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The accurate prediction of male fertility is of major economic importance in the animal

breeding industry. However, the results of conventional semen analysis do not always

correlate with field fertility outcomes. There is evidence to indicate that mammalian

fertilization and subsequent embryo development depend, in part, on the inherent

integrity of the sperm DNA. Understanding the complex packaging of mammalian sperm

chromatin and assessment of DNA integrity could potentially provide a benchmark in

clinical infertility. In the era of assisted reproduction, especially when in-vitro fertilization

or gamete intrafallopian transfer or intracytoplasmic sperm injection is used, assessment

of sperm DNA integrity is important because spermatozoa are not subjected to the

selection process occurring naturally in the female reproductive tract. Although sperm

DNA integrity testing measures a significant biological parameter, its precise role in the

infertility evaluation in farm animals remains unclear. In this review, the earlier findings on

sperm DNA integrity in relation to male fertility are compiled and analyzed. Furthermore,

the causes and consequences of sperm DNA damage are described, together with a

review of advances in methods for detection of sperm DNA damage, and the prognostic

value of sperm DNA quality on male fertility.
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INTRODUCTION

Infertility has been a concern throughout the ages and is still a significant problem in several
species, including human beings, and farm animals. In spite of several advancements in diagnostic
techniques and infertility treatments, the levels of infertility in the human population were similar
in 1990 and 2010, with only a slight overall decrease in primary infertility (0.1%) and a modest
overall increase in secondary infertility (0.4%) (1). Although such large-scale studies are very
limited in farm animals, existing information indicates that subfertility is rising in livestock, which
can have adverse effects on animal welfare and farm economy by delayed calving intervals and
increased culling of animals. Dobson et al. (2) reported that, over the past 30 to 50 years, the
first-service-pregnancy-rate in dairy cattle dropped from 70 to 40%. Intrinsically, both male and
female contribute to infertility, but male factor infertility accounts for 40–50% of infertility (3). In
crossbred bulls, it was reported that the “acceptable quality semen producing ability” decreased,
over a period, from grandsire through sire to male progeny (4). The significance of male fertility
is highly amplified in farm animals since semen from a male is used for artificial insemination
in several thousand females, and use of semen from infertile bulls affects conception, leading to
considerable losses for farmers.
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Male infertility refers to a male’s inability to achieve pregnancy
in a fertile female. In human beings, it was observed that male
factor alone is responsible for ∼26% of infertility cases (5) and
contributory in another 30–40% of infertile couples (6). Several
causes have been attributed to male infertility including genetic
disorders, hormonal disturbances, disorders in spermatogenesis,
poor sperm quality and sperm DNA fragmentation (6, 7).
In the last few decades, there has been an increasing body
of research investigating the role of sperm DNA integrity in
male factor infertility (8). Evidence is accumulating that DNA
damage is greater in spermatozoa of infertile males compared
to fertile males (9–12). In dairy bulls, it was reported that DNA
damage accounted for significant variations in fertility and the
proportion of spermatozoa with DNA damage was more than
2-fold higher in below-average fertility bulls compared to above-
average fertility bulls (13). Very recently, Boe-Hansen et al. (14)
also confirmed the role of sperm DNA integrity in bull fertility
and suggested that the presence of immature spermatogenic cells,
cytoplasmic proximal droplets and alterations in sperm head
shape were associated with sperm DNA integrity and protamine
deficiency. Similar reports on the role of sperm DNA integrity in
fertility and/or semen quality are available for other farm animals,
including stallion (15, 16), boar (17–19), and ram (20, 21).
Interestingly, sperm DNA integrity in relation to male fertility
has become a hot topic recently. A search using the keywords
“sperm DNA integrity and fertility” in PubMed showed 5,700
publications on this subject between 2005 and 2019, in contrast to
only 251 publications between 1990 and 2004. On the other hand,
despite the higher number of publications, there is no consensus
on whether measurement of sperm DNA damage provides any
clinical benefit in the assessment of male infertility (22).

In this review, previous findings on sperm DNA integrity in
relation tomale fertility are compiled and analyzed. Furthermore,
the causes and consequences of sperm DNA damage are
described, together with a review of advances in methods for
detection of sperm DNA damage, and the prognostic value of
sperm DNA quality on male fertility is also discussed.

SPERM DNA INTEGRITY AND CAUSES OF
DAMAGE

Since the findings of Alfert (23), that histone is replaced
by protamine during spermiogenesis in salmon, research on
sperm DNA integrity and fragmentation in relation to fertility
increased rapidly. The pioneering work of Evenson et al. (24)
on the relationship of DNA integrity and pregnancy outcome
showed the existence of significant variations in sperm DNA
integrity among individual males. Intact DNA is defined as the
complete absence of nicks or breaks, either single or double-
stranded, or any chemical modifications in its structure (25).
Generally, most of the affected spermatozoa are phagocytosed
by Sertoli cells or undergo programmed cell death by a caspase-
dependent apoptosis pathway without releasing any harmful
substances (26, 27). Despite this safety mechanism, sperm
DNA damage occurs, which might be due to the liberation
of substances such as reactive oxygen species (ROS), amongst

others, from the dead spermatozoa. However, the findings of
several researchers confirmed two possible causes of damage: one
during spermatogenesis, due to impaired chromatin maturation,
and the other during spermiogenesis, at the time of histone
replacement by protamine followed by further compaction of
DNA during epididymal transits (28, 29). Most of the damage
is premutagenic and could be a result of either intrinsic or
extrinsic factors.

INTRINSIC FACTORS

Insufficiency in Recombination During
Spermatogenesis
Usually, in a homologous pair of chromosomes, crossing over of
genetic material during spermatogenesis takes place by activation
of specific nucleases, which favors DNA breaks/damage. Thus,
any kind of aberration in the recombination process can lead to
cell death e.g., DNA–DNA and DNA-Protein cross-linking occur
in the highly compact chromatin of mammalian germ cell rather
than in somatic cells and is more commonly seen in defective
spermatozoa (30).

