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Spermatozoa of virtually all species can spontaneously take up exogenous DNA or RNA
molecules and internalize them into nuclei. In this article I review evidence for a key
role of a reverse transcriptase (RT) activity, encoded by LINE-1 retrotransposons, in the
fate of the internalized nucleic acid molecules and their implication in transgenerational
inheritance. LINE-1-derived RT, present in sperm heads, can reverse-transcribe the
internalized molecules in cDNA copies: exogenous RNA is reverse-transcribed in a
one-step reaction, whereas DNA is first transcribed into RNA and subsequently reverse-
transcribed. Both RNA and cDNA molecules can be delivered from sperm cells to
oocytes at fertilization, further propagated throughout embryogenesis and inherited in
a non-Mendelian fashion in tissues of adult animals. The reverse-transcribed sequences
are extrachromosomal, low-abundance, and mosaic distributed in tissues of adult
individuals, where they are variably expressed. These “retrogenes” are transcriptionally
competent and induce novel phenotypic traits in animals. Growing evidence indicate
that cancer tissues produce DNA- and RNA-containing exosomes. We recently found
that these exosomes are released in the bloodstream and eventually taken up into
epididymal spermatozoa, consistent with the emerging view that a transgenerational
flow of extrachromosomal RNA connects soma to germline and, further, to next
generation embryos. Spermatozoa play a crucial bridging role in this process: they act
as collectors of somatic information and as delivering vectors to the next generation.
On the whole, this phenomenon is compatible with a Lamarckian-type view and closely
resembles Darwinian pangenesis.

Keywords: spermatozoa, LINE-1 retrotransposons, reverse transcriptase, exosomes, transgenerational
inheritance, evolution

SPERMATOZOA AS A SOURCE OF REVERSE
TRANSCRIPTASE-MEDIATED EXTRACHROMOSOMAL
INFORMATION: A LOOK TO THE PAST

It is a well-established notion that mature spermatozoa have the spontaneous ability to
take up exogenous DNA molecules and to internalize them in their nuclei (reviewed by
Spadafora, 1998). This permeability is a distinctive feature of spermatozoa, both epididymal and
ejaculated (after wash-off of seminal fluid), from virtually all animal species including humans
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(Smith and Spadafora, 2005). Thus, in spite of the highly
compact and impenetrable structure of their nuclei, sperm cells
are in fact highly permeable to foreign molecule intrusion.
Intense investigations of this phenomenon revealed that the
interaction of exogenous DNA molecules with sperm cells,
as well as their subsequent nuclear internalization, are well-
regulated processes mediated by a network of specific factors
(Spadafora, 1998). Parallel studies have revealed that spermatozoa
can also take up RNA molecules and internalize them in
their nuclei. Somewhat unexpectedly, these RNAs are reverse-
transcribed into cDNA copies by a biologically active reverse
transcriptase (RT) activity encoded by LINE-1 retrotransposons
and present in sperm nuclei (Giordano et al., 2000; Spadafora,
2008). The LINE-1-derived RT interplays with a DNA-dependent
RNA polymerase, also present in spermatozoa (Fuster et al.,
1977), which together amplify the cDNAs copy number,
mimicking a “natural” PCR/RT-PCR process. Most newly
generated cDNA copies are released from spermatozoa into the
medium and can be taken up again by further spermatozoa
and internalized in their nuclei. Through this continuously
cycling process, cDNA copies are evenly distributed among
the vast majority of sperm cells suspension. Work with
murine models showed that the RT-generated cDNAs are:
delivered to oocytes at fertilization (Giordano et al., 2000;
Pittoggi et al., 2006), maintained as low-copy number (below
one copy/genome) non-integrated extrachromosomal sequences
throughout development, mosaic propagated in the tissues of
founder individuals, eventually transmitted in a non-Mendelian
fashion to the next generation, transcriptionally competent
and able to generate phenotypic variations in animals of both
generations (Sciamanna et al., 2003; Pittoggi et al., 2006).
These results suggest that spermatozoa provide a previously
unrecognized source of RT-mediated information, not linked to
chromosomal genes, and, at the same time, act as propagating
vectors throughout generations.

