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abstract: Capacitation is a remarkable process whereby spermatozoa prepare themselves for engagement with the oocyte. Although the
existence of this process has been appreciated as a biological phenomenon for more than half a century, its molecular underpinnings still await
clarification. We know that some of the major changes involve sterol oxidation and efflux from the plasma membrane, the anterior movement of
lipid rafts, changes in the surface expression of a variety of proteins including hyaluronidase and receptors for the zona pellucida, an increase in
intracellular cyclic adenosine monophosphate (cAMP), the induction of tyrosine phosphorylation and the expression of hyperactivated motility.
These changes are dependent on the presence of bicarbonate, to facilitate cAMP generation, maintain an alkaline intracellular pH and support an
optimal level of reactive oxygen species generation and are enhanced by the presence of albumin to provide antioxidant protection to the plasma
membrane and promote cholesterol efflux. In vivo, the rate at which sperm cells capacitate is carefully controlled in order to ensure that the release
of capacitated spermatozoa from a post-insemination reservoir in the isthmic region of the oviduct is synchronized with ovulation. The factors that
control these critical events are now being resolved, aided by proteomic studies that are providing critical definitive information on the range of
receptors that exist in the sperm plasma membrane and define the manner in which these exquisitely complex cells interact with their environ-
ment. Progress in this areahas been enhanced by IVF technology pioneered by Bob Edwards and will ultimately facilitate the design of safe, effective
culture conditions for optimization of this revolutionary therapy.
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Introduction
Bob Edwards changed the face of reproductive healthcare forever. The
introduction of in vitro fertilization and embryo transfer as a form of
therapy for human infertility has revolutionized the treatment of this con-
dition allowing millions of couples to have children who would have
otherwise been denied this privilege. Less appreciated is the fact that
this technology was developed against a tide of negativity created by
those who felt, at the time, that it was impossible, unethical or unneces-
sary. His ultimate triumph over the forces of adversity rightly earned him
a Nobel prize—even if it was a decade or so too late.

Throughout the evolution of this technology it was clear that Bob was
fundamentally a geneticist who had a particular passion for oocytes and
preimplantation embryos and a keen awareness of the potential bound
up in stem cell biology (Edwards, 2005). He published seminal works
on oocyte maturation and deliberated extensively on the endocrine
control of follicular development (Edwards, 1965, 2002). However, to
our knowledge he never published a paper on the testes and did not
delve deeply into sperm cell biology. To our knowledge his sole experi-
mental excursion into sperm capacitation came in 1968 when he devel-
oped a small diffusion chamber that could be inserted into the uterine

cavity with a view to exposing human spermatozoa to the secretions
of the female reproductive tract (Edwards et al., 1968). Unfortunately
this strategy was unsuccessful, possibly because of a localized inflamma-
tory response to the presence of the device itself (Johnson, 2011).
Despite such an unpromising start, a solution to the problem of sperm
capacitation in vitro was rapidly found. Building on the pioneering works
of Bunny Austin, MC Chang and Ryuzo Yanagimachi, Bob’s prodigé,
Barry Bavister, had determined that spermatozoa could be capacitated
in readiness for in vitro fertilization in a simple defined culture medium
(Edwards et al., 1969; Bavister, 1973). Once this practical biological mile-
stone had been achieved, Bob did not give the mechanisms underpinning
this process high priority. This is a pity because the processes of sperm
transport and capacitation in vivo are extremely sophisticated, beautifully
controlled biological events, designed to deliver a highly selected subpopu-
lation of spermatozoa to the surface of the oocyte, capable of rapidly and
effectively engaging the process of fertilization.