Reactive Oxygen Species
Reactive oxygen species (ROS) are highly reactive and retain
the capacity to damage any cell structure or function. They
are produced in both fertile and infertile individuals and
have positive as well as negative effects. Their production
in semen is controlled by both the spermatozoa and the
seminal plasma antioxidant defense system. Spermatozoa possess
low intra-cellular antioxidant activity consisting of superoxide
dismutase, glutathione peroxidase, peroxiredoxin, thioredoxin,
thioredoxin reductase etc., depending on the species. In stallions,
spermatozoa also have intrinsic antioxidant defenses, such
as glutathione and various enzymes such as paraoxonase,
thioredoxin and the peroxidation families of proteins (31).
Pathogenic effects are observed when the production of
ROS exceeds the capacity of the antioxidant defense system
to neutralize them or there is infiltration of leukocytes
(32). Excessive levels of ROS coupled with a deficiency in
antioxidants can lead to oxidative stress resulting in nuclear and
mitochondrial DNA damage, telomere shortening, epigenetic
alterations and Y chromosomal microdeletions (33). Bovine
sperm DNA integrity is affected by excessive exposure to ROS,
obliterating DNA compaction or the repair of double- or single-
stranded breaks during the reconfiguration of DNA, as occurs
in cryopreservation of semen samples (34, 35). A single-strand
break is the outcome of an oxidative attack, whereas a double-
strand break is the indirect consequence of the products of lipid
peroxidation e.g., 4- hydroxyl-2-nonenal (36).

Abortive Apoptosis
DNA damage due to apoptosis mainly occurs in the testis
during spermatogenesis. Apoptosis controls the overproduction
of spermatozoa and restricts the proliferation level during
unfavorable conditions for sperm development. The presence of
apoptotic markers in mature sperm, including Fas, Bcl-X, p53,
and annexin V all support the role of apoptosis in the generation
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of DNA breaks (37). However, the relationship between the
presence of these typical markers of apoptosis in spermatozoa
and the degree of DNA fragmentation is not straightforward.
It is reported that the routes for sperm DNA fragmentation
and cell death are not fully caspase dependent (38). Abortive
apoptosis is a phenomenon where the defective sperm cell
escapes programmed cell death and is present in the ejaculate.
However, these defective sperm cells with partial DNA breaks
retain their fertilizing potential but lack the ability to support
pregnancy, resulting in early embryonic loss (39, 40).

Endogenous Nuclease
During spermatogenesis, endogenous nuclease (topoisomerase
II) is activated, relieving torsional stress of highly compacted
chromatin packaging in immature spermatids. The replacement
of 85–95% of the histones by transitional proteins and eventually
by Protamine 1 and 2 occurs, resulting in further condensation
of chromatin materials and cessation of transcription and
translation (41). However, during this replacement process,
endogenous nucleases (topoisomerase II) create and ligate nicks,
with the result that the majority of the damage is repaired
during epididymal transit. Sometimes nicks in sperm chromatin
escape this repair mechanism, with the result that spermatozoa
with damaged chromatin appear in the ejaculate, indicating
aberrant spermatogenesis and incomplete maturation. Normally,
the ratio of protamine 1 to total protamine in spermatozoa
varies widely among species; 0 for bull, 0.14 for stallion, 0.34
for hamster, 0.43 for human, and 0.67 for mouse (42). On the
other hand, the relative proportion of sperm protamine 1 to
sperm protamine 2 is nearly similar, with a ratio of 1:1 in human,
bull, stallion, boar, and rodents. However, any alteration in this
ratio is associated with DNA fragmentation, poor fertilization
and reduced conception rate (43).

EXTRINSIC FACTORS

Age
While a few studies suggest that sperm DNA integrity is not
affected by age (44, 45), other studies demonstrate a significant
increase in sperm DNA damage with age (46, 47). In contrast,
Fortes et al. (48) found that younger bulls had higher DNA
fragmentation indices compared to adult animals. In Nellore
bulls, it was reported that young bulls (1.8–2 years) and aged
bulls (8–14.3 years) were found to be more susceptible to
DNA damage compared to adult bulls (3.5–7 years), with
young bulls exhibiting more defective protamination than
older animals and aged bulls showing more nuclear oxidative
damage (49).

Increased Testicular Temperature
Sperm DNA fragmentation was also reported to increase with
increase in testicular temperature. Basically, maintaining scrotal
surface temperature at 2–6◦C lower than core body temperature
is a prerequisite for normal spermatogenesis. Elevation of
testicular temperature increased testicular metabolism and
altered the hormonal profile, with concomitant rise in oxygen
demand to sustain aerobic metabolism, resulting in tissue

hypoxia, generation of reactive oxygen species, and deterioration
of semen quality (50). Production of excessive ROS causes
major damage to sperm DNA integrity (51). Several researchers
observed a decrease in sperm count, sperm motility, normal
morphology and increase in sperm DNA damage due to increase
in thermal stress and environmental pollution in bull, horse, goat,
human, mouse (52, 53).

Cryopreservation and Storage
Temperature of Sperm Samples
The effect of storage temperature and cryopreservation on
sperm DNA have been studied in various species. Basically,
temperature shock during cryopreservation are associated with a
subsequent increase in oxidative damage to sperm DNA, plasma
membranes and a decrease in viability, simultaneously leading
to a decline in sperm quality. There is a dramatic increase in
DNA fragmentation due to increased production of ROS during
cryopreservation and storage of sperm cells for short or long
periods of time in bull (54), ram (55), stallion (15), and boar
(56). Various studies on sperm DNA fragmentation dynamics
before and after sperm storage showed that cryopreservation is
an important issue that must be considered since it can decrease
DNA longevity (57, 58).