These findings raise several puzzling questions. First, does
the ability of sperm cells to take up foreign nucleic acid
molecules reflects an enforced behavior when they come in
contact with RNA under conditions of in vitro assays, or else
do spermatozoa naturally collect and carry foreign molecules
under physiological conditions in vivo? Second, does the
RT activity stored in spermatozoa represent a functionless
remnant of ancestral retrotransposon activity, brought to
new life in response to occasional intrusions of foreign
molecules, or does it exert an extant physiological role in
development? These two issues, i.e., the sperm permeability
to exogenous RNA, and the sperm RT that uses the latter
as a substrate for retrotranscription, raise the third key
question of whether these phenomena are physiologically
relevant or, in other words, whether they occur in nature
to generate a source of novel information. To begin to
address these issues, it was imperative to characterize the RNA
population stored in spermatozoa and possibly identify its
origin. In recent years, high-throughput technologies and next
generation sequence analysis have revealed a highly complex
composition of spermatozoal RNA, whose components are
increasingly emerging as key players in epigenetic inheritance

processes, as will be seen in more depth in the following
paragraphs.

THE COMPLEX TRANSCRIPTIONAL
LANDSCAPE OF MATURE
SPERMATOZOA

Traditional views considered spermatozoa as transcriptionally
silent cells (Grunewald et al., 2005) and sperm RNAs as
negligible remnants produced during spermatogenesis. More
recent data however contrast with these views, showing that
mature spermatozoa in fact contain a complex population of
coding RNAs, small non-coding RNA classes, and, finally, LINE-
1, SINE/Alu, and LTR repeat-associated transcripts (Jodar et al.,
2013; Sendler et al., 2013; Miller, 2014). Small non-coding RNAs
account for a considerable proportion of spermatozoal RNA
(Krawetz et al., 2011; Kawano et al., 2012), mainly represented
by piRNAs produced during spermatogenesis, tsRNA (tRNA-
derived), and to a lesser extent, microRNAs (miRNAs) are
instead predominant in epididymal spermatozoa (Chen et al.,
2016b). Importantly, the composition of the spermatozoal
RNA population varies in response to paternal exposure
to a variety of stressing conditions (Rodgers et al., 2013;
Brieno-Enriquez et al., 2015), a circumstance that can have
crucial consequences for the fate and health of the progeny.
Most importantly, growing data are revealing that RNAs of
somatic origin also contribute to the composition of the sperm
RNA cargo in the form of selectively retained RNAs derived
from soma-to-spermatozoa intercellular communication. This
flow is mediated by a special class of epididymis-derived
nanovesicles, called epididymosomes, which shuttle miRNAs
and tRNA fragments from the epididymal tissue to mature
sperm cells (Belleannée et al., 2013; Vojtech et al., 2014;
Sharma et al., 2016). The shuttled sperm RNA, containing
several 100s of developmentally relevant small RNAs, are the
product of a “sieving” process, as their profiles are distinct
from those of the surrounding soma (Reilly et al., 2016).
The modulation of the sperm RNA content occurs during
maturation of spermatozoa between the proximal and distal
epididymal segments, and identifies the epididymis as a key site
for the establishment of the sperm epigenome (Nixon et al.,
2015).

We recently reported that epididymal spermatozoa can
incorporate RNA from somatic cell-released exosomes: indeed,
we found that human melanoma cells, engineered to express
EGFP and inoculated in nude mice, release EGFP RNA-
containing nanovesicles in the bloodstream of the animals; a
proportion of that RNA reaches the epididymis and becomes
internalized in sperm heads (Cossetti et al., 2014). This finding
shows that the flow of RNA delivered to spermatozoa originates
not only from the surrounding epididymal soma, but also
from distant, unrelated districts of the body. Nanovesicles act
as the ideal vectors of such delivery. Sperm heads are the
final recipients of this extrachromosomal information due to
their ability to spontaneously take up exogenous molecules, as
mentioned above. On the whole, these data indicate that the
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impenetrable Weismann barrier, considered for a long time as
a cornerstone of modern genetics, can in fact be breached by
nanovesicle-mediated flows of extrachromosomal RNA (Eaton
et al., 2015).

BREAKING THE WEISMANN BARRIER: A
SPERM-MEDIATED RNA-BASED FLOW
CONNECTS SOMA TO THE NEXT
GENERATION EMBRYOS

In a seminal article, Krawetz and collaborators (Ostermeier
et al., 2004) first reported that the sperm-specific RNA cargo
is delivered to oocytes at fertilization. That finding proved
that not only the male genome, but also extrachromosomal
RNA carried by sperms, contribute to the zygote formation.
However, the sperm RNA per se is not strictly required
for embryonic development, as parthenogenetic mice can be
successfully generated by microinjecting haploid, or bimaternal
embryonic stem cells in murine oocytes (Li et al., 2016;
Zhong et al., 2016). The latter finding indicates that all the
fundamental information to support the developmental program,
from fertilization to adulthood, is linked to chromosomal
genes.

