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Abstract Male factor infertility is the sole cause of
infertility in approximately 20% of infertile couples, with
an additional 30% to 40% secondary to both male and female
factors. Current means of evaluation of male factor infertility
remains routine semen analysis including seminal volume,
pH, sperm concentration, motility, and morphology. How-
ever, approximately 15% of patients with male factor
infertility have a normal semen analysis and a definitive

diagnosis of male infertility often cannot be made as a result
of routine semen analysis. Attention has focused on the role
of sperm nuclear DNA integrity in male factor infertility.
Here we review the structure of human sperm chromatin,
the etiology and mechanisms of sperm DNA damage,
current tests available to assess sperm DNA integrity, and
effect of sperm DNA integrity on reproductive outcomes.
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Introduction

Male factor infertility is the sole cause of infertility in
approximately 20% of infertile couples, with an additional
30% to 40% secondary to both male and female factors [90,
120]. Thus, male factor infertility is present in approximately
half of all infertile couples. Current means of evaluation of
male factor infertility remains routine semen analysis
including seminal volume, pH, sperm concentration, motility,
and morphology [125]. However, approximately 15% of
patients with male factor infertility have a normal semen
analysis [1] and a definitive diagnosis of male infertility often
cannot be made as a result of routine semen analysis [19].

Over the past decade, there has been a growing body of
research investigating the role of sperm nuclear DNA
integrity in male factor infertility. It has been suggested
that sperm DNA integrity may be a better predictor of male
fertility than routine semen analysis. There is evidence that
sperm of infertile men contain more DNA damage than
fertile men and that this sperm DNA damage may have a
negative effect on fertility potential of these patients [40,
55, 71, 114, 127, 130]. While high levels of sperm DNA
damage often correlate with poor seminal parameters such
as reduced count and motility or abnormal morphology [65,

Capsule Integrity of sperm DNA is essential for normal fertilization,
embryo development and reproduction. Numerous factors can impact
sperm chromatin structure and currently multiple diagnostic test are
available to ascertain sperm DNA integrity.
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80, 92], sperm DNA damage is also found in 8% of men
with normal seminal parameters [127, 130]. Additionally,
there have been concerns about potential consequences of
the use of DNA damaged sperm in intracytoplasmic sperm
injection (ICSI) as this technique overrides the process of
natural selection [109].

Although there has been a significant amount of research
on human sperm DNA integrity over the last decade, our
understandings of mechanisms of sperm DNA damage and
their effects on reproductive outcomes are far from complete.
Additionally, there continues to be questions and controver-
sies as to how to best apply this knowledge to clinical practice.
What exactly do these tests measure?What are the normal and
abnormal thresholds? What do abnormal results mean in
terms of clinical recommendations to the patients? Are there
effective treatments to improve sperm DNA integrity?

In this review article, we will review the structure of
human sperm chromatin, the etiology and mechanisms of
sperm DNA damage, current tests available to assess sperm
DNA integrity, and effect of sperm DNA integrity on
reproductive outcomes.

Sperm chromatin structure

Chromatin of mammalian sperm has a unique structure that is
highly organized, condensed, and compacted. This allows
protection of the paternal genome during transport through the
male and female reproductive tracts and its subsequent delivery
to the ova in good condition. Mammalian sperm DNA is the
most tightly compacted eukaryotic DNA [124]. This feature is
in contrast DNA structure in somatic cell nuclei. Somatic cell
nuclear DNA is wrapped around an octamer of histones and
packaged into nucleosomes and then further coiled into a
solenoid [84]. This type of packaging adds histones, which
increase chromatin volume. Sperm cell nuclei simply do not
have the volume for this type of packaging and thus must
undergo a different type of packaging [124].

During spermiogenesis, sperm chromatin undergo a
series of modifications in which histones are lost and
replaced with transition proteins and subsequently with
protamines [27, 68, 77]. Protamines are approximately half
the size of histones [44]. The DNA strands are highly
condensed by these protamines and form the basic
packaging unit of sperm chromatin, a toroid. The toroids
are further compacted by the intramolecular and intermo-
lecular disulfide cross-links between cysteine residues
present in protamines [72]. All of these levels of compac-
tion and organization help to protect sperm chromatin
during transport through the male and female reproductive
tract and also ensures the paternal genome is delivered in a
form that allows developing embryo to accurately express
genetic information [103].

