactosamine 640.08 ± 366.38 

SBA N-acetyl-Galactosamine 503.52 ± 242.69 

PHA-L N-acetyl-Galactosamine 352.87 ± 224.78 

DBA N-acetyl-Galactosamine 320.79 ± 212.70  

RCA 120 β-D-Galactosamine 276.57 ± 175.94 

Mediate 
PNA β-D-Gal-D-Galactosamine 200.00 ± 95.45 

SJA N-acetyl-Galactosamine 190.01 ± 116.16 

ECL Galactose 108.85 ± 103.26 

VVA N-acetyl-Galactosamine 93.57 ± 47.91 

Weak or  
no  

binding 

UEA I L-Fucose 74.66 ± 43.57 

PHA-E N-acetyl-Galactosamine 73.88 ± 57.78 

LEL N-acetyl-Glucosamine 70.33 ± 44.16 

STL N-acetyl-Glucosamine 54.76 ± 44.18 

LCA Mannose/Glucose 45.29 ± 28.57 

ConA Mannose/Glucose 28.02 ± 19.73 

PSA Mannose/Glucose 23.28 ± 11.85 

AIL α-D-Galactopyranoside 13.00 ± 6.26 

DSL N-acetyl-Lactosamine 12.54 ± 8.51 

GSL II N-acetyl-Galactosamine 9.47 ± 4.32 
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Figure 13. Binding intensity of WGA and PSA to UEC shown as flow cytometry 
histograms.  
 

 

 
Figure 14. Histograms of different lectins grouped by binding intensity low (A) or 
high (B). 
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4.4 Blocking trials 

 

4.4.1 Inhibition by lectin incubation with spermatozoa 

 

Sperm treated with WGA - affine for N-acetyl-Glucosamine (Glc-NAc)/Sialic acid 

(Figure 15B) - and sWGA (affine for Glc-NAc) before co-incubating with UEC 

showed significantly (p < 0.05) diminished binding density (2362.87 ± 248.61 

and 1684.83 ± 107.94 µm2, respectively) compared to the ConA-treated (affine 

for Mannose/Glucose: 12718.39 ± 1999.52 µm2, Figure 18 A) and untreated 

sperm (18050.25 ± 5520.06 µm2), which bound in the same dense patterns as 

seen in previous experiments (Figure 15A).  

 
Figure 15. Sperm pre-treated with ConA (A) and WGA (B) on UEC. 

A 

B 
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Figure 16 shows confocal microscopy images of sperm incubated with either 

WGA (A) or sWGA (B). The distinct staining of the complete apical head mem-

brane (WGA) or selective on the head membrane and tail section (sWGA) is 

clearly visible. 

 

Figure 16. Confocal images of sperm treated with WGA (A) and sWGA (B). 
  

A 

B 
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4.4.2 Inhibition by lectin incubation with uterine epithelial cells  

 

Sperm binding density was significantly (p < 0.05) lower on UEC pre-incubated 

with WGA (corresponding to Glc-NAc/Sialic acid; 5961 ± 309.18 µm2) compared 

to the untreated control cells (17426.81.4 ± 4653.58 µm2). Furthermore, treat-

ment with sWGA (Glc-NAc, Figure 17 A) and ConA (Mannose/Glucose) did not 

impair sperm binding. Contrary results were observed after pre-incubation of 

UEC with PNA (corresponding to β-D-(1-3)-D-Galactosamine) where some are-

as showed massive sperm binding as seen with untreated UEC, whereas others 

were not populated at all, similar to WGA-treated UEC (Figure 17 B).  

 
Figure 17. UEC pre-incubated with sWGA (A) or WGA (B). 

A 

B 
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Figure 18 depicts confocal microscopy images of single cultured UEC after in-

cubation with sWGA lectin. The complete cell is stained with green pigments (A) 

and the nuclei are visible as being less or not stained (B). 

 
Figure 18. Confocal images of UEC incubated with sWGA.  

A 

B 
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5 Discussion  

 

The aim of this thesis was to establish a reproducible in vitro cell culture model 

from primary uterine epithelial cells of the sow (sus scrofa) and to identify pos-

sible reasons for the high numbers needed in porcine fertilisation, by studying 

putative binding mechanisms of porcine spermatozoa. 

 

The trial work was divided into three steps where firstly a cell culture model from 

primary porcine uterine epithelial cells was established. To verify putative bind-

ing of porcine sperm to UEC, binding trials were performed applying ejaculated 

as well as epididymal sperm onto the UEC culture. Further, also alternative cell 

types (porcine fibroblasts and aortal endothelia) were incubated with sperm.  

The species-specific binding (SUAREZ, 2001) of spermatozoa, to several surface 

epithelia in the female tract encompasses carbohydrate recognition by lectin-

like receptors on the sperm plasma membrane (TÖPFER-PETERSEN, 1999a). It 

was therefore assumed that the putative binding of porcine sperm and uterine 

epithelia is mediated by specific protein-carbohydrate interactions, too. To iden-

tify possible engaged ligands, both UEC and sperm were incubated with FITC-

labelled lectins and the binding intensity evaluated flow-cytometrically. Finally, 

both cell types (UEC and sperm) where challenged with selected lectins before 

co-incubation and binding behaviour after blocking was examined. 