The biological journey to the oocyte begins with hundreds of millions
of spermatozoa being inseminated into the female reproductive tract. At
the moment of ejaculation these cells instantly express high levels of pro-
gressive motility but are otherwise completely incapable of recognizing
the egg or engaging in the complex cascade of cell–cell interactions
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that culminate in syngamy. During their ascent of the female reproductive
system the spermatozoa successfully avoid the gauntlet laid down by the
maternal immune system and ignore the large number of other cells with
which they make contact on their journey towards the Fallopian tube.
However on reaching the isthmic region of oviduct, this behaviour is sud-
denly reversed as the spermatozoa establish intimate contact with the
endosalpingeal epithelium (Suarez and Pacey, 2006). In this location,
the bound cells establish a quiescent sperm reservoir and remain in
this state until they receive a signal associated with ovulation. At this
point, the spermatozoa suddenly break away from their epithelial
resting place in a hyperactivated state and migrate rapidly towards the
oocyte in a state of readiness for fertilization (Suarez, 2008). By the
time the spermatozoa have reached the surface of the oocyte, they are
completely transformed cells exhibiting a hyperactivated form of move-
ment (Yanagimachi, 1994), expressing various receptors for the oocyte-
cumulus mass on their surface (Reid et al., 2011) and with a plasma mem-
brane that has been primed to initiate the acrosome reaction in response
to a calcium transient (Florman et al., 2008). The story of the molecular
changes that underpin this complex biological journey is the story of
sperm capacitation (Fig. 1). It is a pity that Bob is no longer around to
appreciate it.

Cholesterol and changes in
membrane fluidity
One of the first changes described in capacitating mammalian spermato-
zoa was a loss of cholesterol from the sperm plasma membrane (Davis
et al., 1979). Sterols such as cholesterol and desmosterol are removed
from the sperm surface by proteinaceous acceptor molecules such as
albumin, high-density lipoproteins and apolipoproteins (e.g. apoA-1) in
the extracellular space. It is for this reason that albumin is an extremely
important component of in vitro fertilization media, although it may not
be mandatory for all species (Choi et al., 2003). Cholesterol is a powerful
decapacitation factor that serves to stabilize the plasma membrane of the
spermatozoa during epididymal transit and prevent the intermolecular
interactions responsible for achieving a capacitated state (Davis, 1980).
A small percentage of sperm cholesterol (�6%) is stabilized in the
sperm plasma membrane as cholesterol sulfate (Langlais et al., 1981;
Sion et al., 2001). As spermatozoa ascend the female reproductive
tract and initiate capacitation, sterol sulfatases affect the enzymatic hy-
drolysis of the sulfate group, thereby increasing the pool of cholesterol
available for esterification (Roberts, 1987). The fatty acids required for
the esterification of cholesterol are provided via their enzymatic cleavage
from membrane phospholipids by phospholipase A. One of the
by-products of this process is the creation of highly unstable lysopho-
spholipids that generate increased membrane fluidity and permeability
to calcium, both of which should promote capacitation and subsequent
acrosomal exocytosis. Cholesterol transfer from the sperm plasma
membrane to albumin may involve the mediation of an active cholesterol
transporter such as ABCA17 (Morales et al., 2012). However, a major
contributor to the cholesterol efflux from the sperm plasma membrane
during capacitation is oxidative stress. Thus, recent studies have estab-
lished that sterols can become oxidized during capacitation and that
the increased hydrophilicity of the oxidation products facilitates their
transfer to albumin (Brouwers et al., 2011). This process is dependent
on the presence of bicarbonate which is, in turn, required to promote

reactive oxygen species (ROS) generation by the spermatozoa (Ecroyd
et al., 2003; Boerke et al., 2013). Addition of antioxidants such as the
combination of vitamin E and C to mammalian spermatozoa inhibits
this redox-regulated process and disrupts the capacitation of the sperm-
atozoa (O’Flaherty et al., 1997; Boerke et al., 2013).