A novel turn to the field is being provided by recent data
indicating that the composition of sperm RNA reflects the
lifestyle habits and carry the “memory” of paternal experiences;
that RNA-based memory is transmissible to the offspring
as paternally acquired characteristics, with the potential to
affect the health and overall biological fate of the progeny
(reviewed by Liebers et al., 2014; Klosin and Lehner, 2016).
Of remarkable interest are recent experiments that have
assessed the potential of sperm RNAs as transgenerational
modifiers in response to parental environmental or stressing
conditions (Carone et al., 2010; Rodgers et al., 2013, 2015),
including diet (Fullston et al., 2013; Chen et al., 2016a;
Huypens et al., 2016), cigarette smoke (Marczylo et al., 2012),
odor sensitivity (Dias and Ressler, 2014), and cognitive and
behavioral conditioning (Rodgers et al., 2013; Gapp et al., 2014).
RNA was unambiguously identified as the transgenerational
modifier in a large set of compelling experimental data,
showing that offspring generated from normal zygotes
microinjected with sperm RNA recapitulate the phenotypical
traits of the RNA donor animals (Rassoulzadegan et al.,
2006; Gapp et al., 2014; Grandjean et al., 2015; Chen et al.,
2016a).

Together, these data show that inheritance is not exclusively
linked to chromosomal genes. Indeed, a subtle yet effective flow
of RNA is established between somatic tissues and the next
generation embryos. Spermatozoa are the pivots, playing a dual
role both as collectors of paternal extrachromosomal RNA and as
their vectors to the offspring. The emerging evidence that RNA-
based information can travel from soma to germline subvert the
Weismann’s theory and provide a foundation for the inheritance
of acquired traits with far reaching implications for evolutionary
processes.

RT ENCODED BY LINE-1
RETROTRANSPOSONS AS MODULATOR
OF EARLY EMBRYONIC DEVELOPMENT

In addition to being stored in mature spermatozoa, LINE-1-
encoded RT is also abundantly expressed in early embryos and is
implicated in the genesis and propagation of extrachromosomal
information. We have found that LINE-1 retrotransposon-
encoded RT is triggered soon after fertilization in both zygotic
pronuclei, predominantly in the paternal pronucleus (Vitullo
et al., 2012), and remains active in early preimplantation
embryos (Pittoggi et al., 2003). RT plays a crucial role
in early development: indeed, RT inhibition, induced either
by pharmacological RT inhibitors (Pittoggi et al., 2003),
or by downregulating LINE-1 expression by microinjecting
antisense oligonucleotides in zygotic pronuclei (Beraldi et al.,
2006), causes a drastic arrest of embryo development at
the 2- or 4-cell stages. These results suggest that RT is
strictly necessary for the unfolding of the developmental
program from the second cell division, as the first cleavage
exploits the maternal RNA stored in oocytes (Tang et al.,
2007).

Although neither the specific role(s) nor the mechanism of
action of embryonic RT are yet fully clarified, emerging data
suggest that RT controls the biogenesis of miRNAs, a class
of RNA that is globally, yet transiently, suppressed in early
embryogenesis (Suh et al., 2010), concomitant with the up-
regulation of RT expression (Pittoggi et al., 2003; Vitullo et al.,
2012).

The link between LINE-1-encoded RT and miRNA biogenesis
has been investigated in some depth in cancer cells. In striking
analogy with early embryos, RT is also highly expressed in
most cancer types from very early stages (reviewed by Sinibaldi-
Vallebona et al., 2011; De Luca et al., 2016). In parallel with high
RT activity, the biogenesis of LINE-1-derived miRNAs (Lu et al.,
2005) and siRNAs (Chen et al., 2012) is globally reduced in cancer
compared to normal cells, with ensuing alterations of the gene
expression regulatory network. Exposure of cancer cells to RT
inhibitors restores the normal expression profile of miRNAs, with
a direct impact on global gene expression (Sciamanna et al., 2013,
2014). These lines of evidence suggest therefore that high RT
expression exerts: (i) a physiological control on the biogenesis
of miRNA in early embryogenesis, and (ii) a pathological
role in cells conveyed toward tumorigenesis, by impairing
the production of miRNAs, with the ensuing dysregulation
of downstream targets and the increase of transcriptional
fluctuations.