 

 

5.1 Cell culture 

 

Growth properties of porcine uterine epithelial cells in culture were described as 

slow and difficult to establish by ZHANG ET AL. (1991), (1995), where luminal epi-

thelia did not complete attachment to the culture surface until three days after 

dissemination. This was verified in own culturing procedures. Compared to 

stromal cells, porcine uterine epithelia did not proliferate in the same speed as 

stromal cells or immortalised tumour lines do. This was a major limiting factor in 

the progression of the trials, however it did not limit the diversity of trials under-

taken, once confluence was attained. However, ZHANG et al. (1991) document-

ed confluence after 7 to 8 days, whereas UEC were not to be confluent until two 
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weeks in culture. The differences in confluence are unlikely to be explained by 

the number of cells disseminated as an average of 7,3 x104 cells/cm2 was ap-

plied, being lower than ZHANG et al. (1991) who used 5 x104 cells/cm2 to start a 

culture.  

The rapid attachment of stromal cells to the culture surface within as a little as 

one hour after dissemination, described by ZHANG et al. (1991) was too con-

firmed in the own findings. Uterine epithelial cells attached poorly to the plastic 

culture surfaces of T-25 culture flasks or six-well dishes as reported by ZHANG 

and DAVIS (2000). Cell attachment was improved by coating the culturing sur-

face (i.e. glass coverslips) with a collagen matrix as described by GUNTHER et 

al. (2009). Providing a sufficient extracellular matrix was also shown to result in 

differences in cell morphology compared to the same cells cultured on plastic 

surfaces by BENALI et al. (1989). It was also suggested that the composition of 

the matrix plays a key role in cell growth. Although no morphological differences 

were observed in UEC disseminated onto plastic culturing wells, the strikingly 

improved attachment and growth rates of UEC growing on collagen matrices 

lead to the conclusion that luminal cells show better growing properties when 

able to attach to an imitation of connective tissue and thus adhere the “right way 

round” enabling to conceive correct polarity as to luminal and basal surface. 

Similar findings were shown for cortical epithelia when grown on an extracellular 

matrix by GOSPODAROWICZ et al. (1978). Rat endometrium being grown on Mat-

rigel surfaces was observed to maintain polarity (GLASSER et al., 1988). Correct 

polarity was of great importance regarding the potential binding studies that 

were to be undertaken utilizing the cell culture, as it was assumed that putative 

sperm ligands are exclusively located on the luminal membrane of the UEC, 

being the surface that sperm would attach to in vivo. 

The addition of 2 % P/S to the handling solution (PBS) as described by FORTIER 

et al. (1988) lead to a nearly banished contamination of the uterine horns during 

transport back to the laboratory facilities. Also for handling and culturing media, 

2 % P/S were added. Further the incubation time of 45 min at 5 °C before start 

of the cell harvest procedure improved the culturing conditions so that no con-

tamination from slaughter materials occurred.  

Also low cell numbers after harvesting were unsatisfactory. The low cell num-

bers in the beginning of the cell culture establishment is surely due to a number 
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of factors. All oestrous cycle related changes in the uterine tissues underlie en-

docrinological regulations within the cycle. During pro-oestrus the uterus is un-

der oestrogen impact and the number of proliferative epithelia rises (LIEBICH, 

2004). This maybe a reason why it was shown that uterine epithelia from gilts in 

standing heat showed better proliferation rates and adhering properties than 

noncyclic sows. These findings are coherent with the results observed by 

LEISER et al. (1988) who examined porcine endometria histologically throughout 

complete oestrus cycles.  

A change of the digestion enzyme from Trypsin/EDTA to alternatives was not 

contemplated although ZHANG and DAVIS (2000) changed trypsin for dispase 

and pancreatin, which improved cell performance in vitro. For the enzymatic 

layer digestion method, it was more successful to reduce incubation time from 

60 minutes down to 10/15 minutes and at the same time increase the pass 

numbers from one to three times. The number of vital cells rose to 85 % and the 

number of fibroblast from connective tissue was reduced to as little as five per-

cent. This improved UEC growing conditions highly.  

In dependence to BRAILEANU et al. (2001) the reduction of the FBS content from 

30 to 20 % was also a successful measure and suppressed fibroblast growth 

without diminishing growing conditions for the UEC. A further improvement of 

UEC adherence and proliferation could be achieved by the addition of ECGF to 

the dissemination medium. Derived from porcine brain, this medium additive 

usually is used in endothelial cell cultures (SCHNIEDERMANN et al., 2010). How-

ever, adding ECGF to the dissemination medium improved UEC growth, too. 

Once confluent UEC were established on the collagen-coated glass coverslips, 

verification by immunofluorescence stain was performed successfully. The cy-

tokeratin-19-specific antibody targets intermediate filament proteins that make 

up the structure of epithelial cells. The positive red stain as seen in Figure 9 

confirmed the epithelial nature of the cultured cells and a fibroblast population 

as small as 3 - 5 % comparable to results by UZUMCU et al. (1998). KUES et al. 

(2013) confirmed targeting of endoderm-specific cytokeratin-19 transgenic pig-

IPS-cells by antibody Troma-III, applying the same staining procedure. 

 



Discussion 

73 
 

The average number of cells per cm2 at dissemination was 730556 ± 125807 

(MEAN ± SEM) and the percentage of vital cells varied between 45 and 81 % 

(MEAN ± SEM).  