Redox regulation
The involvement of ROS in the capacitation of mammalian spermatozoa
has been appreciated since the pioneering studies of Claude Gagnon in
the 1990s (de Lamirande and Gagnon, 1993a). Which particular ROS is re-
sponsible for capacitation has been the subject of some controversy
because compelling evidence has been produced to support a key role
for hydrogen peroxide (Bize et al., 1991; Aitken et al., 1995, 1996; Rivlin
et al., 2004) superoxide anion (de Lamirande and Gagnon, 1993b) and
the peroxynitrite anion, generated by the reaction of superoxide anion
with another free radical species, nitric oxide (NO) (Herrero et al., 2001;
Rodriguez and Beconi, 2009). In reality, the interconversion of these
various reactive oxygen and reactive nitrogen species is very rapid and it
is probable that several different redox entities are involved in various
aspects of the capacitation process. For example, the suppression of tyro-
sine phosphatase activity is intimately involved in the global elevation of
protein tyrosine phosphorylation levels that accompany capacitation.
This family of enzymes possesses a key cysteine residue at their active
site thatmustbe ina reducedstate forphosphataseactivity tobeexpressed.
Powerful oxidants generated during sperm capacitation such as hydrogen
peroxide and peroxynitrite are both capable of oxidizing this cysteine
residue and inactivating tyrosine phosphatase activity (Hecht and Zick,
1992; Takakura et al., 1999). Superoxide is also thought to participate in
the direct activation of soluble adenylate cyclase, increasing the intracellular
levels of cyclic adenosine monophosphate (cAMP) that, in turn, drive tyro-
sine kinase activity via a Src-dependent mechanism described in detail
below (Zhang and Zheng, 1996; Baker et al., 2006; Ickowicz et al., 2012).
Hydrogen peroxide is also thought to enhance adenylyl cyclase activity
via the induction of enhanced tyrosine kinase activity (Tan et al., 1995) cre-
atinga self-perpetuating cascade involvingROS generation, adenylyl cyclase
activation andtyrosine phosphorylation.For itspart, peroxynitrite is known
to both inhibit tyrosine phosphatases and activate tyrosine kinases of the
Src family (Minetti et al., 2002) making it a particularly powerful contributor
to the capacitation process.

Further evidence for a positive role for ROS in the molecular mechan-
isms regulating sperm capacitationcan be found in the powerful biological
effects elicited by both ROS-specific scavengers and exposure to ex-
ogenous ROS of various kinds. For example, the tyrosine phosphoryl-
ation surge associated with the capacitation in human spermatozoa
can be blocked by the addition of catalase to scavenge all of the hydrogen
peroxide generated by these cells (Griveau et al., 1994; Aitken et al.,
1995, 1996; Leclerc et al., 1997). Similar results have been reported
for hamster, buffalo, mouse and equine spermatozoa (Bize et al., 1991;
Baumber et al., 2003; Ecroyd et al., 2003; Roy and Atreja, 2008). In add-
ition, the direct addition of hydrogen peroxide to mammalian spermato-
zoa has been shown to induce the tyrosine phosphorylation events
associated with capacitation in several species (Aitken et al., 1995;
Rivlin et al., 2004; Roy and Atreja, 2008) and trigger the acrosome reac-
tion (O’Flaherty et al., 1999). Furthermore, membrane permeant ROS
scavengers such as 2-mercaptoethanol have been reported to have a
profound inhibitory impact on tyrosine phosphorylation (Aitken et al.,
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1998a). In most species, superoxide dismutase (SOD) cannot suppress
sperm tyrosine phosphorylation levels suggesting a lack of superoxide in-
volvement in the capacitation process (Baumber et al., 2003). However
the late Claude Gagnon found that this enzyme could robustly suppress
the capacitation of human spermatozoa induced by fetal chord serum (de
Lamirande and Gagnon, 1993a, b). Such results suggest that the latter
specifically activates superoxide generation in human spermatozoa
leading to metabolic products such as peroxynitrite, which are known
to stimulate the capacitation process via the stimulation of tyrosine phos-
phorylation, the suppression of tyrosine phosphatase activity and, pos-
sibly, the induction of cholesterol oxidation as highlighted above.
Similarly, for bovine spermatozoa, SOD has been shown to suppress
capacitation (O’Flaherty et al., 2003) and in this species too, there is
abundant evidence for peroxynitrite as an inducer of sperm capacitation
(Rodriguez and Beconi, 2009; Rodriguez et al., 2011).