Vaccination Stress
The effect of vaccination on semen quality has been widely
studied. In general, vaccination stress causes febrile condition
and elevates testicular temperature with a subsequent rise in ROS
production. This increase in ROS, causes a deterioration in sperm
morphology, antioxidative profiles and sperm DNA (59). In farm
animals, it has been shown that vaccination-induced thermal
insult resulted in extensive damage to the sperm DNA, reducing
the fertilization rate (59, 60). Gosálvez et al. (61) also recorded a
significant increase in sperm DNA damage after vaccination of
rams, but observed that the negative impact was reversible. In
another study, Gupta et al. (62) reported a deleterious effect of
foot-and-mouth disease vaccine on plasma membrane integrity
and morphology of bull sperm.

Sex Sorting of Spermatozoa
During the recent past, the use of sexed semen for skewing sex
ratio increased dramatically, especially in cattle. Some studies
indicated that sex sorting does not affect the quality of sperm
DNA in species such as deer (63) and boar (64). However,
another study reported that although DNA fragmentation
immediately after thawing was higher in conventional than
in sex-sorted sperm samples, a reduced DNA longevity
in sex-sorted spermatozoa was detected when the samples
were incubated for 48 h (65). Using the Sperm Chromatin
Structure Assay (SCSA) assay, it was shown that sex-sorted
spermatozoa had less homogenous sperm chromatin than
controls (66). Flow cytometric sexing has also been shown
to induce high levels of ROS in sperm samples. In stallion
spermatozoa, the DNA fragmentation index post-sorting were
∼10% higher than pre-sorting, which may be due to oxidative
DNA damage (67). Factors such as high pressure and
speed, during sorting, dye-induced defects, electrical deviation,
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changes in pH and osmolarity, etc might lead to changes
to the sperm plasma membrane, trigger pre capacitation-like
changes, cause protamine decondensation and alter sperm DNA
quality (68).

Method and Season of Semen Collection
The method of semen collection has an effect on sperm DNA
quality; in farm animals, it was shown that use of an artificial
vagina method was superior, in terms of sperm DNA integrity,
to electroejaculation for semen collection. Similarly, seasonal
variations, semen dilution and washing protocols to harvest
good quality sperm cells also had a detrimental effect on the
integrity of sperm DNA (69, 70). Further, comparatively lower
DFI% was observed in semen ejaculates collected during the
breeding season as compared to the ejaculates obtained during
the non-breeding season in bucks.

Infection of Male Reproductive Organs
Acute or chronic inflammation of male accessory sex glands
is associated with a significant increase in ROS causing a
marked reduction in semen quality and apoptosis of sperm
cells (71). In human beings, it was shown that bacterial
infections had significant negative effects on sperm chromatin
condensation and protamine P1/P2 ratio (72). In bulls, sperm
DNA fragmentation increased because of bacterial growth during
incubation of frozen-thawed semen. However, the increase in
sperm DNA fragmentation was characteristic of some bulls but
was not observed for others (73), indicating individual variations
in susceptibility.

WHY TEST SPERM DNA
DAMAGE—CONSEQUENCES OF SPERM
DNA FRAGMENTATION ON FERTILITY

Sperm DNA is the only male heritable material present at the
time of fertilization; therefore, transfer of sperm with damaged
DNA can result in deleterious effects on the conceptus and
impact on the successful development of an offspring too (74).
The schematic representation of the causes and consequences of
sperm DNA damage is given in Figure 1. The presence of sperm
DNA as highly condensed chromatin renders it transcriptionally
and translationally silent besides protecting the DNA from
damage (75). Despite its highly complex structure, sperm DNA
is susceptible to damage and nearly 80% of infertility cases due
to idiopathic reasons are related to DNA integrity (11). The
proportion of spermatozoa with DNA fragmentation was 34.5%
in infertile men while it was only 14.9% in fertile men (76).
Assessment of spermDNA fragmentation represents a promising
tool for clinical and research practice (77), although larger
prospective trials are needed. Hitherto, it was believed that due to
the high compaction of chromatin material in spermatozoa there
is limited scope for DNA repair.

The DNA fragmentation index (DFI) is defined as the
percentage of spermatozoa with either abnormal protamination
or with DNA damage (78). Alterations in chromatin
packaging/DNA integrity can occur at any stage, starting
from the germ cell during spermatogenesis to ejaculated
spermatozoa (28). Surprisingly, the oocyte retains the capacity to
repair such damage, depending on type and degree, suggesting
that spermatozoa with abnormal DNA retain the capacity
to fertilize an oocyte. However, in most cases, such repair is

FIGURE 1 | Schematic representation of the causes and consequences of sperm DNA damage.
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followed by early embryonic mortality, implantation defect,
chromosomal aberration and comparatively higher abortion
rate (27). Furthermore, damaged DNA is negatively correlated
to fertilization, implantation, pregnancy outcome and the
well-being of the male reproductive tract (79, 80). Variations
in DNA integrity and fertility level among individuals with
a normal spermiogram are also quite high in mouse (81),
men (82), bulls (83), stallions (19), and boars (17). In bulls,
it was reported that the proportion of morphological normal
spermatozoa was negatively correlated to DFI. Sperm DNA
integrity in bulls show associations with morphological
parameters, particularly with head shape abnormalities and
indicators of spermatogenic immaturity, including proximal
droplets (14). Fortes et al. (84) reported that sperm protamine
content and sperm DNA damage are closely associated. In
contrast, Castro et al. (83) indicated that protamine deficiency
in bovine spermatozoa may not have a strong biological
impact in explaining difference of in vitro fertility between
bulls. Kipper et al. (85), evaluated sperm chromatin packing
in relation to in vitro fertilization success rate in Nellore bulls
and found that the proportion of spermatozoa with abnormal
chromatin compaction did not interfere with early embryonic
development. In boars, sperm DFI had a significant negative
correlation with farrowing rate and the average number of pigs
born per litter (86). However, more detailed information is
required to better understand the relationship between DFI and
boar fertility.