 

 

5.2 Sperm binding patterns 

 

As annotated by ZHANG and DAVIS (2000), cell culture models have ever since 

provided equivalent tools to study cell related topics in vitro. However, the accu-

racy is perpetually limited by discrepancies of cells in vitro versus in vivo and 

the potential of cells losing their original properties under culturing conditions 

(ZHANG and DAVIS, 2000).  

Mouse mammary epithelia showed differentiated distribution of glycosaminogly-

cans according to the culture surface: plastic, collagen type-I coated plastic or 

floating collagen type-I (PARRY et al., 1985). It may therefore be that the here 

discussed culturing of porcine epithelial cells on collagen type-I matrices has a 

not yet detected influence on the glycan ligands of the UEC surface mem-

branes.  

Spermatozoa bound to confluent UEC within ten minutes of co-incubation and 

maintained adherence throughout observation time. The maintenance of motility 

and adhesion via the apical head membrane allows the assumption that only 

viable, membrane intact and motility not impaired sperm attached to the respec-

tive regions on uterine epithelium (RATH et al., 2008). This may obviate the hy-

pothesis that porcine spermatozoa are selected for their negative viability by 

being held back through binding to the endometrium and thus giving way to fer-

tile sperm towards the ampulla (KATILA, 2012). However, it is important to men-

tion that detaching was never observed in vitro. When kept under culturing con-

ditions (37°C and 2 % CO2) sperm maintained attached for up to 24 hours as 

seen in a single long-term study undertaken within the project. Due to the ab-

sence of further repeats, this cannot be confirmed to be characteristic for boar 

sperm yet. However, the clustered sperm grouping along specific cells, seems 

to be specific for sperm binding, as this was seen before in oviduct explant stud-

ies, where sperm were released onto the explant and observed under a phase 

contrast microscope, too (WABERSKI et al., 2006). The clustering may indicate 
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differences between cell surface structures as a result from proceeding cell age 

in culture as well as cyclic differences during the oestrous cycle of the respec-

tive sow. 

For the verification of potentially specific binding patterns to uterine UEC, differ-

ent cell types from porcine tissues were used for control incubations. Porcine 

foetal fibroblasts were chosen as a comparison to porcine, non-surface tissue 

cells and porcine aortal endothelia as surface cells from non-reproductive tis-

sue. Sperm binding was observed for both cell types, however in a remote den-

sity than UEC-binding. 

Sperm have been found to bind to several tissues, such as tumour or kidney 

cells (ASHIZAWA et al., 1982). It is therefore concluded that a diverse number of 

cell types, regardless of surface or connective tissue origin, provide ligands to 

interact with moieties on the sperm surface. However, these or similar ligands 

seem to be present in vast numbers on the luminal membrane of uterine and 

oviductal cells, as well as the Zona pellucida of the ovum, explaining the con-

centrated binding density of sperm on UEC as seen in Figure 10 A. 

A further control incubation was performed with epididymal sperm onto UEC, to 

identify possible differences in sperm surface molecules before and after ejacu-

lation. Caudal epididymal sperm showed an equivalent binding intensity to UEC 

as ejaculated sperm. This leads to the suggestion that porcine sperm obtain the 

required binding moieties during maturation in the epididymis and not during 

ejaculation in contact with seminal fluid.  

Further the hormonal status of the surface cells does not seem to have a signif-

icant impact on sperm binding, as bovine (LEFEBRE, et al., 1995) as well as por-

cine (PETRUNKINA et al., 2001) sperm bound to pre-, post ovulatory as well as di-

oestric oviduct explants. It is thus the condition of the sperm cells, not the fe-

male surface cells, facilitating the binding and thus also the detachment from 

the mucosal epithelium (MAGNUS, 2002).  
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5.3 Sperm binding mechanisms 

 

As described in chapter 2.2.5 it is so far not known what factors induce the re-

lease of spermatozoa bound to the sow’s endometrium. Furthermore, there is 

no explanation for how this putative interaction is mediated.  

One approach of explanation to the binding mechanisms is based on the fact 

that throughout fertilisation sperm undergo several protein-carbohydrate medi-

ated interactions with surface cells of the female genital tract, so for the sperm 

reservoir in the oviduct (SUAREZ, 2001) as well as Zona pellucida recognition 

and binding (TÖPFER-PETERSEN and CALVETE, 1996).  

 

The results from the sperm-lectin incubation trials identified the same glycan 

ligands on the surface of ejaculated and epididymal sperm, respectively. Alt-

hough the ratios of binding intensities were equal, the fluorescence intensities 

differed greatly. This difference is most likely to be explained with the different 

flow-cytometres being used (ejaculated sperm: FACScan© and ES: Gallios™). 

The binding intensity ranged from WGA being the lectin with the strongest bind-

ing intensity over sWGA, ConA to RCA120, which was the identical order for 

both ejaculated as well as ES. The lectin WGA showing the strongest binding 

affinity adheres to N-acetyl-Glucosamine (GlcNAc) and Sialic acid. Succinylated 

WGA binds to GlcNAc, ConA identifies glycan ligands with terminal Mannose 

and Glucose molecules and was the third strongest binding lectin. Although a 

further two lectins bind to the same sugars (LCA and PNA) neither seemed to 

bind to ejaculated sperm or ES in the same intensity as ConA. Similar results 

can be observed for RCA 120 (binding to β-D-Gal-D-Galactosamine) and SJA 

or GSL I, respectively (both binding to N-acetyl-Galactosamine, GalNAc). 