Although human sperm chromatin contains this highly
organized and compact structure, it is less compact than in
other mammals. Approximately 15% of histones are retained
in human sperm chromatin subsequently making chromatin
less tightly compacted [11, 47]. Infertile men have been
reported to have a higher histone to protamine ratio in their
sperm chromatin [94, 116]. Human sperm also contain two
types of protamines, P1 and P2. P2 protamines contain fewer
cysteine groups and thus contain less disulfide crosslinks
[25]. This theoretically leaves the DNA more susceptible to
damage. It has been reported that altered P2 expression is
common in men with infertility [18].

Etiologies and mechanisms of sperm DNA damage

There are several different levels of sperm chromatin
abnormalities that are important to consider: 1) damage to
the actual DNA physical integrity in the form of single-
stranded or double-stranded DNA strand breaks, 2) nuclear
protein defects that may interfere with histone to protamine
conversion and subsequent DNA compaction, and 3)
chromatin structural abnormalities causing altered tertiary
chromatin configuration. Environmental stress, gene muta-
tions, and chromosomal abnormalities can all disturb
biochemical events that occur during spermatogenesis,
which can ultimately lead to abnormal chromatin structure
incompatible with fertility [41]. Ova are able to repair
sperm DNA damage to a certain extent [48]. However,
when sperm DNA damage is extensive, ovum may not have
repair capacities to allow normal development.

Etiologic factors

There are a variety of etiologic factors that have been
associated with sperm DNA fragmentation and/or impaired
chromatin integrity. These causes are many and range from
environmental conditions such as cigarette smoking [99],
irradiation [8], and chemotherapy [20, 88] to pathophysio-
logic conditions such as leukocytospermia [5, 35], varico-
celes [105, 107], and cancer [70]. Even iatrogenic causes
such as sperm cryopreservation [32, 73] have been
associated with sperm DNA damage. Exact molecular
mechanisms by which these conditions lead to sperm
DNA damage and/or chromatin abnormalities are not fully
understood, but there are currently three main theories
which we will review: 1) chromatin packaging abnormal-
ities, 2) reactive oxygen species, and 3) apoptosis.

Chromatin packaging abnormalities

As discussed previously, during spermiogenesis, sperm
chromatin undergoes an important step in remodeling in
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which histones are replaced by protamines. This chromatin
remodeling is facilitated by the coordinated loosening of
chromatin by histone hyper-acetylation as well as the
enzyme DNA topoisomerase II (topo II) which produces
temporary nicks in the sperm DNA to relieve torsional
stress resulting from supercoiling [74, 83, 85]. These
temporary nicks are then normally repaired by this same
enzyme, topo II, prior to completion of spermiogenesis and
ejaculation. However, if these nicks are not repaired, DNA
fragmented sperm may be present in the ejaculate [91].

Reactive oxygen species

Sperm DNA damage has also been associated high levels of
reactive oxygen species (ROS; [10]). At low levels, ROS play
an important role in sperm maturation and functions such as
capacitation and the acrosome reaction [30]. Seminal plasma
contains antioxidants which help protect sperm DNA [122].
However, when an excessive amount of ROS is produced
beyond the antioxidant capacity of seminal plasma and male
reproductive tract, the pathogenic result is often cellular and
DNA damage [3, 30]. Increased levels of ROS have been
reported in the semen of approximately 25% of infertile men
[128]. Additionally, a positive correlation was reported
between sperm DNA fragmentation and ROS [10]. Major
sources of ROS in semen are leukocytes and the sperm
themselves, particularly immature sperm with cytoplasmic
retention and abnormal head morphology characterized by
retention of residual cytoplasm [2, 51, 95]. Both leukocyto-
spermia and retention of residual cytoplasm within sperm
have been associated with increased sperm DNA damage,
likely secondary to increased level of ROS produced by these
cells [5, 35, 43].

Apoptosis

Another theory of sperm DNA damage is through abortive
apoptosis. Apoptosis is a process of programmed cell death
that occurs in many cells throughout the body. In the testes,
apoptosis normally occurs to prevent the overproduction of
germ cells and to selectively destroy injured germ cells
[113]. Sertoli cells are only able to support a limited
number of germ cells in the testis. Clonal expansion of
germ cells is in excess and thus apoptosis is necessary to
limit the size of the germ cell population to one which
Sertoli cells are able to support [101]. It has been suggested
that this apoptotic pathway is triggered by the interaction of
Fas Ligand (FasL) secreted by Sertoli cells with the Fas
protein located in the germ cell surface [78]. However,
there has been more recent evidence that this may not
always be the case as FasL defective mice still show
evidence of germ cell apoptosis [61]. Men with poor
seminal parameters often display a large percentage of Fas

expressing sperm in the ejaculate [103]. This has led to the
suggestion that some of these sperm with DNA damage and
Fas expression have undergone “abortive apoptosis”, in
which they started but subsequently escaped the apoptotic
pathway [104]. There has been controversy regarding this
theory as some studies have found no correlation between
DNA damage and Fas expression and other markers of
apoptosis [86, 92]. Interestingly, recent loss-of-function
studies indicate that DNA damage checkpoints occur
during spermatogenesis and may involve excision repair
genes, mismatch repair genes, and p53 [97].