Eventually, with the increase in male infertility and pregnancy
failure, Evenson et al. (24) used sperm chromatin structure assay
(SCSA) for detection of qualitative DNA damage as an indicator
of male fertility. In human beings, a DNA fragmentation index
(DFI) ≥ 20 % is associated with low fertility. Inseminating
spermatozoa with compromised DNA, or performing assisted
reproductive techniques (ART) without knowing the DNA status,
can have a deleterious effect on fertility (9). Since then, a
plethora of studies (11, 28, 87) indicated the existence of a
substantial correlation between DNA damage and idiopathic
(in)fertility. These studies concluded that spermatozoa in the neat
ejaculate with sperm DNA fragmentation (SDF) values below
15% should be regarded as normal for this parameter, those
ranging from >15% to <30% are likely to have some fertility
problems, whereas individuals with levels of SDF >30% are
considered to have substantial problems in producing offspring
through natural conception (37). Sperm DNA assays could be
one of the promising tools in selecting bulls for high fertility,
since preliminary reports on sperm DFI and bull fertility
indicate a significant relationship between these two parameters
(13). Very recently, it was shown that measurement of DFI
provides a simple, informative and reliable measure of sperm
quality and can accurately predict male mouse fertility (81).
These researchers observed that sperm DFI was significantly
higher from males with low sperm counts compared to males
with normal sperm counts, and viable embryos derived using
spermatozoa from males with high DFI failed to produce
offspring after embryo transfer compared to embryos from
males with low DFI. Accumulated data show that DNA damage
in mammalian species has biological consequences that vary

according to the type of damage, location, cell or tissue involved.
Such damage may induce temporary or permanent changes,
either long-term or short-term. To improve the conception rate
in artificial breeding and to reduce infertility in farm animals, it
is essential to understand sperm DNA at the molecular level and
the impact of sperm DNA integrity on field fertility.

SPERM CHROMATIN STRUCTURE
DURING AND AFTER SPERMATOGENESIS

Spermatogenesis is a complex process involving several
mitotic and meiotic divisions, followed by differentiation
to produce fully mature haploid and polarized spermatozoa
from a diploid spermatogonial stem cell. Spermatogenesis
involves two steps, viz. spermatocytogenesis and spermiogenesis.
Spermatocytogenesis is the process in which spermatogonia
undergo proliferation, reduction division and differentiation to
produce primary spermatocytes, secondary spermatocytes and
finally spermatids. Subsequently, spermiogenesis involves a series
of morphological transformations of immature spermatid to a
mature spermatozoon. During the latter part of spermatogenesis,
the chromatin material undergoes dramatic compaction, which
renders spermatozoa transcriptionally silent, and cytoplasm is
shed in the form of residual bodies (88). Meanwhile, the histone-
DNA complexes of round spermatids are replaced by transition
protein and then finally by protamine in elongated spermatids.
Only 5–15% of histones are retained in DNA in spermatozoa
from fertile men, whereas a comparatively higher proportion is
retained in spermatozoa from infertile men (89). Nevertheless,
these alterations instigate final condensation and stabilization
of chromatin material, precisely portrayed in the mature phase
of sperm cells. Sperm chromatin typically appears in a coiled
fashion, called toroids, via formation of disulfide bonds (90)
to protect DNA prior to fertilization. Around 50 kb of DNA
is packaged into coiled toroids, attached to the nuclear matrix
region by toroid linkers. Linker regions and histone-bound DNA
are highly susceptible to DNA damage induced by endonucleases
(91). Several researchers have demonstrated the negative effect
of abnormal protamination in semen quality on the success
of in vitro fertilization (IVF) and pregnancy rates in human
patients (43, 92) and semen quality and fertility in bulls (93, 94).
Furthermore, studies of Arpanahi et al. (95) and Hammound
et al. (96) highlighted the significant role of retained histones
in early embryonic development, zygotic genome activation,
signaling pathways and imprinting genes, in the case of human
and rat spermatozoa. In addition, it is documented that loss
of chromatin integrity is associated with sperm morphological
abnormalities (97), loss of viability and progressive motility
(98), reduced concentration (45) and sperm maturity (99).
Furthermore, Carrel and Liu (100) and Virro et al. (99) depicted
a strong association between loss of chromatin integrity and
poor implantation or spontaneous abortion. Therefore, the
highly specialized sperm cell acts not only as a genetic carrier to
the oocyte but also undergoes changes during spermatogenesis
that will later support the developing embryo and maintenance
of pregnancy.
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EPIGENETIC MODIFICATIONS AND MALE
FERTILITY

In the science of genetics, epigenetics is the study of changes
in gene expression which occur without alterations in the
DNA sequence. Basically, epigenetic changes involve interactions
between DNA and protein, either short-term or inherited
over a generation at various developmental stages of life.
Spermatozoa have unique epigenetic modifications pertaining to
DNAmethylation, covalent histone modification, and chromatin
remodeling (101). Such changes may be associated with either
expression or silencing of genes endowed with beneficial or
detrimental effects in an organism. Of all these epigenetic
modifications, abnormal DNA methylation has emerged as one
of the promising indicators of male infertility (102).