While the central role of ROS in the induction of sperm capacitation is
not in doubt, the molecular source of the free radicals and oxidants that
stimulate capacitation is unknown. Although several groups have con-
firmed that spermatozoa contain nicotinamide adenine dinucleotide
phosphate (NADPH) oxidases such as NADPH oxidase 5 (NOX5),

there is no definitive evidence for the biochemical involvement of such
enzymes in sperm capacitation (Musset et al., 2012). Several studies
have demonstrated that the flavoprotein inhibitor diphenylene iodonium
(DPI) will inhibit tyrosine phosphorylation during the capacitation of
mouse, bovine, human and hamster spermatozoa (Aitken et al., 1995,
1997, 1998a, 2004; Ecroyd et al., 2003; O’Flaherty et al., 2003;
Córdoba et al., 2006; Roy and Atreja, 2008). Because DPI is a known
and potent inhibitor of NADPH oxidases, such results have been cited
as evidence for the involvement of oxidase activity in sperm capacitation.
However, DPI is also an inhibitor of mitochondrial ROS generation, so
alternative interpretations of these results are possible. The ability of
apocynin to suppress sperm ROS generation (Donà et al., 2011) is
more convincing because this inhibitor is specific for NADPH oxidases,
particularly NOX2. However while apocynin does clearly inhibit ROS
generation by human sperm suspensions, the possibility cannot be
excluded that such inhibition is a reflection of low-level leukocyte con-
tamination, NOX2 being the major oxidase of phagocytic leukocytes.
Nitric oxide synthase has also been proposed as a source of NO in
spermatozoa (O’Flaherty et al., 2004; Roessner et al., 2010) although
non-enzymatic pathways involving, for example, a direct attack on

Figure1 The stages of sperm capacitation in vivo. (1) At insemination hundreds of millions of spermatozoa are released into the female tract. At this stage
in their life history these cells are progressively motile, yet uncapacitated. (2) As spermatozoa traverse the uterine cavity, the initial stages of capacitation
occur characterized by the loss of decapacitation factors, largely acquired from epididymal and seminal plasma, from the sperm surface. (3) Spermatozoa are
subsequently thought to establish a reservoir in the isthmic region of the Fallopian tubes (Baillie et al., 1997). While bound to these epithelial cells the sperm-
atozoa become quiescent and are stored in readiness for ovulation. (4) An endocrine signal coincident with ovulation induces a sudden change in sperm
biochemistry characterized by an increase in reactive oxygen species (ROS) generation, intracellular cyclic adenosine monophosphate levels and tyrosine
phosphorylation. In response to these signals, calcium is released from an intracellular store in the redundant nuclear envelope in a pulsatile manner inducing
the expression of hyperactivated motility. (5) In this hyperactivated state, spermatozoa are released from the oviductal epithelium and migrate up the Fal-
lopian tube towards the oocyte where they engage the cumulus mass. (6) Spermatozoa may acrosome react within the cumulus mass or may migrate
towards the zona surface and bind to this structure via surface-orientated zona-binding complexes localized within lipid rafts and featuring a number of
potential zona-binding molecules including arylsulfatase A (ARSA) and the zona pellucida binding protein (ZPBP2) (Redgrove et al., 2011, 2012).
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arginine by hydrogen peroxide cannot be excluded (Aitken et al., 2004).
It is always possible, indeed it is likely, that more than one source of ROS
is involved in promoting so critical a process as capacitation, creating a
high level of redundancy in the redox regulation of this process.
Clearly, the major targets for such redox regulation are the phosphatases
and kinases regulating tyrosine phosphorylation; however, the redox ac-
tivity that drives this processmay involve multiple ROS species originating
from multiple subcellular sites (Aitken et al., 2003).