Tests of sperm DNA integrity

Over the years, there have been an increasing number of
tests developed to assess sperm DNA integrity. Mecha-
nisms by which sperm DNA integrity is assessed in these
assays varies, with some measuring abnormalities in sperm
chromatin structure while other directly measure DNA
strand breaks.

Sperm Chromatin Structure Assay (SCSA)

The SCSA was first described over 25 years ago [38]. This
assay is based on the premise that DNA in sperm with
abnormal chromatin structure is more prone to acid or heat
denaturation [29, 100]. Using the metachromatic properties
of acridine orange (AO), SCSA measures susceptibility of
sperm DNA to acid-induced denaturation in situ. By
quantifying this metachromatic shift of AO from green to
red after acid treatment using flow cytometry, the extent of
DNA denaturation is determined [29, 38]. The parameter
obtained by SCSA most commonly referred to in the
literature is DNA fragmentation index (DFI), a measure of
DNA denaturation.

Acridine orange test

The acridine orange test (AOT) is based on similar principles
as the SCSA in which the metachromatic shift of AO from
green to red is used to determine extent of DNA denaturation.
The AOT is simpler and less expensive than the SCSA since it
can be done by visual interpretation under fluorescent
microscopy without the need for flow cytometry or a SCSA
trained technician [118]. However, issues of indistinct colors,
rapid fading, and the heterogeneous staining can cause
difficulties during visual interpretation [22].

Toluidine blue

Toluidine blue (TB) is a basic dye used to evaluate sperm
chromatin integrity. Phosphate residues of sperm DNA in
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nuclei with loosely packed chromatin and/or impaired DNA
are more liable to binding with basic dyes such as TB [87].
Thus, using light microscopy, damaged sperm will be
stained blue while normal sperm will remain colorless.

Aniline blue

Aniline blue is an acidic dye which is used to evaluate sperm
chromatin integrity. Sperm with impaired DNA often display
the presence of residual histones. These residual histones lead
to looser chromatin packaging allowing increased accessibil-
ity of basic groups of the nucleoprotein and subsequently
liable to bind acidic dyes such as aniline blue [9, 28].

TUNEL

The terminal deoxynucleotidyl transferase-mediated (TdT)
deoxyuridine triphosphate (dUTP) nick end labeling assay
(TUNEL) is a direct quantification of sperm DNA breaks [52].
dUTP is incorporated at single-stranded and double stranded
DNA breaks in a reaction catalyzed by the enzyme TdT. The
DNA breaks based on the incorporated dUTP are then
labeled and can be measured using bright field or fluorescent
microscopy as well as flow cytometry [52]. Sperm are then
classified as TUNEL positive or negative and expressed as a
percentage of the total sperm in the population. Typical
results of the TUNEL assay are shown in Fig. 1A.

In situ nick translation assay

The in situ nick translation (NT) assay is similar to the
TUNEL assay in that it quantifies incorporation of dUTP
into DNA breaks. However, in contrast to TUNEL which
identifies both single-stranded and double-stranded DNA
breaks, the in situ NT assay only identifies single-stranded
DNA breaks in a reaction catalyzed by the template-

dependent enzyme, DNA polymerase I. Although this can
be a relatively simple test to perform, it lacks sensitivity
when compared to other assays [122].

COMET

The single-cell gel electrophoresis (Comet) assay is another
test for direct assessment of sperm DNA breaks [56].
Decondensed sperm are suspended in an agarose gel,
subjected to an electrophoretic gradient, stained with
fluorescent DNA-binding dye, and then imaged with
imaging software. Low-molecular weight DNA, short frag-
ments of both single-stranded and double-stranded DNA,
will migrate during electrophoresis giving the characteristic
comet tail [69]. High-molecular weight intact segments of
DNA will not migrate and remain in the head of the
“comet.” Imaging software is then use to measure comet
tail length and tail fluorescent intensity, which are increased
in sperm with high levels of DNA strand breaks [64, 112].