DNA Methylation
During condensation of nuclear material in elongated
spermatids, DNA methylation occurs in the cytosine residues
of CpG islands under the influence of DNA methyl transferase
enzyme. Methylation regulates genes expression either by
adding (hypermethylation), or removing methyl groups from
the promoter region (hypomethylation). Hypermethylation is
attributed to the shutdown of gene expression or transcriptional
silencing whereby the formation of protein comes to a halt
and the developing zygote utilizes stored maternal mRNAs
until the activation of the zygotic gene (103). Besides, several
processes such as genomic imprinting (104), inactivation of
the X chromosome (105), DNA compaction (106), and gene
silencing are critically involved in DNA methylation of germ
cells. However, during development and maturation of germ
cells, extensive removal of DNA methylation in the primordial
germ cell transpires (107). Prior to meiosis, compaction of
chromatin in the sperm cell renders it much denser than in
somatic cells (106). Any exposure to a deleterious environment
may change DNA methylation patterns in male germ cells
and interfere with differentiation into functional sperm cells,
ultimately impairing male fertility. Any deviation in the
methylation pattern limits the chances of successful fertilization
and embryonic sustainability (108). A plethora of studies [e.g.,
(96, 109, 110)] have also confirmed a positive correlation between
abnormal methylation and male infertility, having a considerable
influence on various seminal traits and pregnancy outcome.
Several studies indicate the relationship of methylation status of
genes with fertility (Table 1). Jena et al. (111) reported the effect
of abnormal methylation pattern on the expression of IGF2 and
H19 genes, which result in disruption of spermatogenesis, apart
from producing spermatozoa with altered epigenetic marks,
poor sperm quality and compromised fertility in crossbred
bulls. Recently, Kropp et al. (118) also reported that bull
fertility status is associated with DNA methylation signatures in
spermatozoa. These researchers observed that preimplantation
embryos derived from high and low fertility bulls displayed
significant transcriptomic differences and there were differences
in methylated regions which could influence the reprogramming
of the early embryo. Tunc and Tremellen (119) also detailed
the significant variation in spermatogenic efficiency and quality

TABLE 1 | Methylation status of selected genes in relation to fertility.

Genes Aberration Male infertility References

H19, IGF2 Hypomethylation Oligozoospermia and

infertility in crossbred

bulls

(109, 111)

MTHFR Hypermethylation Poor semen quality

and infertility

(112, 113)

PAX8, NTF3, SFN,

HRAS

Hypermethylation Oligozoospermia,

teratozoospermia

and

asthenozoospermia

(114, 115)

RASGRF1 Hypermethylation at

an imprinted locus

Poor semen

parameters in boar,

human and mice

(93, 116)

GTL2 Hypermethylation at

an imprinted locus

Poor semen

parameters

(115, 117)

PLAG1, D1RAS3,

MEST

Hypermethylation at

imprinted locus

Poor semen

parameters in human

and boar

(109, 115)

KCNQ1, LIT1,

SNRPN

Hypermethylation at

imprinted locus

Poor semen

parameters in human

and boar

(96, 115)

of semen among fertile and infertile groups of individuals in
relation to global DNA methylation. Furthermore, infertile
individuals with aberrant DNA methylation-imprinting were
reported to have marked oligoasthenoteratozoospermia and
oligozoospermia (120).

Techniques such as sex-sorting, vitrification and
cryopreservation are reported to induce various degrees of
DNA damage in bull spermatozoa (121). These processes
result in abnormal methylation imprints which directly or
indirectly reflect chromatin packaging (122) and, in turn,
influence early embryonic developmental stages along with
spermatogenesis of an embryo (123). When the status of DNA
methylation was studied in boar sperm cells with different levels
of DNA fragmentation, the number of differentially methylated
cytosines was increased in the low-high compared to the low-
medium and the medium-high DFI groups (19). These latter
researchers concluded that with increasing DNA fragmentation
in spermatozoa, there is an increase in the number of potentially
affected downstream genes and their respective regulatory
pathways. Although several researchers (109, 124, 125) have
documented sperm and testicular methylation profiles in groups
of fertile and infertile individual pertaining to promoter region,
genes and imprinted regions, the mechanism elucidating such
alteration and contributing to compromised fertility is still a
matter of debate.

Sperm Histone Modification
In mature spermatozoa, depending upon the species, between
2 and 15% of sperm chromatin is bound to histones, rather
than to protamines (126). Although the ratio of nucleohistone
to nucleoprotamine ratio is very low, it still plays a significant
role in gametogenesis. Generally, histones are octameric and have
four types of histone proteins in the core of the nucleosomes:
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H2A, H2B, H3, and H4. On the other hand, arginine- and lysine-
enriched histone tails remain on the surface of the nucleosomes.
Basically, all these histone proteins are susceptible to covalent
modifications such as acetylation, methylation, phosphorylation,
and ubiquitination. Most of these modifications occur under
the influence of specific enzymes limited to the tail regions
only, but modifications of histones in the core region are still
under debate. However, recent research has elucidated the role
of core histone modifications in the transcription process, as
well as in the DNA repair mechanism, and replication and
adjustment of cells. In addition, all the above post-translational
modifications alter the DNA binding pattern, along with the
interaction of other regulatory factors, and change the expression
of genes (127). In other words, post-translational modification
of histones is regulated by a number of molecules, which
in turn modulate the chromatin architecture and may be
involved in an alteration in fertility (Table 2). Gene activation
or repression, instigated by methylation of histones, occurs
under the influence of HMTase on H3 or H4. Moreover,
Okada et al. (130) reported that methylation is an integral
part of spermatogenesis. The progression of spermatogenesis
is determined by the number of methyl groups added to
H3K4, H3K9, or H3K27 (141), where methylation of H3K4
correlates with the functional competence of the spermatogonial
stem cell to develop into fully mature spermatozoa, whereas
methylation of H3K9 or H3k27 highlights gene silencing in
the germ cell, eventually occurring after the commencement of
meiosis. In light of this fact, any disruption to H3K9, demethylase
JHDM2A (JmjC domain-containing histone demethylase 2A)
and curtailment of the expression of protamine 1 and transition
protein and decondensation of chromatin, subsequently result
in infertility (130). Similarly, histone acetylation in elongating
spermatids also plays a crucial role in the condensation of
chromatin materials by replacing histone and transition protein
by protamine; low hyperacetylation is reported in infertile
men with aberrant spermatogenesis (142). Moreover, acetylation
is controlled by two types of enzymes viz. acetyltransferases
and deacetyltransferases, where acetyltransferases activate gene
expression and deacetyl transferases inhibit gene expression
(143). Besides, phosphorylation on serine residues leads to
gene activation while phosphorylation on the histone variant
causes chromatin condensation and gene silencing. On the
other hand, during postmeiotic stages of spermatogenesis, RNF8-
dependant ubiquitinylation of histones H2A and H2B favors
the exchange of histone protein to transition protein (144).
Furthermore, deficiency of RNF8 is reported to cause failure in
chromatin condensation, loss in sperm motility, reduction in
sperm concentration in the epididymis, increased retention of the
residual body and reduced capacity to fertilize oocytes (144). In
addition, small ubiquitin-like modifiers (SUMOs) also take part
in epigenetic modification by regulating gene expression (140).