Whatever the source of the ROS that drives capacitation, it places
these cells on a knife-edge because they are inherently vulnerable to oxi-
dative stress. Indeed it has been argued that sperm capacitation and the
entry of these cells into the intrinsic apoptotic cascade are a continuum,
the ROS that drive tyrosine phosphorylation, cAMP production and
cholesterol efflux from the plasma membrane ultimately inducing a
state of apoptosis (Aitken, 2011). It is for this reason that antioxidants
such as vitamin E have been repeatedly shown to help preserve the func-
tional integrity of spermatozoa by virtue of their capacity to counteract
the oxidative stress associated with apoptotic death (Beconi et al.,
1993; Breininger et al., 2005; Silva et al., 2012). During the latter, mito-
chondrial ROS generation is increased as a consequence of protein ad-
duction within the mitochondrial electron transport chain by cytotoxic
lipid aldehydes such as acrolein and 4-hydroxynonenal (4HNE) gener-
ated as a result of the lipid peroxidation precipitated by oxidative
stress (Aitken et al., 2012b). Senescent, over-capacitated spermatozoa
are therefore characterized by high levels of mitochondrial ROS gener-
ation, oxidative DNA damage and high rates of 4HNE generation
(Aitken and Baker, 2013). These cells also exhibit a significant reduction
in their motility, caspase activation and the expression of surface markers
of apoptosis such as phosphatidylserine (Koppers et al., 2011). In vivo, the
latter may be particularly important as a signal to infiltrating leukocytes
that the phagocytic process they are about to engage in should be
silent, in the sense that no proinflammatory cytokines or ROS must be
generated (Aitken et al., 2012a). Given the very high number of dead
and moribund spermatozoa that litter the female tract following insem-
ination, it is clearly essential that the phagocytic process that achieves
their removal is carefully controlled so that collateral oxidative damage
to the female tract is kept to an absolute minimum.

Tyrosine phosphorylation
Visconti et al. (1995) were the first to demonstrate that the capacitation
of murine spermatozoa was accompanied by a massive increase in tyro-
sine phosphorylation focused on the fibrous sheath of the sperm tail.
Tyrosine phosphorylation has subsequently been shown to be a
feature of capacitation in all mammalian species that have been examined
including bovine (Galantino-Homer et al., 1997), porcine (Flesch et al.,
1999), equine (Pommer et al., 2003), hamster (Visconti et al., 1999),
rat (Lewis and Aitken, 2001), mouse (Visconti et al., 1995), human
(Aitken et al., 1996) and even wallaby spermatozoa (Bennetts et al.,
2004). This process was shown to be promoted by the presence of
protein (bovine serum albumin), calcium and bicarbonate in the
medium; however, none of these factors are probably essential. As
long as the cells are viable, intracellular pH is adequately buffered
(Aitken et al., 1998b) and ATP levels are high (Baker et al., 2004;
Ecroyd et al., 2004), mammalian spermatozoa will capacitate and
exhibit high rates of tyrosine phosphorylation in medium lacking

bicarbonate and calcium and in which exogenous protein has been
replaced by polyvinyl alcohol (Baker et al., 2004).

The primary kinases involved in triggering this tyrosine phosphoryl-
ation cascade are members of the SRC family particularly pp60cSRC
and cABL (Baker et al., 2006, 2009). cAMP-mediated activation of
protein kinase A (PKA) both directly activates these kinases and simul-
taneously suppresses an inhibitor of SRC, C-terminal SRC kinase
(Baker et al., 2006). The targets of SRC-induced phosphorylation are
still being resolved; however, it is possible that this family of kinases
drives tyrosine phosphorylation via the phosphorylation-dependent
inhibition of a tyrosine phosphatase, which normally keeps PKA-
dependent tyrosine phosphorylation under inhibitory control (Krapf
et al., 2010; Battistone et al., 2013).

In addition to SRC-mediated tyrosine phosphorylation pathways
driven by cAMP there is evidence that capacitation might also involve
receptor-activated tyrosine kinases. Specifically, the extracellular signal-
regulated kinases (ERKs) represent a specific subset of the mammalian
mitogen-activated protein (MAP) kinase family with postulated roles in
the induction of capacitation. Claude Gagnon’s laboratory was instru-
mental in demonstrating that the entire ERK pathway is involved in the
capacitation of human spermatozoa (de Lamirande and Gagnon, 2002;
O’Flaherty et al., 2005, 2006a, b). Receptor tyrosine kinases including
fibroblast growth factor receptor, insulin-like growth factor receptor
and epidermal growth factor receptor have all been detected in mamma-
lian spermatozoa (Lax et al., 1994; Naz and Padman, 1999; Cotton et al.,
2006). These receptor kinases appear to stimulate tyrosine phosphoryl-
ation in mammalian spermatozoa by working through the Ras-Raf-
MEK-ERK network (Roberts and Der, 2007). There is also some
evidence for cross talk between the cAMP/PKA/SRC and MAP kinase
pathways in regulating sperm tyrosine phosphorylation during capacita-
tion, although the precise nature of this interaction is not well understood
(Luna et al., 2012). In addition, there is evidence that the ERK pathway
can also be directly activated by ROS, in the absence of growth factor re-
ceptor activation, possibly as a consequence of phosphatase inactivation
(O’Flaherty et al., 2005, 2006a, b).