In contrary to findings of FLESCH et al. (1998), who incubated porcine sperm 

with the lectins PNA and WGA, PNA did not bind (see Table 5 and 6). The lectin 

WGA was identified for its ability to mark the sperm plasma membrane, where-

as PNA was found to be a marker of the outer acrosomal membrane and at the 

same time indicating β-D-Gal-D-Galactosamine ligands. The presence of Glc-

NAc and Sialic acid was also shown by JIMENEZ et al. (2002) who measured 

fluorescence intensity of sperm co-incubated with FITC-labelled lectins. It was 

seen that WGA binding was significantly (p ≤ 0.05) stronger in sperm from fertile 
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boars than in sperm from boars showing decreased fertilisation ability, regard-

less of the acrosomal state (MEAN fluorescence intensity ± standard deviation 

of fresh: 6751 ± 210; capacitated: 5543± 411vs. 5621 ± 210 or acrosome react-

ed sperm 5141 ± 177 vs. 4452 ± 361, respectively). This underlines the high 

binding affinity for WGA to the sperm membrane as seen in the lectin incubation 

studies (see Table 8: MEAN fluorescence intensity for WGA: 917.27 ± 323.74). 

TÖPFER-PETERSEN et al. (1984) observed that both acrosomal membranes (inner 

and outer) possessed receptor sites for ConA as well as RCA 120. Both these 

lectins labelled the whole sperm surface membrane. This confirms the high 

binding intensity as seen for fresh sperm and epididymal sperm. 

Due to the same sugar moieties and binding properties to UEC, it may be con-

cluded that ES already possess the receptors enabling endometrium binding, 

indicating that the sperm adhesins acquired from the seminal plasma may not 

necessarily be involved in uterine binding. ES possess the only spermadhesin 

acquired before ejaculation, namely AWN-1 because this is synthesized and 

excreted in the Rete testis and Tubuli recti. When migrating through the male 

tracts during ejaculation, spermatozoa are brought together with the other 

sperm adhesins and seminal plasma proteins. DOSTALOVA et al. (1994) quanti-

fied AWN-1 on the sperm apical membrane of ES with 6.7 x106 molecules per 

cell before ejaculation and with a further 50.4 x106 molecules proximate to ejac-

ulation. Post capacitation it defies back to a low number of below 10 x106 mole-

cules per cell. As ES showed similar binding affinity for cultured UEC, it may be 

that AWN-1 plays an important role in sperm attraction to the uterine endome-

trium in vivo, too. Epididymal sperm show fertilizing ability in vitro, thus AWN-1 

is capable of interacting with the Zona pellucida. Although its concentration is 

diminished whilst sperm pass through the uterus, enough molecules are availa-

ble for recognition of the Zona pellucida. AWN-1 binds to sialic acid, which is a 

Zona pellucida component. Blocking AWN-1 with N-linked GalNAc+NeuNAc on 

the sperm surface may inhibit uterine binding, however not impairing Zona pel-

lucida recognition and binding, as ejaculated sperm acquire further AWN-1 for 

gamete recognition later on.  

 

After the incubation of UEC with the different lectins, the same lectins bound 

with a high binding intensity as seen in the sperm incubations. Succinylated 
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WGA and WGA were the lectins with the strongest affinity for UEC, followed by 

GSL I, SBA, PHA-L and DBA, all affine for N-acetyl-Galactosamine (GalNAc). 

From these results it is concluded that porcine UEC do not possess Mannose, 

Glucose, Fucose or Lactosamine receptors (Table 10).  

Mannose is the major saccharide involved in sperm-oviduct binding during the 

formation of the functional sperm reservoir in the pig (GREEN et al., 2001, WAG-

NER et al., 2002, EKHLASI-HUNDRIESER et al., 2005). It may therefore be crucial 

for the sperm not to bind via the same mechanism to the endometrium as to the 

oviductal lining, in case this surface molecule is shed when releasing from the 

uterus to proceed towards the UTJ. From the findings of the UEC-lectin incuba-

tion it is carefully suggested that sperm binding to the sow’s endometrium is 

mediated by GlclNAc/sialic acid and/or GalNAc interactions with the sperm ad-

hesins.  

To verify this hypothesis blocking trials were undertaken. Sperm were incubated 

with the three lectins showing the highest binding intensity for ejaculated sperm 

(WGA, sWGA and ConA) before releasing them onto the UEC. As to be seen in 

Figure 15 A ConA treated sperm showed no impairment in binding intensity, 

whereas WGA and sWGA diminished sperm binding to UEC.  

Matching results were found when pre-incubating UEC with one of four lectins 

(WGA, sWGA, ConA and PNA). The lectin WGA impaired sperm binding to 

UEC massively, whereas the incubation with sWGA and ConA showed no influ-

ence at all (Figure 17). The differences in sperm binding intensity after incuba-

tion of the UEC with PNA, may be explained by changes in surface molecule 

expression due to age or cyclic stages seen in hamster ovary tissue cultures by 

PORTER et al. (1973).  