Sperm chromatin dispersion test

The sperm chromatin dispersion (SCD) test is based on
induced condensation which is directly linked with sperm
DNA fragmentation [93]. Intact sperm are immersed in an
agarose matrix on a slide, treated with an acid solution to
denature, and then treated with a lysis buffer to remove
sperm membranes and proteins giving rise to nucleoids
with a central core and a peripheral halo of dispersed DNA
loops. Sperm with non-fragmented DNA release their DNA
loops forming large halos (Fig. 1B). However, sperm which
produce a very small halo or no halo at all contain DNA
fragmentation [42]. Sperm can be stained with Wright's
stain for visualization under bright field microscopy or an
appropriate fluorescent dye for visualization under fluores-
cent microscopy.

Fig. 1 Sperm DNA fragmentation assays. A. TUNEL assay. Blue
sperm are TUNEL negative while green sperm are TUNEL positive
indicating DNA fragmentation. B. Sperm Chromatin Dispersion Test.
The two sperm in the center with non-fragmented DNA form large

halos, while the sperm in the upper right hand corner has no halo
indicating DNA fragmentation. Results from both assays are typically
expressed as percentage of sperm demonstrating DNA fragmentation
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Correlations with other tests

As displayed above, there are many tests to measure sperm
DNA integrity. Although the mechanisms by which sperm
DNA integrity is assessed in these assays varies, most tests of
sperm DNA integrity generally correlate well with each other.
The SCSA has been shown to have a significant positive
correlation with multiple other assays including COMET [7],
TUNEL [22, 102], toluidine blue staining [36], and SCD test
[22]. TUNEL has also been shown to have a strong positive
correlation with toluidine blue staining [36] and the AOT
[127, 130]. However, more recently, AOT was shown to
display extreme variations for sperm DNA fragmentation
[22]. While SCSA, TUNEL, and the SCD test predicted
similar levels of DNA fragmentation, AOT consistently
showed higher levels of DNA fragmentation and interest-
ingly had no significant correlation with SCSA [22].

Standard seminal parameters of sperm concentration,
motility, and morphology have been consistently shown to
have a negative correlation with levels of sperm DNA
fragmentation whether measured by COMET [65], TUNEL
[11, 127, 130], or SCSA [40, 105, 107]. While degree of
correlation is somewhat variable between studies, they
consistently indicate that sperm from patients with abnor-
mal sperm concentration, motility, and morphology have
increased levels of DNA damage.

Another important aspect to consider in evaluating these
tests is their repeatability over time in the same patient.
Standard seminal parameters of sperm concentration,
motility, and normal morphology can be highly variable
over time within individuals [4, 6, 82]. In comparison,
measures of sperm DNA damage has been shown to have
good stability over time within individual with TUNEL
[110, 111] and SCSA assays [39, 127, 130]. Earlier studies
have reported low coefficients of variation (CV) of 10%
[39] and 21 % [127, 130] of DFI with the SCSA. However,
a recent study with a larger study population reported a
significant intra-individual variation with a CV of 29% and
recommended that SCSA be repeated when the DFI in the
first measurement is >20% [34].

Sperm DNA damage and reproductive outcomes

In vivo fertilization

Increasing evidence suggests that sperm DNA damage has
a negative impact on male fertility potential [40, 45, 62,
105–107, 114, 129]. These studies utilized a variety of
different assays to analyze sperm DNA integrity but
consistently showed that infertile men have a significantly
higher level of sperm DNA damage when compared with
fertile men. A threshold value of 20% sperm DNA

fragmentation with TUNEL assay has been suggested to
distinguish between fertile controls and infertile men [110,
111]. Additionally, ≥30% or >40% DFI as measured by the
SCSA has also been suggested as specific threshold levels,
above which the chance of pregnancy approaches zero [40,
114]. However, these proposed thresholds are based on few
patients that actually exceed the threshold. The study by
Evenson and coworkers included only 10 patients with a
DFI greater than the proposed threshold of 30% and the
study by Spano and colleagues included only 4.5% of the
cycles with a DFI above the proposed threshold of 40%. A
recent meta-analysis by Evenson and Wixon of these two
studies stated that couples with no known infertility
problems were 7.0 time more likely to achieve a pregnan-
cy/delivery via in vivo fertilization if the DFI <30 [37]. As
a general trend in these studies, lower pregnancy rates are
associated with increasing % DFI, but a high % DFI does
not preclude pregnancy. Although evidence suggests that
sperm DNA damage is associated with male infertility,
more large scale studies are needed before suggested
threshold levels are to be validated.