Capacitation and decapacitation
factors
The existence of the above-mentioned tyrosine kinase receptors is im-
portant since it demonstrates a potential mechanism by which the secre-
tions of the female reproductive tract might control the capacitation
process. This is a very poorly understood area of gamete biology.
While it is evident that spermatozoa can fertilize an oocyte in vitro in a
simple defined culture medium, in vivo, there are dynamic interactions
with the female reproductive tract that carefully regulate the rate at
which these cells achieve capacitation so that they are delivered to the
surface of the oocyte in a fully primed state, ready for fertilization.
These regulatory mechanisms are particularly important in the case of
our species because human reproduction is characterized by a lack of
synchrony between insemination and ovulation, there being no overt
oestrus in our species. If the spermatozoa capacitate too fast, the redox-
regulated mechanisms that drove them down the path of capacitation will
ultimately create such cellular stress that the cells default to apoptosis
(Aitken, 2011). If they capacitate too slowly, they will not be equipped
to recognize the oocyte when it arrives in the ampulla of the Fallopian
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tube or be able to participate in the intricate cascade of cell–cell interac-
tions that culminate in fertilization.

The regulation of capacitation in vivo involves both exposure to a
variety of ligands that control the fate of the cell via receptor-mediated
mechanisms and the loss of decapacitation factors from the sperm
surface. Some of the receptor-mediated interactions are designed to
operate late in the sperm capacitation process to prepare the cell for
acrosomal exocytosis; progesterone, epidermal growth factor and plate-
let endothelial cell adhesion molecule would be examples of such
late-acting ligands (Nixon et al., 2005; Hunter, 2008; Breitbart and Etko-
vitz, 2011). Other endocrine factors act early in the capacitation process
and are designed to promote cell survival and to impede premature entry
of the spermatozoa into the intrinsic apoptotic pathway; prolactin would
be a good example of such a factor (Pujianto et al., 2010). A number of
other decapacitation factors are associated with the sperm surface in
the male tract and also serve to prevent premature capacitation of
these cells. Such factors include cholesterol (Davis, 1981), protease inhi-
bitors including the serine protease inhibitor Kasal-type-like protein
(SPINKL) (Lin et al., 2008) and serine protein inhibitor (Lu et al.,
2011), platelet-activating factor acetylhydrolase (Zhu et al., 2006), phos-
phatidylethanolamine binding protein 1 (Nixon et al., 2006), NYD-SP27,
an isoform of phospholipase C Zeta 1 localized to the sperm acrosome
(Bi et al., 2009), HongrES1 (Ni et al., 2009) and mouse seminal plasma
protein, SVS2, which interacts with the ganglioside GS1 (Kawano et al.,
2008). Capacitation appears to involve the dissociation of such factors
from the sperm surface, largely, but not exclusively, as a result of
passive diffusion.

Hyperactivation
Hyperactivation is one of the hallmarks of sperm capacitation. It involves
a transition in the flagellar wave form from the low-amplitude, symmet-
rical beat pattern typical of progressively motile cells to a high-amplitude,
asymmetrical thrashing of the sperm tail (Yanagimachi, 1994). Hyperac-
tivated spermatozoa display a typical high velocity figure-of-eight pattern
of movement that is thought to generate the propulsive forces necessary
to pull the spermatozoa away from the oviductal epithelium and pene-
trate the dense matrix represented by the zona pellucida (Suarez,
2008). In some species such as the hamster, there is an orderly, relatively
synchronized, progression towards a hyperactivated form of movement
as the spermatozoa attain a capacitated state (White and Aitken, 1989).
By contrast, human spermatozoa exhibit brief transient unsynchronized
bursts of hyperactivated movement as they become capacitated (Pacey
et al., 1997). The underlying biochemistry is still being elucidated but all of
the available evidence suggests that this is a cAMP-mediated event involv-
ing high levels of tyrosine phosphorylation in the sperm tail (Nassar et al.,
1999). One of the consequences of this cAMP-mediated process is to fa-
cilitate a pulsatile pattern of calcium release in the flagellum from an intra-
cellular calcium store thought to reside in the redundant nuclear envelop
located at the base of the sperm head (Ho and Suarez, 2003; Aitken and
McLaughlin, 2007). By eliciting intracellular calcium transients in sperm-
atozoa, progesterone is capable of inducing hyperactivated sperm move-
ment possibly via the mediation of the sperm-specific flagellar calcium
channel, CatSper—at least in human spermatozoa (Sagare-Patil et al.,
2013; Smith et al., 2013).