THE REMODELING OF THE EMBRYONIC
EPIGENETIC LANDSCAPE AND ITS
IMPLICATION IN EVOLUTION. A MODEL

In recapitulating the aspects discussed so far a framework
is beginning to emerge: (1) RNA-containing nanovesicles
are released from somatic tissues into the bloodstream; (2)
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FIGURE 1 | Schematic illustration, inspired by the Waddington’s model,
representing the canalization process of the embryonic epigenetic landscape.
The red ball rolling down from the top of the hill (a–d) throughout the
landscape represents the preferential trajectory of the progressing epigenetic
pathway driven by sperm RNAs delivered at fertilization throughout
generations. Targeted retrotransposal insertions (colored shapes) follow the
progressing groove (b,c), and provide DNA recognition sites for gene function
(transcription initiation, transcript splicing, etc.), leading to the assembly of
functional regulatory networks. Insertions also favor the copy number
expansion of miRNA and tsRNA coding sequences. The deeper groove with
colored symbols represents the functionally active path, while the shallower
grooves are not in use. The red ball in (d) indicates the completion of the
remodeling path and the functional activation of a novel canalized pattern (red
arrow).

Epididymal spermatozoa take up nanovesicles and internalize
them in their nuclei; (3) The internalized RNA molecules are
processed and their copy number is amplified, via the RT/DNA-
dependent RNA polymerase interplay; (4) Somatic RNAs, or

their cDNA copies, are delivered from sperm to embryos at
fertilization.

The first three steps continuously renew the RNA storage
in sperm heads. The last one, i.e., the delivery of processed
somatic RNA to oocytes, can recur at each round of fertilization.
Through this process sperm RNA is transmitted from one
generation to the next, which can contribute to the embryo
fitness and in principle expand the adaptation of the newborn
to diverse environmental conditions. It is reasonable to assume
that a large proportion of the males living in a same ecological
niche and exposed to the same stimuli, produce sperm RNA
cargos of similar composition; under constant environmental
conditions, these RNA cargo would be continuously delivered
to the progeny via fertilization throughout generations. It
is not unreasonable to hypothesize that, in the long run
(i.e., after a “sufficient” number of generations), the sperm
RNAs promote the “assimilation” of new trait(s), to use
Waddington’s concept (Waddington, 1959). In other words,
the cumulative effects of RNA delivery through generations
may promote the emergence of novel functional “canalized”
pathways (Waddington, 1959), via remodeling of the embryonic
chromatin architecture; in consequence, novel genetic circuits
might be activated and/or pre-existing ones might be “rewired.”
Mechanistically, the cumulative effects of regulatory miRNAs and
tsRNAs delivered by sperm upon fertilization would drive the
emergence of novel canalized pathways through two sequential
steps: (i) first, by “rewiring” the expression profile of genes
constituting canalized genetic circuits, and (ii) second, via
targeted retrotransposition events that provide new regulatory
sequences, which brings to completion the newly canalized
circuits.

The first (epigenetic) step builds on the established regulatory
functions of miRNAs and tsRNAs, which can modulate the
expression of relevant genes. It is reasonable to hypothesize that
RNAs delivered by sperm cells at fertilization also exert these
regulatory functions and remodulate the gene expression profile
in early embryos. Consequently, new genetic circuits (canalized
circuits) become functionally active, or/and pre-existing ones are
rewired.

Canalized circuits would then reach their final state
through targeted retrotransposition events (genetic step).
New retrotranspositions can provide additional layers
of control, by inserting protein-binding sites (e.g., for
transcription factors, hormones, splicing factors), as well as
enhancers, promoters, insulators, etc. in new sites within the
genome.

Thus, a hybrid epigenetic/genetic process drives the
remodeling of the embryonic chromatin architecture, as
schematized in Figure 1.

The process is seen as progressive in nature, based on
the assumption that the “quanta” of sperm-derived regulatory
RNAs delivered to the embryo at fertilization (represented by
the red ball rolling down the groove in Figure 1) constitute
minimal contributions toward the epigenetic activation of
novel canalization(s) by “deepening the canal” (Figures 1a–c,
right branch), while non-active pathways become shallower
(Figures 1a–d, left branch). When the cumulative effects of the
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sperm-delivered RNA overcome the buffering capacity of the
embryos, the novel canalized genomic circuit (Figure 1d) has
the potential to redirect the embryonic ontogenesis and generate
phenotypic novelties.