Chromatin Remodeling
Unlike the above two processes of epigenetic modification,
chromatin remodeling occurs by shifting of histone proteins
along the DNA and consequently results in alteration of sperm
physiology. Generally, one phosphate group from an ATP

TABLE 2 | Selected molecules involved in post -translational histone modification

in relation to fertility.

Genes Function References

Suv39h1 (Histone-Lysine

N-Methyltransferase, H3 Lysine-9

Specific 1)

Histone methylation

(H3)

(128, 129)

LSD1 (Lysine (K) -Specific

Demethylase 1)

Histone demethylation

(H3)

(130)

HATs (Histone Acetyltransferase 1) Histone acetylation (H4) (131)

MYST (MYST lysine

acetyltransferases)

Histone acetylation (H4) (132)

HDACs (Histone Deacetylase 1) Histone deacetylation

(H4)

(131)

SIRT1 (sirtuin family) Histone deacetylation

(H1, H3, H4)

(133)

MUTp Histone

phosphorylation (H2,

H3)

(134)

NHK-1 Histone

phosphorylation (H2)

(135)

G9a Histone methylation

(H3)

(136)

MSK1, MSK2 Histone

phosphorylation (H3)

(137)

PKA Histone

phosphorylation (H3)

(138)

HR6B Histone ubiquitylation

(H2)

(139)

E1 SUMO-activating enzyme 1, E1

SUMO-activating enzyme 2, UBC9

Histone sumoylation

(H4)

(140)

molecule is utilized to loosen the tight packaging of chromatin,
thereby allowing DNA-binding factors or other transcription
factors to access the unwound DNA and regulate gene
expression based on exposure of sequences (145). Furthermore,
an additional function of chromatin remodeling is DNA
replication and repair of DNA damage. Basically, two ubiquitous
families, such as SWI/SNF and the ISWI family are involved in
this process.

METHODS FOR ASSESSMENT OF SPERM
DNA DAMAGE

During the past few decades, a variety of assays has emerged
to detect sperm DNA damage and some new tests are under
investigation. Briefly, the principle of these techniques is based
on incorporation of chromatin probes, mild acid denaturation
to the fragmented DNA, staining for the evaluation of sperm
DNA damage and oxidation-reduction potential (ORP). Double
or single DNA strand breaks are estimated either directly
or indirectly. Direct tests comprise the comet assay (single
cell gel electrophoresis) forming comet tail and cell head in
alkaline or neutral pH conditions, which can be visualized
using epifluorescence microscopy after staining. The comet tail
length and fluorescence intensity in the cell head determine
the degree of DNA fragmentation (146), whereas terminal

Frontiers in Veterinary Science | www.frontiersin.org 7 June 2020 | Volume 7 | Article 321

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


Kumaresan et al. Sperm DNA Integrity and Male Fertility

deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL)
assay (147) determines only the fluorescently labeled nucleotides.
Apart from these assays, in situ nick translation (ISNT) (148)
and DNA breakage detection fluorescence in situ hybridization
(DBD-FISH) (149) and ORP (150) are some of the emerging
assays for sperm DNA fragmentation. Indirect tests include
DNA denaturability, such as the sperm chromatin structure
assay (SCSA) (24, 151), Acridine orange (AO), sperm chromatin
dispersion (SCD) test (152), and toluidine blue assay (153). These
tests make use of DNA intercalating dyes to emit green to red
fluorescence based on the attachment to double/single strand
fragmented DNA, whereas staining the lysine residue of histones
with CMA3 flurochrome competes for the protamine binding
site and thus efficiently detects sperm chromatin integrity and
packaging. Since protamine deficiency is likely to be one of
the contributing factors to DNA instability and damage, which
can affect bull fertility, Fortes et al. (84) assessed protamine
deficiency in bull spermatozoa using the sperm protamine
deficiency assay (SPDA) and concluded that sperm protamine
content and sperm DNA damage are closely associated. Very
recently, MiOXSYS System has come in to existence as a novel
technology to detect ORP in human semen samples, becauseORP
has a positive correlation between the proportion of abnormal
sperm heads and sperm DNA fragmentation (154, 155). On
the other hand, estimation of DNA adducts, 8-OHDG level
by liquid chromatography (156) and Raman spectroscopy to
fingerprint the chemical composition of semen sample (157),
can also be used to predict %DFI. Furthermore, assessment of
global DNA methylation level has recently become possible,
but the correlation with sperm parameters is yet to be defined
(158). The ability of these techniques to estimate sperm DNA
damage accurately depends on many technical and biological
aspects. The principles, advantages and limitations of a few
commonly used tests for sperm DNA damage are summarized
in Table 3.