Recent data suggest that CatSper-mediated calcium entry into the fla-
gellum does not directly induce hyperactivation (Alasmari et al., 2013).

Rather, during capacitation CatSper may be involved in filling the intracel-
lular calcium store, which becomes sensitized to calcium-induced
calcium release during capacitation via mechanisms that may involve
NO mediated S-nitrosylation of ryanodine receptors and/or cAMP-
mediated processes. In marsupial spermatozoa we have found that ex-
posure to membrane permeant cAMP analogues induces an immediate
burst of hyperactivated motility (M. Lin, unpublished observations).
Similar induction of hyperactivation with cAMP has been observed in
boar spermatozoa in a manner that paralleled the induction of tyrosine
phosphorylation (Harayama et al., 2012). Whether the induction of
hyperactivation with cAMP is dependent on tyrosine phosphorylation
and, if so, the identities of the proteins phosphorylated in this manner
are unknown. Alternatively, tyrosine phosphorylation may simply be
an associated phenomenon and the induction of hyperactivated move-
ment with cAMP may involve non-PKA-dependent mechanisms, includ-
ing exchange proteins directly activated by cAMP (EPACs), in order to
facilitate calcium release from the intracellular store (Alasmari et al.,
2013). While there may be species-specific differences in terms of the
detailed control mechanisms, a general consensus is emerging that
calcium and cAMP are the key regulators of hyperactivation and that
the ultimate target of their action is the pulsatile release of calcium
from an intracellular store located in the redundant nuclear envelope.
CatSper is clearly essential for this process, possibly by facilitating the cre-
ation of intracellular calcium stores during capacitation (Qi et al., 2007;
Alasmari et al., 2013).

Egg receptor expression
As capacitated spermatozoa approach the oocyte, they are primed and
in a state of readiness to undergo the acrosome reaction. The induction
of acrosomal exocytosis mayoccur as spermatozoa approach the oocyte
in response to soluble factors in the vicinity of the cumulus-oocyte
complex such as progesterone (Inoue et al., 2011; Jin et al., 2011). Al-
though these data are incontrovertible in demonstrating that acrosome-
reacted spermatozoa can penetrate the zona pellucida and fuse with the
oocyte, these observations do not preclude the long-established view
that capacitated spermatozoa can also acrosome react on binding to
the zona pellucida (Gadella et al., 2008). Indeed, one of the most
dynamic properties acquired by capacitating spermatozoa is an ability
to recognize the zona pellucida: only capacitated spermatozoa can
bind to this structure (Dun et al., 2010). Early attempts to explain the mo-
lecular basis of this process focused on the presence of a single receptor
species on the surface of capacitating spermatozoa exhibiting an affinity
for the zona glycoprotein, ZP3. A number of sperm surface receptors
were proposed to mediate this process including zona receptor
kinase, mannosidase, sperm protein (SP)56 and beta galactosidase;
however, all of these candidates were ultimately discarded when knock-
out mice lacking each of these putative receptors were shown to be fully
fertile (Reid et al., 2011). We proposed an alternative mechanism in 2004
(Asquith et al., 2004), which posited that there is no single receptor for
the zona pellucida but rather several candidate molecules, which are
assembled into multimeric recognition complexes under the influence
of molecular chaperones. In the case of mouse spermatozoa the chaper-
ones associated with this process were identified as HSP90B1 (endoplas-
min), HSPD1 (heatshock protein HSP60) and as well as a family of
chaperonins belonging to the t-complex (Asquith et al., 2004; Dun
et al., 2011). These molecules become surface orientated during
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capacitation in a phosphorylation-dependent process (Nixon et al.,
2010). They also reside within lipid rafts, microdomains that are
moved within the plasma membrane in order to become localized at
the anterior acrosomal aspect of the sperm head during capacitation
(Nixon and Aitken, 2009; Nixon et al., 2009).