The results from the blocking trials indicate that that although porcine sperm 

possess Mannose/Galactose ligands, these receptors are presumably not in-

volved in sperm attachment to the endometrium. Saturation of GlcNAc ligands 

on the UEC did not impair sperm binding. However when Sialic acid receptors 

were blocked by WGA, sperm binding was impaired. The high binding intensity 

to UEC as well as the impaired sperm binding after saturation suggests that 

Sialic acid is the key glycan involved in sperm-endometrium interactions in the 

pig. Sialic acid is a monosaccharides consisting of a nine carbon-backbone and 

typically found as terminating branches of N-glycans, O-glycans and glyco-
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sphingolipids (gangliosides). In the reproductive tract of mammals it plays a ma-

jor role in gamete recognition and interactions. The recognition of sialic acid is 

not only influenced by structural variations and modifications of the saccharide 

itself, but also by the linkage to the underlying oligosaccharide or the structure 

of this glycoconjugate (VARKI, 1997).  

 

To understand the biological relevance of the sperm-UEC binding, it is neces-

sary to consider that bound sperm are viable and that the interaction is not a 

process of negative selection of damaged sperm, not capable of fertilising de-

scending oocytes (RATH et al., 2008) but rather a positive selection or formation 

of a further reservoir, secondary to the functional reservoir in the oviduct. How-

ever it is still not clear whether a binding to the endometrium also maintains 

sperm vitality the same way as to be seen in the oviduct (FAZELI et al., 1999, 

TÖPFER-PETERSEN et al., 2002). In humans, co-culture with endometrial cells 

enhanced sperm motility as shown by FUSI et al. (1994) and GUERIN et al. 

(1997).  

Even if sperm profit from attachment to the endometrium, this interaction only 

seems beneficial, should they detach some time later and be available for fertili-

sation (RATH et al., 2008).  

The question of why it is necessary to provide sperm reservoirs outside the ovi-

ductal isthmus seems to have evolutional backgrounds and can be followed up 

throughout many species, including non-mammalian vertebrates (HOLT, 2011). 

FREEMAN and ENGLAND (2013) observed the release of sperm from the pre-

uterine reservoir in dogs. A reason for this may be the necessity of different 

sperm populations at different stages in maturation (TAYLOR et al., 2008). From 

the freshly ejaculated spermatozoa, those being in an advanced stage of fertilis-

ing may proceed directly to the oviduct and attach there, as they are not recog-

nised by the uterine epithelium before, whereas viable, but less matured sperm 

attach to the endometrium. This population would therefore be available for fer-

tilisation some considerable time later, when the oviductal sperm population has 

detached and is no longer able to fertilise the oocyte. This presupposes that no 

significant changes on the sperm plasma membrane occur having influenced 

oviduct binding subsequently.  
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Everything discussed so far has been under the conception that the binding of 

spermatozoa to the endometrium occurs due to a positive selection of vital 

sperm. However, the contrary may be also possible, where a binding to the en-

dometrium hinders the sperm to ascend towards the oocyte (RATH et al., 2008). 

A further aspect of sperm-uterine interaction needs to be considered, namely 

what the binding may trigger. O'LEARY et al. (2004) documented a redistribution 

of leucocytes within the uterine epithelium after contact with sperm and seminal 

plasma and an up-regulated expression of immune relevant cytokines within the 

endometrium. Seminal plasma has also been shown to induce ovulation 

(WABERSKI et al. 1995; 1997) which would mean, that it is essential for a suc-

cessful outcome in fertilisation.  

The oviduct reservoir is maintained by on-going migration of sperm from the 

uterus during the first 24 h after insemination (RIGBY, 1966, PURSEL et al., 

1978). These sperm may be attached to the uterine wall in immediate distance 

to the UTJ and be released, when the first follicle wave has released an oocyte 

and capacitated, hyperactivated leave their retreat within the cilia of the oviduct. 

The vacant cilia are now re-populated by vital and motile spermatozoa from the 

endometrium. GUALTIERI and TALEVI (2000) showed that in bovine sperm exclu-

sively the acrosome intact population bound to oviduct epithelia. This underlines 

that intact sperm attach to the endometrium and proceed towards the UTJ at a 

later time. 

A possible factor inducing release of the UEC-bound sperm may be a tempera-

ture gradient as observed in the oviduct proximate after mating (HUNTER and 

NICHOL, 1986). Much more likely however, seems the release of sialidase with 

follicular fluid during ovulation, which subsequently reaches the endometrium 

and sets attached sperm free by hydrolytic dissociation of the terminal sialic 

acid on the endometrial cells. Readopting this hypothesis it is possible that 

spermatozoa only undergo a transient binding as JUNGE-KRAEMER (2012) 

showed that at time of ovulation no sperm could be retrieved in the flushing liq-

uid of inseminated gilts.  

On the basis of TAYLOR et al. (2009) and JUNGE-KRAEMER (2012) findings the 

hypothesis is emphasized that the binding is transient and that the releasing of 

the spermatozoa occurs in intervals serving the follicular waves from the ova-
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ries. And also that contrarily to the oviductal reservoir, sperm do not lose their 

ability to fertilize as no major changes on the sperm surface membrane occur. 