Several studies compared different assays for assessment
of sperm DNA fragmentation. However, in spite of intensive
research, no consensus has yet been reached as to which tests
are most predictive of fertility. In men, the alkaline COMET
assay was reported to be the best in predicting male infertility,
followed by TUNEL, SCD, and SCSA, whereas the neutral
COMET assay had no predictive power (169). Martínez-Pastor
et al. (170) compared SCSA and SCD for assessing the chromatin
status in bulls and reported that SCD had lower repeatability
compared to SCSA. In stallions, Serafini et al. (171) observed that
both the neutral comet assay and the SCSA could successfully
identify sperm DNA quality. Several studies suggested that the
SCSA assay may be an important assay for identification of men
(9, 172, 173), bull (14, 94, 174, 175), boar (86, 176), and ram
(177) with potentially lowered fertility. Using the SCSA assay,
the threshold values for farm animals have been established.
The estimated threshold above which the SCSA %DFI has a
detrimental impact on fertility varies across species e.g., pigs,
6%; bulls 10–20%; horses: ∼28%; men 25–30% (178). In the
same context, Kumaresan et al. (13) developed a bull fertility
prediction model based on PCA analysis of %DFI and some
other seminal attributes, which discriminated above average

bulls from below average fertility bulls with a fair degree of
accuracy (R2 = 0.83).

PROGNOSTIC VALUE OF SPERM DNA
QUALITY

With the breakthrough in sperm chromatin quality assessment
techniques, the prognostic value of sperm DNA quality has
improved, in contrast to routine semen analysis (37, 178).
Several studies traced the clinical significance of various DNA
fragmentation assays in semen quality and fertility in men
(89, 179–181), bull (13, 174, 182), boar (86, 176), and stallion
(183). Normally, reductions in fertilization rate, embryo quality,
implantation rate, chromosomal aberration, and repeated
abortions are associated with sperm DNA fragmentation. Several
studies indicated the usefulness of sperm DNA integrity as a tool
for fertility assessment (13, 81, 178, 182). In contrast, %DFI was
reported to have a low impact on fertilization (184), implantation
rates (185), and embryo quality (186). In the case of bulls,
Castro et al. (83) reported that protamine deficiency in bovine
spermatozoa may not have a strong biological significance to
explain the fertility difference among individual bulls. Therefore,
as of now, the prognostic value of DNA fragmentation remains
controversial, as it is coupled with many other factors, such
as semen collection and processing procedures, insemination
technique and method of assessment of DNA fragmentation
(TUNEL, SCSA, SCD, AO, and COMET assay). Besides, several
researchers showed seminal parameters to be within normal
ranges (such as motility, concentration and morphology) with
varying degrees of sperm DNA fragmentation assessed using
SCSA &TUNEL assays, but reported compromised fertilization
(80, 151, 187). Values of %DFI above 30% in infertile men,
28% in the stallion and 10–20% in bulls, were reported to
be associated with a failure to maintain pregnancy although
the sperm were able to fertilize oocytes. Karoui et al. (174)
also related %DFI values of 7 to 10% with a poor success
rate of Artificial Insemination (AI) in bulls. Although several
studies on sperm DFI in men are available (9, 11, 89),
discriminating between fertile and sub-fertile individuals, few
reports are available on farm animals. In a study evaluating
sperm DNA damage in bulls and men of known fertility, it
was found that infertile bull sperm showed 1.6-fold higher
DNA fragmentation rates compared to bulls of proven fertility,
and sperm from infertile men showed a 2.25-fold increase in
sperm DNA fragmentation compared to fertile men (24). In a
recent study, %DFI was negatively and significantly correlated
to bull fertility; spermatozoa from below average fertility bulls
showed 2.16-fold higher %DFI as compared to above-average
fertility bulls (12). After analyzing the trends in sperm DNA
fragmentation assessment over a period of 20 years, Baskaran
et al. (188) concluded that sperm DNA fragmentation was
predominantly investigated in relation to lifestyle and a few
infertile conditions, and a substantial increase in research
is warranted to establish sperm DNA fragmentation as a
prognostic/diagnostic parameter to evaluate clinical scenarios
and ART outcomes in human beings.
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TABLE 3 | Different methods for detection of DNA damage in spermatozoa.

Assay Method Principle Advantages Limitations References

Sperm chromatin

structure assay

Flowcytometry Measure the DNA denaturation

(acid/heat) based on the

metachromatic shift from green to

red fluorescence

The SCSA accurately estimates

the percentage of DNA-damaged

sperm

Requires expensive

instrumentation (flow cytometer)

and HIGHLY

orthochromatic staining Skilled

technicians

(24)

Sperm chromatin

dispersion test

Fluorescence

Microscopy

Differentiate between fragmented

and non-fragmented DNA based

on the presence of peripheral halo

dispersion in DNA loops.

Simple, fast, and reproducible,

and results are comparable to

those of the SCSA. Does not

require expensive instrumentation.

Recently introduced test, thus

little is known about its limitations

and its clinical significance

(159)

Toluidine Microscopy Used for metachromatic and

orthochromatic staining of

chromatin. This stain is a sensitive

structural probe for DNA structure

and packaging.

Simple and inexpensive and have

the advantage of providing

permanent

preparations for use on an

ordinary microscope

Inherent limitation of repeatability

dictated by dye equilibrium

variations and only limited

number of cells can be

reasonably scored

(160)

Chromomycin A3 Fluorescent

Microscopy/Flow

cytometry

Chromomycin A3 and protamines

compete for the same binding

sites in the DNA. High CMA3

fluorescence indicates low

protamination state of

spermatozoa

The CMA3 assay yields reliable

results as it is strongly correlated

with other assays used in the

evaluation of sperm chromatin

Observer subjectivity may hinder

the results if fluorescent

microscopy is used.