There is also evidence that sperm DNA integrity may have
a high predictive value for in vivo fertilization when
intrauterine insemination (IUI) is performed. In multiple
studies, sperm DNA damage has been shown to be signifi-
cantly higher in couples who failed to obtain a pregnancy after
IUI [16, 17, 33, 105, 107]. One study found that no samples
with >12% DNA fragmentation as measured by TUNEL
resulted in pregnancy using IUI [33]. In the largest series to
date involving 387 IUI cycles the odds ratio for biochemical
pregnancy, clinical pregnancy, and delivery in IUI were all
significantly lower in patients with a DFI >30% [16].
Additionally, infertile couples using IUI were 7.3 times more
likely to achieve pregnancy delivery if the DFI was <30% in
a metanalysis by [37]. Given these findings, measures of
sperm DNA integrity appear to have a high predictive value
for IUI outcomes.

In vitro fertilization

In the last five years, there has been an increase in number
of clinical studies evaluating the relationship between
sperm DNA integrity and reproductive outcomes of IVF
and IVF with ICSI. While tests of sperm DNA integrity
appear to have high predictive value for outcomes of in
vivo fertilization, the relationship with IVF and ICSI are
more controversial. Fertilization, embryo quality, and
pregnancy rates are all important reproductive parameters
that could potentially be affected by sperm DNA damage
and thus are often examined in the literature. Several
clinical studies have found no significant correlation
between sperm DNA damage and fertilization rates in vitro
[46, 59, 60, 75, 76, 89, 119, 121, 123, 131]. In a recent
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meta-analysis by Li and colleagues found no relationship
between sperm DNA damage and fertilization rates during
IVF or ICSI using either SCSA or TUNEL assays [79].
This is not completely unexpected since the embryonic
genome is not expressed until the four to eight-cell stage
and thus fertilization may not be dependent on sperm DNA
integrity [15]. Despite this, other studies have found a
negative correlation between sperm DNA damage and
fertilization rates [12, 63, 80, 98]. Additionally, there has
been no consistent relationship between sperm DNA
damage and embryo quality during IVF cycles. Several
studies did not identify any adverse effects of sperm DNA
damage on embryo quality [12, 63, 75, 80, 121], while
others reported a negative correlation [89, 108, 123, 131].

Perhaps the most important reproductive parameter to
consider in relation to sperm DNA damage is pregnancy
rates. Unfortunately, there is also controversy as to the
influence of sperm DNA damage on pregnancy rates with
IVF or ICSI. Early studies reported a significant reduction
of pregnancy rates following IVF or ICSI for patients with
increased levels of sperm DNA damage [12, 59, 60, 75, 76,
121, 123]. It was reported in multiple studies that no
clinical pregnancy could be obtained after IVF or ICSI
when the DFI as measured by the SCSA was >27% [75,
76]. Additionally, Benchaib and coworkers reported that
DNA fragmentation as measured by TUNEL was signifi-
cantly lower when a pregnancy was obtained using ICSI
and that no pregnancy was obtained when DNA fragmen-
tation was >20% [12]. Although in a more recent study
there was no significant differences in pregnancy rates after
IVF or ICSI between patients with high and low levels of
DNA fragmentation using a TUNEL value of 15% as a
cutoff [13]. Several studies have failed to confirm these
earlier findings by demonstrating no significant differences
in pregnancy rates following IVF or ICSI between patients
with high and low levels of sperm DNA damage [13, 16,
17, 46, 63, 108, 131]. Successful pregnancies have also
been obtained using IVF or ICSI cycles despite high levels
of sperm chromatin damage (DFI > 27%) [16, 17, 21, 46].
A recent study found no significant differences in IVF and
ICSI pregnancy outcomes between low and high DFI
groups. However, when there were high levels of sperm
DNA damage (DFI > 30%), they reported pregnancy rates
with ICSI were significantly better than IVF [16]. Given
that couples undergoing conventional IVF in this study did
not also undergo ICSI, making comparisons between these
two different groups precludes definitive conclusions. With
this increasing number of studies in recent years, meta-
analyses have been published evaluating effects of sperm
DNA damage on reproductive outcomes. In the meta-
analysis by Evenson and Wixon, infertile couples were
approximately 2.0 times more likely to become pregnant
after routine IVF if their DFI was <30%. For ICSI and/or

routine IVF, the results showed a non-significant trend
where infertile couples were 1.6 times more likely to
achieve pregnancy if the DFI was <30% [37]. In contrast,
another meta-analysis showed no significant effects of
sperm DNA damage on the clinical pregnancy rate after
IVF or ICSI when using the SCSA. However, when using
the TUNEL assay, clinical pregnancy rates following IVF,
but not ICSI, decreased significantly for patients with a
high degree of sperm DNA damage [79]. A recent meta-
analysis demonstrated a small but statistically significant
association between sperm DNA integrity test results and
pregnancy in IVF and ICSI cycles, yet questioned its
clinical utility [23].