 

From the meta data and the current findings in these trials we consider that por-

cine spermatozoa undergo interactions with the uterine epithelium before de-

taching to proceed towards the functional reservoir in the caudal ampulla of the 

oviduct. In order to gain benefit from these findings it is necessary to illuminate 

the outcome of a manipulation of this protein-carbohydrate interaction. As 

shown in Figure 1 and intensively discussed in chapter 2.1 there is the need for 

more efficient pig husbandry systems. Methods of reducing necessary sperm 

numbers in pig AI are scarce and so far the focus has been on the site of se-

men deposition as an only measure to reduce applied sperm numbers. After 

identifying the glycan ligands coating the luminal membrane of cultured porcine 

uterine epithelial cells, it is the next step to utilize this knowledge. Porcine 

spermatozoa presumably interact with UEC by the spermadhesin on their apical 

head membrane and the oligosaccharide sialic acid of the UEC. Actual circum-

vention of the uterus, because uterine binding is inhibited, may result in semen 

doses as low as 1 x106 sperm as described in UTJ insemination (FANTINATI et 

al., 2005) or even intra-oviductal numbers, because binding is inhibited. It has to 

be accounted for sperm losses due to the length of the uterus, however the in-

hibited sperm binding may allow for a dramatically increased ejaculate efficien-

cy. 

The question arises whether it is possible to influence sperm-endometrium in-

teractions by modification of extender ingredients. This could be the addition of 

an enzyme, that separates attached sperm from UEC. This enzymatic reaction 

would allow for interaction of both cell types, without damaging the protein 

structure of the spermadhesin and thus not affecting later functions of the re-

spective. The enzyme sialidase cuts sialic acids off from their terminal position 

on an oligosaccharide. This asset would not influence sperm properties after 

extending the ejaculate, but release bound sperm after attaching to the endo-

metrium by removing the sialic acid terminus from the UEC. Sperm could then 

proceed towards the oviduct and populate the reservoir and be available for 

fertilisation at an earlier time.  
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Another possibility could be the addition of a carbohydrate to the respective ex-

tender, to block the sperm binding sites on the apical sperm membrane.  

One risk that needs to be considered is that potential protein moieties interact-

ing with free oligosaccharides from an extender recipe may obviate further bind-

ing to the oviduct epithelium later and thus prevent sperm oviduct interaction, 

which is crucial for capacitation and fertilisation processes. And it is further not 

yet completely clear, whether the binding of sperm to the endometrium is nec-

essary for certain biological reactions within and on the apical sperm membrane 

as it is known for the formation of the functional reservoir (SUAREZ, 2008). 

 

Before large scale field trials are undertaken, it is suggested to perform time 

laps studies in vitro. Sperm are extended with a sialidase-containing extender 

and incubated with UEC. The observation of attached sperm being released 

after a certain time or even the complete inhibition of binding, could allow for an 

insemination trial in the field.  

It is not clear why this binding occurs and whether it is a substantial interaction 

for sperm as it is the case for the oviductal binding to induce capacitation. So far 

it was not observed that sperm not binding to the endometrium suffered from 

lower competiveness to fertilises, as surgical insemination directly into the ovi-

duct show (KRUEGER et al., 1999, KRUEGER and RATH, 2000). It may be the 

case, that by inhibiting binding to the endometrium for selected sperm cells, the 

time of insemination needs to be adapted and sperm deposition needs to occur 

closer to the time of ovulation. 

 

Even though it is suggested that the binding of boar sperm to the endometrium 

is mediated by a protein (lectin-like conjugate) attaching to an oligosaccharide 

on the endometrial surface, it must not be neglected that this mechanism might 

as well function in reverse manner. TULSIANI et al. (1997) suggested that gly-

coconjugates on the sperm surface may function as a receptor for ZP surface 

protein structures, too, as well as the other way round. This might underline the 

reason for glycan ligands on the sperm surface were detected as seen in the 

sperm-lectin incubations. 
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In conclusion it can be said that porcine sperm undergo a binding to the endo-

metrium in vitro. It is presumed that this binding is of a transient nature and that 

sperm are released after contact with follicular fluid descending the oviduct post 

ovulation, coherent with the follicular waves that are seen in the sow. 

From the trials undertaken it is concluded that the interaction of porcine sperm 

with uterine epithelial cells in vitro is, amongst others and still subject of identifi-

cation, mediated by lectin-like proteins on the sperm surface and carbohydrate 

residues on the UEC. The identified glycan ligand involved in this binding was 

identified as sialic acid.  

It is suggested that the modification of pig semen extender by the addition of 

sialidase could result in drastically lower sperm numbers per dose, because an 

artificial circumvention of the uterine binding is assembled, similar to the results 

from surgical insemination directly at the site of fertilisation in the oviduct.  
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6 Summary 

 

In pig husbandry the conventional method of intrauterine deposition of an 80-

100 ml AI volume containing 1-3 x109 fresh spermatozoa (COLENBRANDER, 

1991) is the commonly used procedure. Sows are bred twice within 24 hours to 

ensure successful fertilisation. Compared to bovine insemination, where as little 

as 2 x106 spermatozoa result in gravities (SCHENK et al., 2009), boar ejaculates 

have only little efficiency. The demand for genetically superior boars has in-

creased immensely and can only be served by collecting semen from many in-

dividuals (RATH, 2002) or in reduced sperm numbers per AI dose. The only way 

to utilize low doses of boar sperm is to deposit the semen closer to the site of 

fertilisation, which is in the distal isthmus of the oviduct. A modified deposition 

site allows for a drastic sperm reduction, without losses in fertility and farrowing 

rates.  