Targeted retrotransposition events constitute the genetic
component of the model, contributing to the functional
reshaping of the embryo regulatory circuits. Targeted insertions
(symbolized by different colored symbols in Figure 1) contribute
to establish novel regulatory circuits in at least three ways:
(i) they provide new protein-binding and regulatory sites; (ii)
they contribute new miRNA-coding sequences that expand
the overall diversity in the RNA population, and (iii) they
stabilize the newly remodeled landscape by fixing the chromatin
architecture.

Three considerations suggest that these changes could be
permanently assimilated. First, zygotes and early embryos are
thought to provide permissive, change-prone environments,
consistent with the finding that the early embryonic genome is
largely unstructured before zygotic genome activation, showing
a low level of chromatin organization over long genomic
distances (Hug et al., 2017). Second, as mentioned, LINE-
1-encoded RT activity is high in preimplantation embryos
(Vitullo et al., 2012) and, in parallel, the miRNA-based
control system is globally suppressed (Suh et al., 2010). This
is relevant in the light of evidence that miRNA-mediated
control reduces random fluctuations in differentiated cells
and in development, hence conferring robustness to genetic
pathways (Li et al., 2009; Ebert and Sharp, 2012); on the
contrary, miRNA suppression increases instability and random
fluctuations in the developmental program (Hornstein and
Shomron, 2006; Li et al., 2009; Ebert and Sharp, 2012).
Moreover, retrotransposon families (i.e., LINE-1, Alus, LTRs)
are de-repressed in embryos concomitant with global genomic
hypomethylation (Lee et al., 2014; Smith et al., 2014), and
constitute a potential source of both genetic and epigenetic
variations (Macia et al., 2011; Vitullo et al., 2012; Fadloun
et al., 2013). Overall, no massive retrotransposition events are
required, with the exception of some crucial insertions that
provide regulatory sequences to the newly formed canalized
circuits. These crucial events would be targeted to specific
hypersensitive sites generated during embryonic chromatin
remodeling. Third, the RNA population that spermatozoa deliver
to oocytes contains regulatory miRNAs and tsRNAs (Chen
et al., 2016b), which can reshape the embryonic expression
landscape and reprogram the transcription profiles of 100s
of embryonic genes. Indeed, even small amounts of delivered
regulatory RNAs can generate an ample spectrum of epigenetic
variations with a potential impact on the phenotype. Thus,
inheritable variations may be driven by small regulatory
RNAs, assimilated in the change-prone genome architecture
of embryos and translated into new phenotypic variants,
with no major adverse effect on the permissive embryonic
context.

It is worth recalling that small RNAs are involved both in
macroevolutionary processes – as their number increases over
time in parallel with complexity, while their loss is associated

with morphological simplification (Wheeler et al., 2009; Erwin
et al., 2011) – and with the canalization of genetic programs
(Hornstein and Shomron, 2006; Li et al., 2009; Vidigal and
Ventura, 2015).

CONCLUSION

The present model of transgenerational inheritance attempts
to integrate data from different sources in a biologically
coherent framework. Most aspects implicated in the process
are experimentally tested and are potentially able to generate
transgenerationally relevant novelties. The mechanism is
predominantly epigenetic and independent of genomic
mutations. Importantly, the “sieving force” of natural selection
is not necessary in conventional terms, because the canalization
process driven by sperm RNA would generate specific pathways,
leaving little space for random variations, and favoring
the ultimate emergence of one or few new phenotype(s).
In analogy with Lamarckism, this hypothesis is based on
the assumption that extrachromosomal transgenerational
inheritance can affect ontogenesis and generate evolutionarily
significant, stably acquired variations. Darwinian pangenesis
(Holterhoff, 2014) is the other theory with which the model
has significant overlap. The hypothesis that “gemmules”
containing parental characters are released from tissues and
transferred to the next generation via the germline can now
be reinterpreted in the light of our current knowledge of
circulating nanovesicles and exosomes, carrying nucleic acids
and released from somatic tissues, which can be taken up by
sperm cells, thus providing a foundation for spermatozoa-
mediated transgenerational inheritance. It is amazing that
so-called obsolete concepts, developed in the context of
two historically rejected theories, are re-emerging from
modern experimental data based on next generation genomic
methodologies, thus confirming that history sometime repeats
itself.
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