Although we have previously attempted to define the chaperones that
might be involved in shepherding human zona receptors to the sperm
surface, none of the candidates examined exhibited surface expression,
placing the potential role of chaperones in the mediation of human
sperm–egg interaction in some doubt (Mitchell et al., 2007).
However, by comparing the proteomic structure of spermatozoa from
donors who exhibit normal sperm function with patients exhibiting infer-
tility associated with a failure of sperm–zona interaction we have suc-
ceeded in identifying a chaperone associated with the presentation of
zona receptors to the human sperm surface during capacitation in the
form of HSPA2 (Redgrove et al., 2012, 2013). Our analysis of HSPA2
demonstrated that it is primarily localized to the anterior region of the
human sperm head (Redgrove et al., 2012), the precise location that
mediates zona adhesion. In addition, HSPA2 was found to be a target
for capacitation-associated tyrosine phosphorylation (Redgrove et al.,
2013), to be recruited into membrane rafts (Nixon et al., 2011) and to
form a major component of at least five large molecular mass complexes
(Redgrove et al., 2012). The most dominant of these complexes was
found to contain HSPA2, in close association with sperm adhesion mol-
ecule 1 (SPAM1) and arylsulfatase A (ARSA), two proteins that have
been implicated in sperm–egg interactions. On the basis of these data
we have proposed that HSPA2 is involved in orchestrating the dynamic
remodelling of the sperm plasma membrane leading to the surface ex-
pression of hyaluronidases such as SPAM1, to enable the spermatozoa
to engage with the extracellular matrix surround in the egg and zona
receptors such as ARSA as they capacitate. We have evenuncovered evi-
dence that the expression of these two molecules is sequential with
SPAM1 preceding the surface expression of ARSA, exactly as might be
predicted from the chronology of events associated with fertilization.
This model is consistent with previous data that have shown that
reduced HSPA2 levels are causally linked with defects in zona pellucida
adhesion and male infertility (Huszar et al., 1994, 2006, 2007).

Conclusions
In conclusion, our understanding, and our appreciation, of sperm cell
biology has increased dramatically as a result of new technologies that
permit the high resolution imaging of these cells, their analysis by flow
cytometry and a proteomics revolution that has facilitated analysis of
the post-translational modifications that are the ultimate determinants
of sperm function. Although spermatozoa can perform their functions
in simple defined culture medium, in vivo they actively interact with a
range of physiological regulators during their ascent of the female repro-
ductive tract. We are only just beginning to understand the nature of
these regulatory factors and the mechanisms by which they maintain
these cells in aviable but uncapacitatedstate for several days prior to ovu-
lation but then permit the rapid capacitation of these cells at the time of
ovulation. The net result of this complex, carefully orchestrated process
is to transform the functional competence of these cells such that they
approach the oocyte exhibiting a highly specialized, hyperactivated
form of movement, expressing receptors for the surface of the zona pel-
lucida and primed to undergo the acrosome reaction. Of the 200 million

spermatozoa entering the female tract at insemination only around 50
will successfully complete the journey to the surface of the egg. The mo-
lecular attributes of ‘the chosen few’ and the cellular mechanisms that
allow them to attain a capacitated state are not just fascinating from a sci-
entific perspective but also hold the key to understanding the causes of
male infertility and possible pathways to male fertility regulation. Under-
standing the process of sperm capacitation may also help us to develop
optimized IVF culture media that support high rates of fertilization while
maintaining low levels of DNA damage in both gametes and embryos. At-
tainment of this goal will enable us to make the revolutionary therapy pio-
neered by Bob Edwards and Patrick Steptoe as safe and effective as
humanly possible.
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