To gain understanding for the requirement of large sperm numbers it is neces-

sary to illuminate the challenges porcine sperm face on route to fertilisation. The 

species-specific binding (SUAREZ, 2001) of spermatozoa, to several surface epi-

thelia in the female tract, foregoing capacitation and hyperactivation, encom-

passes carbohydrate recognition by lectin-like receptors on the sperm plasma 

membrane (TÖPFER-PETERSEN, 1999a). It was therefore assumed that the puta-

tive binding of porcine sperm and uterine epithelia is mediated by specific pro-

tein-carbohydrate interactions, too. 

 

The aim of this thesis was to establish a reproducible in vitro cell culture model 

from primary uterine epithelial cells of the sow (Sus scrofa) to examine and 

identify possible reasons for the high numbers needed in porcine fertilisation. 

The following hypotheses were proposed: 

 

1. Porcine spermatozoa undergo binding with the endometrium on route 

to the site of fertilization. 

 

2. This binding encompasses an interaction between the surface mem-

branes of spermatozoa and uterine epithelial cells. 

 



Summary 

84 
 

3. This interaction is mediated by lectin-like proteins on the apical sperm 

plasma membrane with corresponding oligosaccharide ligands provid-

ed by the luminal membrane of the endometrium. 

 

The interactions of spermatozoa with the oviductal epithelium have been inves-

tigated thoroughly throughout the years in ex vivo systems, explant cultures and 

also primary cultures derived from oviductal epithelial cells. However, primary 

cell cultures gained from uterine epithelium have so far mostly been used for 

research on cell secretory functions or the response to tumour introduction or 

medical treatment, respectively but less for cell behaviour in connection with 

sperm cells after insemination or mating.  

 

Porcine uterine epithelial cells were harvested by layer-enzymatic digestion with 

Trypsin/EDTA (1x). Dissemination was carried out on collagen (rat tail, type I) 

coated glass cover slips in six-well culture dishes. Fresh medium was applied 

after removal of the old volume every three days. Cells started to adhere to the 

collagen matrix after 12 to 36 hours and colonies were formed after five to sev-

en days. Confluence could be documented after ten to 15 days. Verification for 

epithelial cells was completed by immune-fluorescence antibody stain using an 

epithelial cell-specific primary antibody (marking cytokeratin 19).  

 

Porcine spermatozoa bound to UEC within minutes and remained motile. 

Sperm attachment occurred via the apical head membrane and in large batches 

of many sperm to one epithelial cell as well as single sperm binding. Reduced 

sperm binding was observed for sperm on porcine aortal epithelia as well as 

porcine foetal fibroblasts, indicating that porcine uterine epithelia possess spe-

cific ligands for porcine sperm surface moieties. 

 

To identify the molecules involved in attachment and because it is known that 

porcine sperm bind to the oviduct via lectin-carbohydrate interactions, fluores-

cence labelled lectins were incubated with porcine sperm (ejaculated and epi-

didymal) and UEC. The binding intensity was analysed with a flow-cytometer. 

Sperm as well as uterine epithelia showed high binding density for lectins affine 
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for Glc-NAc and sialic acid as well as Gal-NAc indicated by high binding intensi-

ties from lectins affine for these oligosaccharides, namely wheat germ agglutinin 

(WGA) and succinylated wheat germ agglutinin (sWGA). 

 

To verify which carbohydrate is most important for sperm binding to UEC, block-

ing trials were undertaken. The blocking of sialic acid residues on the UEC be-

fore sperm incubation resulted in diminished binding density. No effect was 

seen for blocked Glc-NAc ligands. This shows that the main molecule involved 

in sperm-UEC interactions most likely is sialic acid. 

 

It is concluded that the interaction of porcine sperm with uterine epithelial cells 

in vitro is mediated by lectin-like proteins on the sperm surface and carbohy-

drate residues on the UEC. The glycan ligand involved in this binding was iden-

tified as sialic acid. A modification of pig semen extender by the addition of sial-

idase may result in drastically lower sperm numbers per dose, because an arti-

ficial circumvention of the uterine binding is assembled, similar to the results 

from surgical insemination directly into the oviduct. 
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7 Zusammenfassung 

 

In der Schweinezucht werden konventionell 1-3 x109 Spermien als Frischsamen 

in einem Volumen von 80-100 ml intrauterin versamt (COLENBRANDER, 1991). 

Sauen werden innerhalb von 24 Stunden doppelt besamt, um eine erfolgreiche 

Befruchtung zu garantieren. Im Vergleich zur Rinderbesamung, bei der mitunter 

2 x106 Spermien zu Trächtigkeiten führen (SCHENK et al., 2009), sind Ejakulate 

von Ebern ineffizient. Der Bedarf an genetisch hochwertigen Vererbern ist stark 

angestiegen und kann bisher nur durch die Bereitstellung vieler Individuen 

(RATH, 2002) oder einer reduzierten Spermienzahlen je Dosis gedeckt werden. 

Die einzige Möglichkeit geringe Spermienzahlen erfolgreich zu versamen be-

steht darin die Spermienablage nahe dem Ort der Befruchtung im distalen Isth-

mus des Eileiters durchzuführen. Ein modifizierter Ablageort erlaubt eine drasti-

sche Spermienreduktion bei gleichzeitigem Erhalt der Befruchtungs- und Abfer-

kelraten. 