Despite the growing body of literature on these issues,
there continues to be a degree of uncertainty. It has been
proposed that sperm DNA integrity becomes particularly
relevant when fertilization occurs in a more natural way,
such as in normal circumstances or conventional IVF [46].
Subsequently, the SCSA and other tests of sperm DNA
integrity seem to lose their predictive power in respect to
reproductive outcomes from natural conception and IUI to
IVF to ICSI [115]. We speculate that men with very high
levels of sperm DNA damage will have a lower chance of
producing a pregnancy. However, based on the available
evidence, there is currently no established absolute upper
threshold that would preclude a successful pregnancy.

It has been proposed that sperm DNA damage is
promutagenic and can give rise to mutations after fertiliza-
tion as oocytes attempts to repair the DNA before initiation
of the first cleavage division [3]. Any mutations occurring
at this point may be fixed in the germ line and may be
responsible for induction of pathology [3]. Children
conceived by ICSI have been found to have an increased
incidence of genetic aberrations [14]. Whether this is a
treatment or patient population association is currently
unknown. Additionally, epigenetic abnormalities such as
rare human imprinting disorders, Angelman’s syndrome
and Beckwith-Wiedemann syndrome, have been associated
with IVF and ICSI [26, 31, 50, 53, 81]. An increased risk of
birth defects has been associated with IVF and ICSI when
compared to natural conception [57, 58, 96], but this has
not been observed by several other studies [66, 126]. While
the consequences of using sperm with DNA damage in
assisted reproductive technologies are far from being fully
understood, these current reports raise concern and warrant
further investigation into this subject.

Evolving treatment strategies: role of antioxidants

Because ROS have been associated with sperm DNA
damage, investigators have studied possible protective roles
of antioxidants in preventing or treating sperm DNA
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damage. Several previous studies have reported improved
sperm DNA integrity with use of oral antioxidants [24, 49,
54, 67, 71, 117]. However, few of these studies report on
how these improvements affect pregnancy rates. In a recent
study 38 men with an elevated percentage of DNA
fragmented sperm were treated with antioxidants, vitamin
C and vitamin E, for 2 months after one failed ICSI attempt.
A second ICSI cycle was then performed which demon-
strated a marked improvement of clinical pregnancy rates
(48.2% vs. 6.9%) when compared with pretreatment ICSI
outcomes [54], although there was no placebo control for
comparison. Additionally, 76% of these cases led to a
decrease in the percentage of DNA fragmented sperm after
treatment with antioxidants. However, another study
reported that even without treatment, 37% of patients with
an abnormal result on first SCSA (DFI >30%) were
subsequently found to have normal result (DFI < 30%) on
a second SCSA test [34]. Larger scale, prospective,
randomized studies will be necessary before reaching any
definitive conclusions on the clinical usefulness of anti-
oxidants in treatment of male infertility.

Summary

Sperm chromatin has a highly specialized and compact
structure that is essential for protection and subsequent
transmission of the paternal genome. A variety of etiologies
have been associated with increased levels of sperm DNA
damage, but the exact pathophysiologic mechanisms by
which sperm DNA damage occurs are not completely
understood. A large number of tests are available to assess
different aspects of sperm DNA integrity, but there remains
no consensus on the optimal technique or appropriate
clinical cut-off levels. High levels of sperm DNA damage
are found in infertile men and have a negative correlation
with reproductive outcomes by natural conception or IUI.
However, the impact of sperm DNA damage on IVF and
ICSI reproductive outcomes remain more controversial.
Our understanding of the potential consequences on the
offspring of using DNA damaged sperm in ICSI remain
very basic and warrants further investigation. While the
testing of sperm DNA integrity has the potential for great
impact on the field of male infertility, additional studies and
large scale trials are needed to further elucidate and define
the mechanisms of sperm DNA damage and their clinical
significance in reproductive outcomes.
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