Expensive instrumentation, if

flow cytometry is used

(161)

Acridine orange Fluorescent

Microscopy/

flowcytometry

Measures the susceptibility of

sperm nuclear DNA to

acid-induced denaturation in situ

by quantifying the metachromatic

shift of AO fluorescence from

green (native DNA) to red

(denatured DNA)

The AO assay is a biologically

stable measure of sperm quality.

The inter-assay variability is >5%,

rendering the technique highly

reproducible

Observer subjectivity may hinder

the results if fluorescent

microscopy is used expensive

instrumentation, if flow cytometry

is used

(162–164)

Aniline Microscopy Discriminates between lysine-rich

histone and cysteine/arginine-rich

protamine

Simple and inexpensive and have

the advantage of providing

permanent

preparations for use on an

ordinary microscope

Inherent limitation of repeatability

dictated by dye equilibrium

variations and only limited

number of cells can be

reasonably scored

(160)

TUNEL Flowcytometry/

Fluorescence

Microscopy

The TUNEL assay quantifies the

incorporation of dUTP at single-

and double-strand DNA breaks

The assay demonstrated

fairly good quality control

parameters. The intra-observer

variability was found to be < 8%

and the

interobserver variability was < 7%

Expensive instrumentation, if

flow cytometry is used

(165)

Comet Fluorescent

Microscopy

Quantifies the actual DNA

damage in both alkaline and

neutral method based on tail

length.

The comet is a simple and

well-standardized low-cost assay

that correlates significantly with

TUNEL and SCSA assays

The assay requires an

experienced observer to analyze

the slides and interpret the

results

(166, 167)

In situ nick

translation (INST)

Fluorescent

Microscopy

Specifically stains spermatozoa

that contain appreciable and

variable levels of endogenous

DNA damage.

The advantage of the NT assay is

that the reaction is based on

direct labeling of termini of DNA

breaks, and thus the lesions that

are measured are identifiable at

the molecular level

Expensive instrumentation, if

flow cytometry is used

(168)

8-OHDG Liquid

chromatography

It is the most commonly studied

biomarker for oxidative DNA

damage. Estimates the level of

DNA adducts which generate

DNA strand breaks.

Specificity and sensitivity are high. Although 8-OHdG is a potential

marker for oxidative DNA

damage, artifactual oxidation of

dG can occur during the

analysis, which can lead to

inaccurate results

(156)

Oxidation-

reduction potential

(ORP)

MiOXSYS

System

Direct measure of Oxidative

Stress in semen sample, as it

describes the relative proportions

of oxidants (ROS) to reductants

(antioxidants)

Reproducibility of the results are

high

Very recently introduced test,

thus little is known about its

limitations and its clinical

significance

(154)
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BOTTOM LINE

Traditional routine semen analysis has limited value for the
prediction of sperm fertilizing potential. The prognostic value of
the currently available in vitro tests for male fertility prediction
is also limited. The data accumulated over the last four decades,
mostly on men, indicate that DNA integrity correlates well
with sperm fertility potential. Furthermore, the majority of
the studies indicates that DNA damage assessment has a
better predictive score than conventional semen analysis. In
the era of assisted reproductive techniques (ART), evaluation
of the quality of the sperm genome and selection of good
quality spermatozoa assume much significance for desirable
pregnancy outcome. The assessment of sperm DNA damage
in ART, such as in vitro embryo production, is important
because these techniques bypass the natural selection barriers
of the female reproductive tract. When spermatozoa with a
lot of DNA damage are used, the possibilities of transmitting
genetic aberrations to the embryo/fetus are high. It has been
demonstrated that assessment of the sperm DNA fragmentation
index and selection of spermatozoa with low %DFI prior
to ART, improved fertilization rates. Several studies indicate
that sperm DNA damage is negatively associated with male
fertility, fertilization, and embryonic development. A recent
report indicated that sperm %DFI was significantly higher (P <

0.01) in male factor infertility compared to either female factor
or unknown factor infertility (12). Therefore, the inclusion of
the DNA fragmentation index in breeding soundness evaluation
could be a better prognostic value for selection of quality breeding
males for an artificial breeding programme.

On the research front, we still have a long way to go to
understand fully the impact of fertilization of an oocyte by a
spermatozoon with damaged DNA. The majority of the earlier
studies reported the relationship of sperm DNA damage with
fertility but limited information is available on the molecular
details of how damaged spermDNA affects fertilization and post-
fertilization embryo/fetus development. In addition, the long-
term consequences of using sperm with compromised DNA
integrity are unknown. To make it possible to assess sperm DNA
in frozen semen stations, a precise and simplified novel method is
required.Whatever the assay to be developed or refined, it should
allow assessment of sperm DNA integrity without destruction of
the fertilizing potential of spermatozoa so that the same germ cell

could be used for assessment and subsequently for fertilization;
this would provide a safe and effective diagnostic method in cases
opting for ART.

CONCLUSION

There is consensus among the researchers that DNA damage is
greater in infertile males compared to fertile males in several
species. The available literature also convincingly shows that
sperm DNA damage influences the fertility outcome to a
variable degree. Although several methods are used to assess
sperm DNA damage, the different types of DNA defects and
inconsistency in reproducibility of results, indicate that it
may be necessary to use a combination of tests for reliable
and reproducible results. However, it is noteworthy that the
majority of the information generated was from men; large-
scale studies using appropriate samples/methodologies are very
limited in farm animals. Although, a substantial increase in
research is warranted to establish sperm DNA damage as a
prognostic/diagnostic parameter to evaluate male fertility in farm
animals, based on the information available, across the species, it
may be inferred that incorporation of sperm DNA fragmentation
assay in the breeding soundness evaluation could improve the
accuracy of selection of quality breeding males for an artificial
breeding programme.
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