Um den Bedarf sehr hoher Spermienzahlen zu verstehen, ist es nötig die Her-

ausforderungen an porzine Spermien auf dem Weg zum Ort der Befruchtung im 

weiblichen Reproduktionstrakt zu erläutern. Die spezies-spezifische Bindung 

von Säugerspermien an diverse Oberflächenzellen des weiblichen Traktes, die 

der Kapazitation und Hyperaktivierung vorangehen, setzt die Erkennung von 

Kohlenhydraten durch lektin-ähnliche Proteine der Spermienplasmamembran 

voraus (TÖPFER-PETERSEN, 1999a). Daher wurde vermutet, dass eine mutmaß-

liche Bindung porziner Spermien an das Uterusepithel ebenfalls Protein-

Kohlenhydrat vermittelt ist. 

Ziel der vorliegenden Arbeit war die Etablierung eines Zellkulturmodells aus 

primären Uterusepithelien der Sau (Sus scrofa), um mögliche Gründe für die 

hohen Spermienzahlen in der Schweinbesamung zu untersuchen und zu identi-

fizieren. 

Folgende Hypothesen wurden aufgestellt: 

 

1. Auf dem Weg zum Ort der Befruchtung binden porzine Spermien an 

das Uterusepithel.  

2. Diese Bindung setzt Interaktionen zwischen Oberflächenmolekülen 

der Spermien und der uterinen Epithelzellen voraus. 
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3. Diese Interaktionen werden durch Lektin-ähnliche Proteine auf der 

apikalen Plasmamembran der Spermien und Oligosacchariden  auf 

der luminalen Membran des Endometriums vermittelt. 

 

Die Interaktionen von Spermien mit dem Eileiterepithel sind bereits ausgiebig in 

ex vivo Systemen oder Explantkulturen des Oviduktepithels untersucht worden. 

Jedoch wurden Primärkulturen des Oviduktepithels mehrheitlich für Versuche 

zu Sekretfunktionen, Reaktion auf Tumorinduktion oder Medikamente genutzt, 

anstatt Zellverhalten nach Spermienkontakt. 

 

Porzine uterine Epithelien wurden mittels Verdau mit Trypsin/EDTA (1x) ge-

wonnen. Zellen wurden auf Collagen (rat tail, type I) auf Kollagen-beschichteten 

Deckgläschen aus Glas in 6-Well Kulturschalen ausgesät. Das Nährmedium 

wurde all drei Tage ausgewechselt. Die Anheftung der Zellen an die Kollagen-

Matrix wurde nach 12-36 Stunden beobachtet. Erste Kolonien bildeten sich 

nach fünf bis sieben Tagen und Konfluenz wurde nach zehn bis fünfzehn Tagen 

erreicht. Der Nachweis der Zellart erfolgte mittels Immunfluoreszenz-Färbung 

mit einem Epithelien-spezifischen Antikörper (anti-Cytokeratin-19).  

Eberspermien banden innerhalb weniger Minuten an die UEC und verblieben 

währenddessen motil. Die Anheftung erfolgte am Spermienkopf und in dichten 

Clustern an einzelne Epithelien oder auch als einzelne Spermien. Eine verrin-

gerte Spermienbindung wurde sowohl auf Aortenendothelien als auch fötalen 

Fibroblasten des Schweins beobachtet. Dies weist auf das Vorhandensein 

spermienspezifischer Liganden auf den UEC hin. 

Zur Identifizierung der möglichen involvierten Moleküle - und da bekannt ist, 

dass Spermien mittels lektin-ähnlichen Proteine an das Oviduktepithel binden - 

wurden Inkubationsversuche mit verschiedenen fluoreszenz-markierten Lekti-

nen durchgeführt.  

Ejakulierte Spermien sowie Epididymalspermien und UEC wurden inkubiert und 

mittels eines Flow-Cytoneters ausgewertet. Spermien, wie auch UEC wiesen 

hohe Bindungsintensitäten für Lektine die an Glc-NAc, (WGA) sowie Gal-NAc 

(sWGA) binden. 
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Um die wichtigsten Oligosaccharide für die Spermien-Epithelbindung zu be-

stimmen, wurden Sättigungsversuche durchgeführt. Die Sättigung von Sialin-

säure führte zu einer stark verminderten Spermienbindung auf den UEC. Bei 

einer Sättigung von Glc-NAC wurde kein Unterschied beobachtet. Dies kenn-

zeichnet Sialinsäure als den vermutlich wichtigsten Kohlenhydratrest in der 

Spermien-Epithelzellbindung. 

 

Es wird gefolgert, dass eine Interaktion porziner Spermien mit uterinen Epithel-

zellen in vitro durch lektin-ähnliche Proteine auf der Spermienoberfläche und 

Kohlenhydratresiduen auf den UEC vermittelt wird. Die bedeutendsten Oli-

gosaccharide sind hierbei Kohlenhydrate mit terminalen Sialinsäureresiduen. 

Eine Modifizierung des Ebersamenverdünners durch den Zusatz von Sialidase, 

könnte eine drastische Reduzierung der Spermienzahl je Besamungsdosis be-

wirken. Somit wäre eine künstliche Umgehung der Bindung an das Ute-

rusepithel bewirkt, ähnlich derer, die durch chirurgische Besamung in das Ovi-

dukt erzielt wird.  
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